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Abstract: This work presents a new finite-difference continuum damage mechanics approach for
assessment of threshold stresses based on the mechanical response of a representative volume
element of a sandy-cement rock-like material. An original experimental study allows validating the
mathematical model. A new modification of the damage accumulation kinetic equation is proposed.
Several approaches based on acoustic emission, instantaneous Poisson’s ratio and reversal point
method are employed to determine the threshold stresses. Relying on the numerical modeling
of deformation and failure of model samples, the threshold stresses and the deformation stages
are determined. The model predicts the crack initiation stress threshold with less than 10% error.
The model prediction of the crack damage stress threshold corresponds to the upper boundary of
the experimental range. The model predicts the peak stress threshold with less than 0.2% error in
comparison with the average experimental peak stress. The results of numerical modeling are shown
to correlate well with the available experimental and literature data and sufficiently complement them.

Keywords: experimental study; numerical modeling; rock-like material; sandy cement; fracture;
damage accumulation; threshold stresses; constitutive equation; loading diagrams; dilatancy;
acoustic emission

1. Introduction

Recent advances in rock mechanics have revealed the threshold stresses distinguishing
the deformation stages of different rocks. It was found out that crack initiation, crack
damage and peak stresses are useful for rock pressure control in tunneling and under-
ground technologies.

Based on the literature data analysis, the stages of uniaxial deformation of rocks have
been extensively investigated in numerous experimental studies, for instance [1–7]. In
these works, an evaluation of threshold stresses was carried out by means of complete
stress-strain curves of loaded rocks, acoustic emission series, instantaneous Poisson’s ratio
functions, tangential modulus, and axial and volumetric stiffness. The thresholds are
related to the corresponding stages of the deformation process. The following threshold
stresses are generally distinguished: the microcrack closure stress, the crack initiation stress,
the crack damage stress, the peak stress. The microcrack closure stress indicating the end
of the initial nonlinear concave part of the loading diagram is seldom applied in practice,
although the corresponding microcrack closure strain allows estimating the microcrack
density and texture in rocks [8,9]. The other thresholds are more significant from the point
of their specific engineering applications.

For instance, Nicksiar and Martin [7] presented a comprehensive study on the crack
initiation stress in igneous and sedimentary rocks. Statistical results reveal the ratio of
the crack initiation stress to uniaxial compression strength (UCS) ≈ 0.45. Martin and
Christiansson [10] argued that crack initiation stress only slightly underestimates the in-situ
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strength when comparing the in-situ spalling strength of the circular opening with the
crack initiation stress of a laboratory tested Lac du Bonnet granite sample. Similar values
of the spalling stress-to-compressive strength ratios of the rock massive at the Baihetan
exploratory tunnel were also reported by Jiang et al. [11]. Esterhuizen et al. [12] performed
a study of pillar failure in hard rock mines; the authors argue that according to the in-situ
measurements, the pillars tend to failure under the stress an order of magnitude lower than
the UCS of the laboratory samples.

The crack damage stress indicative of the onset of an unstable crack propagation
stage was studied in many works, e.g., [3,6,13,14]. Cai et al. [3] replaced the UCS of
an intact rock with that of the jointed rock mass and obtained the threshold initiation
and damage criteria. It was shown that the thresholds assist in assessing the rock mass
integrity. Martin and Chandler [6] argued that upon reaching the crack damage stress the
fracture process becomes self-sustaining, which is indicative of a long-term strength of
rocks. Xue et al. [13] reported a high impact of porosity on the ratio of the crack damage
stress, although the origin of rocks has hardly any influence. The crack damage stress
was studied by Zhao et al. [14] based on the acoustic emission and complete stress-strain
curve. The authors state that their results are applicable to prediction of the underground
excavation response and might be easily implemented as a ready-to-use damage criterion
in any numerical codes.

In the field of mathematical modeling, several approaches have been successfully
applied to studying the stages of deformation and fracture of rocks under uniaxial loading,
e.g., [15–18]. Ghazvinian et al. [15] applied the 3DEC to investigating the different aspects
of rock behavior with an explicit consideration of textural features using the Voronoi
tessellation. The model reproduces the effective mechanical characteristics of loaded
samples and the features of failure. The bonded-particle model was proposed by Potyondy
and Cundall [16] and applied to modeling the Lac du Bonnet granite failure as a part of the
particle flow code. The bonded-block model was represented by Sinha and Walton [17],
the authors proposed an inverse tangent lateral stiffness technique for evaluation of the
crack initiation stress and normalized number of crack techniques for evaluation of the
crack damage stress. Zhou et al. [18] considered a random distribution of microcracks
in a rock volume and proposed a microcrack constitutive damage model considering
the fracture and damage mechanics and the reduction in Young’s modulus of a material
in the course of damage accumulation. Liu et al. [19] studied the fracture evolution of
crystalline basalt both under uniaxial and triaxial loading. It was shown that an increase in
the confinement stress changes the dominant failure mechanism. Wang et al. [20] studied
the features of rock mass failure. The uniaxial compressive strength and deformation
characteristic exhibit a non-monotonic U-shaped dependence with the maximums at the
0◦ and 90◦ inclination angles as reported by the study. Zhou et al. [21] employed the
COMSOL 3D finite element package to describe the cracks coalescence patterns of the
heterogeneous Beishan granite containing a random initial distribution of micro-defects
under uniaxial compression and Brazilian test. Wang et al. [22] applied the conjugated bond-
based peridynamics to modeling the crack propagation and coalescence in rocks under
uniaxial compression. Zhao [23] analyzed the crack patterns of the Fangshan marble and
proposed a constitutive damage model describing fairly good the experimental pre-peak
complete stress-strain curve. Xie et al. [24] applied a micro-mechanics-based elastoplastic
damage constitutive model to study the response of the fresh and weathered diabase
samples under triaxial compression. Yuan et al. [25] applied an elastoplastic damage
constitutive model to compression of rock-like materials with consideration of cracks
interaction. A descending portion of the loading diagram is observed when the scalar
damage parameter exceeds ≈0.1. Zhang et al. [26] proposed a constitutive model of the
weathered granite deformation based on the AE series to describe an integral damage of
the sample.

According to the literature review, there are few articles accurately assessing the
threshold stresses and the corresponding deformation stages based on the 3D numerical



Materials 2023, 16, 24 3 of 16

modeling of uniaxial compression due to a general complexity of the problem. Moreover,
rocks with a complex mineral content are inherently heterogeneous. This brings difficulties
in distinguishing the influence of the individual minerals on the loading response of the
samples. Numerical modeling faces the same problems when it comes to interpreting
experimental observations. One needs to describe properly the constitutive equations
for all constituents of a natural composite material. For this reason, it is important for
the experimental samples to be prepared from the most homogeneous rock formations.
Since the latter are seldom found in nature, one can calibrate the numerical models against
the data obtained from laboratory experiments with the artificial rock-like materials. The
practical engineering significance of such assessments is due to the following: the regulari-
ties of mechanical behavior of pillars in room-and-pillar and other types of mining have
much in common with the mechanical behavior of the laboratory samples subjected to
uniaxial compression.

In this work, we prepared sandy-cement rock-like material samples for an experimen-
tal study. The samples have a relatively homogeneous structure and a very low porosity
(less than 2%). They are subjected to a uniaxial compression test with registration of the
lateral strain, and the complete stress-strain curves of material were obtained. The experi-
mental results are further used as a guide for the mathematical model calibration. Special
attention is paid to the stages of deformation process which are distinguished based on
the simulated acoustic emission pulses, the instantaneous Poisson’s ratio, and the reversal
point method. Computer modeling of the uniaxial compression test is carried out in the
framework of the three-dimensional finite-difference method (FDM). The Representative
Volume Element (RVE) with an explicit consideration of the porous structure (spherical
pores) is designed for the study. We propose a new finite-difference continuum damage
mechanics approach for assessment of threshold stresses based on the mechanical response
of a representative volume element of a sandy-cement rock-like material.

2. Material

For the manufacture of initial sample, Portland cement grade M500 and river sand
were used. The dust fraction of sand was removed by screening. The sand-cement mixture
was mixed with water at a ratio of 0.58 and left in the cassette on the vibrating table
for 30 min. The ratio of volume fractions of cement and sand was 1:2. Sample was
left for 28 days for solidification. The details of the method employed are discussed
elsewhere [27]. The density of material was determined as the mass-to-volume ratio of
sample, and the pore volume was disregarded. Young’s modulus and Poisson’s ratio of the
material are determined from the elastic part of complete stress-strain curve (see Figure A1a
in Appendix A as an example). Based on the SEM pattern of the etched sample surface
(see Figure A2a in Appendix A), the total porosity of the material is ≈2%, the pore size
distribution is illustrated in Figure A2b. Some of these data are further directly transferred
as the model parameters (ρ, E, and ν), the other experimental parameters are used to
validate the model parameters. The design of the proposed structural model is discussed
in Appendix A.

3. Experimental Study

A total of 10 sandy-cement rock-like parallelogram samples were cut by a diamond disc
from a larger sample. The laboratory loading of the samples was performed using an Instron
1185 universal testing machine in the deformation-controlled mode with the loading rate
of 0.05 mm/min. The longitudinal strain was recorded by means of the Instron firmware,
while the lateral strain was recorded simultaneously by the gauge installed around the
sample. Both longitudinal and lateral strains were determined using engineering strain
notation. Stresses were determined as the force value divided by the sample cross-section
area. Schematic experimental setup is illustrated in Figure A1b in Appendix A.

The resulting complete stress-strain diagrams of 6 samples are illustrated in Figure 1a.
The other samples were disregarded due to a sufficient deviation from the presented
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group of samples. Judging by the results, the convergence of the loading curves is poor,
although the samples were prepared in the laboratory, carefully controlled conditions. This
is typically observed in almost all experimental studies of uniaxial compression of rocks or
rock-like materials. The Young’s modulus and the UCS value of the tested samples vary
in a vast range (3.14 ± 1 GPa and 24.3 ± 5 MPa, respectively), which is apparently due to
the pores in the bulk of material. Pores cause stress concentration and become the regions
of cracks nucleation. It is well known that the residual porosity noticeably influences the
physical-mechanical parameters of the materials [28–30]. An increase in porosity causes a
rather noticeable decrease in Young’s modulus and UCS. Therefore, the scatter of properties
is quite a common phenomenon, though undesirable.
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Figure 1. Complete stress-strain diagram of loaded samples: (a) curves of dependence σ1 − ε1,
σ1 − ε3, and ε1 − ε3; (b) curves of dependence σ1 − εv. Different colors correspond to different
tested samples.

According to the classification of deformation stages proposed by Martin and Chan-
dler [6], the loaded samples exhibit all stages of the deformation process. The initial stage
of loading has a non-linear concave segment in the σ1 − ε1 curve. This stage is generally
treated as the microcrack and/or micropore closure causing a gradual increase in the
tangential modulus. Notably, in this stage of deformation the lateral strain remains approx-
imately zero. Thus, the deformation occurs to some extent only in the loading direction.
This proves the microcrack closure being a possible mechanism driving the tangential
modulus change. The ratio σcc

σp
for the tested samples might be as high as 0.23, which is

indicative of a quite long stage of the micropores closure.
The linear dependence of the σ1− ε1 curve is observed in the next stage of deformation.

Judging by the σ1 − ε3 curves, the elastic stage is not long. A departure from linearity in
these curves is indicative of a crack initiation process which points out the onset of the next
stage. The newly formed cracks exhibit a stable growth after the σci threshold is exceeded.
Based on the analysis, the ratio of the crack initiation-to-peak stress lies in the range of
≈0.45–0.63. This range is quite consistent with the data reported in [5,6].

To determine the crack damage threshold σcd, we plot the dependence of axial stress σ1
on volumetric strain εv using expression εv ≈ ε1 + 2ε3 (Figure 1b). This curve is of great im-
portance for engineering. So, as reported by Bieniawski [1], the reversal point, wherein the
derivative of σ1 − εv curve changes its sign, is taken as a crack damage threshold σcd. Upon
reaching the σcd threshold, cracks become unstable. For this reason, the onset of unstable
crack growth is generally referred to as the long-term strength of rocks [1]. Interestingly, the
conclusions drawn in [1] mostly relied on the data of hard rock testing—igneous rocks and
metamorphic sedimentary rocks. These rocks generally have greater strengths and more
brittle character of failure in uniaxial compression due to their sufficiently later diagenesis.
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Finally, when the peak stress σp is reached, the stress-strain curve is observed to
descend. In this stage, the final crack pattern is formed. Samples are generally divided into
several pieces of different sizes. Figure 2 illustrates several failure patterns of the tested
samples. It can be noted that the major driving failure mechanisms are the ≈70◦-inclined
shear and sub-vertical tensile cracks.
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Figure 2. Typical failure patterns of samples.

The experimental data are summarized in Table 1.

Table 1. Summary of experimental data.

Exp. w, mm l, mm h, mm E, GPa ν σp, MPa σcc
σp

σci
σp

σcd
σp

Red 14.8 15.0 20.6 3.65 0.30 26.0 0.05 0.45 0.88
Green 14.8 14.8 22.2 2.72 0.14 30.4 0.15 0.65 0.86
Blue 14.1 14.5 20.2 4.06 0.27 25.4 0.10 0.48 0.67
Black 14.9 14.9 21.1 3.32 0.24 23.2 0.10 0.63 0.85

Magenta 14.8 14.8 21.2 2.89 0.26 21.2 0.10 0.46 0.66
Violet 14.8 13.8 22.5 2.14 0.13 19.3 0.23 0.48 0.84

Average 14.7 14.6 21.3 3.14 0.24 24.3 0.13 0.53 0.78

4. Mathematical Formulation of the Boundary Value Problem

To provide a better insight into the fracture process of the material in question, the
finite-difference continuum damage mechanics approach is employed. The system of
equations includes the laws of mass Equation (1) and momentum Equation (2) conserva-
tion. The stress tensor is symmetric σij = σji, which also satisfies the law of the angular
momentum conservation.

ρ0V0 = ρV (1)

ρ
.
vi =

∂σij

∂xj
(2)

The system also includes the geometrical relations for the strain rate (Equation (3))
and vorticity tensors (Equation (4))

2
.
εij =

∂vi
∂xj

+
∂vj

∂xi
(3)

2
.

ωij =
∂vi
∂xj
−

∂vj

∂xi
(4)

4.1. Constitutive Equations

The stresses are calculated according to the relations of a hypo-elastic medium with
separation of the volumetric and deviatoric parts of stress tensor. Equations (5) and (6)
allow for calculating the increments of the volumetric and deviatoric parts, respectively.
The corotational Jaumann derivative is applied in Equation (6) to subtract the rotation of
an element as a whole, which does not influence the values of deviatoric stresses.
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.
P = −K(

.
V
V
− .

ε
P
) (5)

.
Sij + Sik

.
ωkj − Skj

.
ωik = 2µ[

.
εij −

1
3
(

.
V
V
− .

ε
P
)δij −

.
ε

P
ij] (6)

A slightly modified version of the original Drucker-Prager (DP) criterion [31] is em-
ployed as part of the constitutive response to describe the inelastic deformation of samples.
An evolution of cohesion depends on the equivalent inelastic strain according to the law
proposed elsewhere [32] and on the accumulated damage D.

f (σij, D) = −αP + τ −Y (7)

Y = f (γP) = Y0[1 + h(2
γP

γ∗
− (

γP

γ∗
)

2

)](1− D) (8)

In Equations (7) and (8), α and Y are the material constants associated with rock

cohesion C and internal friction angle φ [31], τ =
√

J2 =
√

1
2 SijSij. For simplicity, we

will further refer to α as the internal friction factor and Y as the cohesion. The cohesion
evolution in the course of inelastic strain accumulation is discussed in detail in Appendix A.

The inelastic strain rate tensor components are defined according to the plastic poten-
tial (Equation (9)) from the theory of plasticity (Equation (10)). The non-associated flow
rule is employed.

g(σij) = τ −ΛP + const (9)

dεP
ij = dλ

∂g(σij)

∂σij
(10)

As a result of derivation, we obtain the following equation for the increments of the
inelastic strain tensor components (Equation (11)):

dεP
ij = dλ(

Sij

2τ
+

Λ
3

δij) (11)

Multiplier dλ is defined in the calculations when Equation (7) is satisfied. The proce-
dure of stress correction due to inelastic deformation is described elsewhere [33].

The theory of continuum damage mechanics (CDM) is applied in this work to describe
the rock fracture process. Here, we propose a new modification of the kinetic equation for
the damage measure time derivative D(σC, t) (Equation (12)). The shape of the right side of
equation conforms to the energy necessary to transfer crystal from initial state to the state
of local shear [34].

dD
dt

=
σ2

C
t∗

, (12)

where in σC = τ/(Y + αP) is the Coulomb stress, and t∗ is the model parameter controlling
the rate of damage accumulation having the physical meaning of the characteristic time
of the fracture incubation process, it was put equal to 102 due to following: all tested
samples were loaded during ≈200 s and average crack initiation stress to peak stress is
0.53, therefore, 102 s is the approximate fracture incubation process time.

When the fracture criterion is met in a particular material point, the stress-strain
evolution transits to the post-peak behavior (see Figure 3b for illustration of yield surface in
residual state); its description is also very important for modeling the macroscopic response
of the material. We use the following post-peak behavior in the local point:

1. if the hydrostatic pressure P < 0 then all stress tensor components are nullified;
2. if the hydrostatic pressure P > 0 then the material in the local point continues resisting

the residual shear strength τ = αP (see Figure 3b for residual state yield strength).

An explanation of other parameters is provided in Appendix A.
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4.2. Validation of Other Model Parameters against the Experimental Data

Based on a comprehensive review of the intact rock behavior [5], the yield strength
of rocks generally has a parabolic shape limited by the tensile cut-off in the region of
the negative minor principal stress. Therefore, it is impossible to describe the entire rock
behavior with a single-slope envelope. In contrast to the linear yield envelope, a parabolic
envelope is more complex in terms of deriving and obtaining the inelastic strain rate tensor
components. In this work, we propose a piece-wise linear yield criterion with different
slopes for negative and positive semi-spaces of the 2D Haigh-Westergaard-like stress space
(axis τ is the von Mises stress, axis P is the hydrostatic pressure, see Figure 3). Parame-
ters α and Y determine the yield surface. The values of these parameters are calculated
according to the method described in Appendix A. Determination of the dilatancy factor Λ
dependence on the inelastic volumetric strain is also discussed in Appendix A.

The possible loading histories of the elastic deformation stage in the model are schemat-
ically illustrated in Figure 3a with red and blue dashed-dotted lines. In the case of stress
paths No. 1 and 2, inelastic deformation of a material point initiates when the criterion (3.1)
(initial state) is met at the negative and positive semi-spaces, respectively. Schematic repre-
sentation of the yield/damage surface evolution in the course of inelastic deformation and
damage accumulation is illustrated in Figure 3b.

The model parameters are summarized in Table 2.

Table 2. The summary of the model parameters.

ρ0, g/cm3 K, GPa µ, GPa σc, MPa σt, MPa Y0, MPa α1 α2 γ∗

2.08 2.157 1.26 24.3 2.4 3.82 1.41 0.78 0.003

4.3. Boundary and Initial Conditions

The following boundary conditions are applied to the computational domain:

(i) the velocity vector component vz is assigned to the nodes belonging to the opposite
Z-plane edges—vz = v(t) and vz = −v(t), respectively, tangential sliding of nodes
is restricted;

(ii) the free-of-stress surface condition is maintained at all other facets of the sample and
within pores.

The initial state of the sample corresponds to zero values of all stress-strain state
parameters. The technique of slow loading was utilized to minimize the influence of the
acceleration term in Equation (2). When determining the function v(t), the time of the
loading velocity increase corresponds to more than 20 runs of an elastic P-wave through
the entire computational domain. The latter also indicates the limitation of presented
model—we focus only on quasi-static strain rates and do not consider dynamic loading of
rocks which is known to produce the strain-rate sensitivity. To solve the boundary value
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problem, we used the finite-difference method proposed and exhaustively discussed by
M.L. Wilkins [35].

5. Results and Discussion
5.1. Convergence of the Numerical Solution

The mathematical model presented above contains the local fracture criterion com-
plemented with the non-associated plastic flow rule. This combination is detrimental
to numerical solution stability. The local criteria are known to produce spurious strain
localizations, meanwhile the use of the non-associated plastic flow rule makes the model
unstable due to violation of the Drucker postulate [36]. For this reason, the verification
of the numerical solution convergence is a necessary step of numerical modeling. Herein,
we verify the numerical solution convergence based on the curve of dependence of σzz
stress tensor component averaged over the entire volume of the computational domain
versus the number of mesh elements. Figure 4 illustrates the results of the convergence
test. A magnified inset of a near-peak region (Figure 4a) of the stress-strain curves obtained
for models with different numbers of mesh elements suggests that the curves are almost
identical. This is also supported by Figure 4b where the average peak stress is plotted
against the number of mesh elements. The difference in the peak stress values does not
exceed 1%. The latter suggests that the model has a nearly absolute convergence in terms
of the average stress. For this reason, we focused on smoothness of the phase boundary
description (see Figure 5) and coincidence of the major strain localization patterns. Based
on the convergence verification according to these two parameters, a smooth description
of a phase boundary is achieved when the number of mesh elements exceeds 20 mln.
Meanwhile, the major strain localization pattern ceases to change when the number of
mesh elements exceeds 22 mln. Therefore, the mesh with ≈22 mln elements was chosen
as a reasonable trade-off between the accuracy and the computational costs. Influence of
pores array on the results of model estimations is discussed in Appendix A.
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5.2. Stages of Deformation Process

Let us now carefully trace the stress-strain evolution in the course of sample loading.
The major interest is focused on the stages of sample deformation, since they outline the
threshold stresses of crack initiation, crack damage and peak in the loading diagram. To
obtain these values, we used several approaches based on the simulations of acoustic
emission (AE) pulses, instantaneous Poisson’s ratios, and the reversal point method. The
simulation of AE is related to the interpretation of a number of elements which experienced
complete damage, i.e., either parameter D reached unity or parameter Y became zero
due to strain softening. In each time step of numerical integration, we calculated the
number of elements which had met the condition discussed in the previous sentence.
Further, we combined this temporal diagram with the stress-strain curve of the loaded
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sample to understand the regularity of fracture process scaling. Figure 6 illustrates the
stress-strain curve of the loaded sample combined with the simulated AE pulses. The grey
curve represents the total accumulated number of pulses, and the red curve represents the
increment of the simulated AE pulses.
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Figure 6. Stress-strain curve combined with simulated acoustic emission pulses.

The experimental findings reported elsewhere [5,37,38] suggest that in the case of
uniaxial compression loading the first AE pulses associated with the initiation of new cracks
are observed at an axial stress in the range of 40–60% of σp. Based on the experimental
results obtained in this work, the crack initiation threshold stress of the considered rock-
like material falls into the reported range and equals to ≈53%. The numerical modeling
stress-strain curve and the simulated AE pulses suggest that departure from linearity and
the first pulses occur when the average axial stress level reaches ≈12 MPa, which is ≈57%
of peak stress σp. Therefore, the model predicts the crack initiation stress threshold with
less than 10% error, which is quite reliable.

State (a) in the simulated stress-strain curve is associated with the crack initiation stress
threshold (σci). Figure 7 illustrates the patterns of accumulated damage in the consecutive
instants a–d corresponding to the states marked in the loading diagram a–d in Figure 6.
It can be noted that nucleation of strain localization is attributed to the phase boundary
wherein the stress concentration is observed (see Figure 8). We can also note that mode I or
tensile cracks nucleate in the regions of bulk tension (hydrostatic pressure P < 0), while
mode II or shear cracks tend to nucleate in the regions of bulk compression (hydrostatic
pressure P > 0).

From state (a) to state (b) we can see an insufficient increase in strain localization due
to a stable growth of the damage degree. In this stage of loading, the number of stress
concentration zones exhibit a slight increase due to the energy supply associated with
continuing loading. The same is also observed for the increment of AE pulses.

The results of numerical modeling suggest that we are unable to accurately identify
the exact value of σcd based on the AE pulse diagram. To do so, we need to combine the
simulated AE curve with the instantaneous Poisson’s ratio and the reversal point method.
Let us consider the curves of dependence of the instantaneous Poisson’s ratio calculated
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as µ31 = −ε3/ε1, the bulk strain ∆V/V versus the axial strain ε1, and the complete stress-
strain curve obtained by numerical modeling. Figure 9 illustrates the complete stress-strain
curve obtained by numerical modeling, which was further used to determine the crack
damage threshold stress.
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Figure 7. Stages of inelastic strain accumulation related to the corresponding states (a–d) in Figure 6.
The color legend and orientations are the same as in state (d). Accumulated damage is represented in
the bulk of the sample (grey and black colors) and is combined with the pore structure (pores are
shown by dark green color).
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Processing the complete stress-strain curve allowed us to obtain the curves of depen-
dence of µ31(ε1) (see Figure 10a) and ∆V/V(ε1) (see Figure 10b). When the derivative of
the ∆V/V(ε1) function changes its sign, the axial stress level is ≈22 MPa. Therefore, the
ratio between the crack damage threshold σcd determined according to the reversal point
method and the peak stress σp is equal to 0.89, which falls well into the range reported by
Hoek and Martin for rocks [5] and satisfactorily meets the experimental data obtained in
this work. Notably, a change in the curvature of µ31(ε1) and a significant intensification of
AE are observed at an axial stress slightly above the value obtained by the reversal point
method. Moreover, the choice of the crack damage threshold based on these two methods
is rather voluntary in contrast to the strict reversal point method. Note that these methods
for determining the crack damage threshold can be harmonized with each other if the
following rule of thumb is used. When the average number of AE pulses per unit time
exceeds the emission in the initial stage of crack initiation by e2 times, a transition to the
stage of unstable crack formation is observed.
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As the crack damage stress threshold (σcd) is approached, the increment of the simu-
lated AE pulses continuously increases. Finally, the onset of the unstable deformation stage
becomes pronounced (after state (b)), which is associated with the explosive increase in
the number of AE pulses. Notably, the majority of elements exhibiting complete damage is
located in the bulk of the sample. The coalescence of these damaged elements into larger
zones of strain localization is manifested in the post-peak deformation stage when the
stress-strain curve demonstrates a descending character. As the residual strength state
(d) is approached (see Figure 7d), we can observe the final fracture pattern of the sample,
with the strain localization zones reaching the free surfaces of the sample. One can see
that a mixed fracture mechanism is realized, since both the subvertical tensile cracks and
inclined shear cracks break the volume of the sample into many fragments. However, shear
cracking is obviously dominant, with the inclination angles lying in the range of 45–70◦ to
the loading direction.

6. Conclusions

In this work, we have discussed the experimental and computational studies of
the stress-strain evolution in sandy-cement samples subjected to uniaxial compression.
The experimental results were successfully used as a guide for validation of the model
parameters. The model was further used to determine the threshold stresses that are
important for distinguishing the deformation process stages. The results obtained might
be useful in the engineering practices of rock pressure control. The results of numerical
modeling satisfactorily meet the available literature data and sufficiently complement the
experimental data.

The following conclusions have been drawn relying on the numerical modeling data:

1. the AE and instantaneous Poisson’s ratio methods are better suited for determina-
tion of the crack initiation threshold stress than the crack damage threshold stress;
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meanwhile, the reversal point method is more suitable for determination of the crack
damage threshold stress; it is due to the following: we are unable to determine strictly
the crack initiation threshold using the reversal point method since the deviation
from linearity in ∆V/V(ε1) dependence is not instantaneous but occupies some strain
range. The AE and instantaneous Poisson’s ratio methods, on a contrary, give a strict
value of strain when the first cracks are produced. And vice versa, the reversal point
method gives the strict value of crack damage threshold stress in a contrast to the AE
and instantaneous Poisson’s ratio methods, which give the strain range of gradual
change in curvature of AE rate as a function of ε1 and µ31(ε1).

2. the stages of deformation in the loading diagrams are strongly related to the sample
damage evolution; in other words, the sample is able to resist loading as long as the
areas of localized damage grow steadily and do not interact with each other. When
the areas of localized damage begin to interact with each other, the stage of unstable
avalanche growth of damage and loss of bearing capacity (global strength) begins.

3. the formation of tensile and shear cracks is associated with the structural inhomogene
ities—pores in the case under study as regions of strong stress concentration;

4. the model provides a reliable basis for simulating the regularities of AE and the
corresponding damage, as well as the major failure patterns of the samples. It is
shown that the patterns of damage evolution qualitatively correlate with the patterns
of acoustic emission evolution under uniaxial loading of rock samples. The merging
of localized damage regions of smaller scales forms a macroscopic failure pattern,
which demonstrates the possibility of describing mixed failure mechanisms of loaded
rocks and correlates with experimental data.
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authors have read and agreed to the published version of the manuscript.
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Appendix A

We used the complete stress-strain curve of the loaded samples to determine the
Young’s modulus and the Poisson’s ratio of samples. To do so, we extracted the part of
stress-strain curve obeying the Hooke’s law (marked by black lines in both plots). The
slope of the σ1 − ε1 plot and the absolute slope of the ε3 − ε1 curve gave us the Young’s
modulus and the Poisson’s ratio, respectively.

We used the pseudo-random number generator to design the structural model of
the representative volume element (RVE). The pore nucleation centers were randomly
distributed within the computational domain. The pore sizes satisfy the experimental PDF
(Figure A2b) and the total porosity of RVE is ≈2%. The aspect ratio W:H:L is kept the
same as in the experiment. Note that the pores are explicitly included into the model as
definite regions of representative volume element wherein the free-of-stress condition is
maintained. It allows not to change the formulation of strain rate Equation (3) since strain
rates are calculated only in “matrix”.
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Figure A1. Method for determination of Young’s modulus and Poisson’s ratio of sample (a), schematic
experimental setup, 1—sample, 2—force gauge, 3—vertical strain gauge, 4—lateral strain gauge,
5—loading plates, 6—3-channel amplifier, 7—analog to digital converter (b).
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distribution (b).
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Figure A3. Representative volume element (RVE) of sandy-cement sample. Height of RVE
H ≈ 715 µm, H:W = 2.1:1.5.

The initial value of Y, and the reference values of α1 and α2 are determined according
to Equations (A1)–(A3), respectively.

Y = σt(
1√
3
+

α1

3
) (A1)
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α1 =
√

3
σc − σt

σc + σt
(A2)

α2 =

1√
3

σc −Y
1
3 σc

(A3)

Processing of the stress-strain curves for all tested samples allowed us to determine
the curves of the dilatancy factor dependence on the bulk inelastic strain. Despite the fact
that some approximations have low confidence level (≈0.5), we averaged the slopes and
intercepts of all approximations in Figure A4 and used the resulting equation in the model
as the zero hypothesis. Note that a non-constant dilatancy factor is a necessary condition for
the agreement between the numerical modeling and the experiment. Otherwise, the stress-
strain evolution is improperly described, and we observe blurred strain localization pattern
with rather thick strain localization. However, the use of experimentally obtained equation
for dilatancy factor in a point of continuum in modeling yields insufficient dilatancy which
results in a sharp drop of average stress and contradiction with experimental curves. The
dilatancy factor equation in a point of continuum which was finally used is given by
Equation (A2). Figure A5 illustrates the cohesion evolution curve in a point of continuum.
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Influence of Pores Array on the Results of Model Estimations

To ensure that the array of pores in the computational domain does not contribute to
the model estimates of threshold stresses, we additionally designed two models with dif-
ferent stochastic distributions of pores (Figure A6a). At the same time, the integral porosity
and pore size distributions in mesovolumes remained identical. Based on the obtained
modeling results, the mechanical response of mesovolumes remained almost identical—the
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difference in estimated values of threshold stresses is less than 0.5%. Therefore, we can
conclude that the array of pores does not contribute to the numerical results in the case of
stochastic distribution of pores within the computational domain.
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