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Abstract: This study evaluates field asphalt aging based on material property changes in pavement
with time, and investigates if such changes could have an impact on field rutting performance. Four
projects from three different climate zones were monitored as part of the NCHRP 9–49A project at two
stages: during pavement construction and two to three years after opening it to traffic. Construction
information were collected, and field cores were drilled at both stages to evaluate the material
properties of recovered asphalt binder and asphalt mixture. Field rut depth was also measured. In
addition, pavement structure, climate and base/subgrade modulus information were also obtained.
Results indicate that the asphalt mixture stiffening is caused in major part by asphalt aging. However,
the effect of asphalt aging on pavement mixture property may not follow a proportional liner trend.
The parameters that are most sensitive to field ageing are MSCR R3.2 and dynamic modulus. It
is also found that the variables which showed a good ranking trend with the field rut depth are
climate condition (relative humidity, high temperature hour, solar radiation), material properties
(Hamburg rut depth, rutting resistance index, high temperature performance grade, MSCR, and
dynamic modulus, base and subgrade moduli), as well as air voids.

Keywords: asphalt aging; material property; climate condition; pavement structure; field rut depth

1. Introduction

Asphalt binder is a material widely used in paving engineering to hold aggregates. It
is a special hydrocarbon composite with complex mechanical properties and plays a major
role in determining the performance of asphalt pavements. However, asphalt materials
tend to oxidize under the influence of environmental factors such as temperature, humidity
and solar radiation, leading to changes in its mechanical and rheological properties.

Laboratory and field studies have shown that after oxidization, the stiffness of the
asphalt binder increased [1–3]. Previous research using recovered binder from field cores
found that high-temperature performance grade (PG) increased 2.4 to 26.6 ◦C for pavements
aged between 10 and 82 months [4]. With ageing, the weak attractions of the asphaltene
are destroyed, and asphalt molecules change their orientation and become more tightly
packed [5]. In addition, the ageing process resulted in stronger associations between
asphalt components due to the generation of polar carbonyl groups, which increased
the asphaltene fraction [2]. Changes in both its elastic modulus and its viscosity lead to
stiffening of the binder.
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For the asphalt mixture, numerous laboratory studies have been implemented to
investigate property changes with the aging of the asphalt binder. They have shown that
the resilient modulus of long-term oven-aged specimens is 50–100% higher than that of
short-term oven-aged specimens [2,6]. Moreover, some researchers assumed that due to
diffusion resistance, binder oxidation rates in mixtures are slower than that in thin-film
neat binders due to diffusion resistance [7–10]. The Hirsch model is often used to describe
the relationship between asphalt and the asphalt mixture; however, it was found that
due to binder hardening, the mixture ageing actually stiffened the mixture more than the
model predicted.

However, few field tests have been performed due to the impact of multiple factors
such as climate and binder modification. The current research only focuses on the influence
of the dynamic modulus. For instance, the dynamic modulus of field cores in Texas
increased by approximately 70% and 130% at the end of 8 and 14 months compared with
that at 1 month [3]. On the other hand, such increases are much less, with 27–31% after
one year of service in the cold regions of Sweden [11]. Furthermore, it was found that
polymer- and rubber-modified binders may reduce the ageing rate in contrast to unmodified
binders [4,12,13], and the Evotherm WMA binder generally ages faster than the HMA and
Foaming WMA binders [1,3,4].

In summary, most aging studies are focused on laboratory aging, and very few studies
have attempted to examine the effects of field aging on the property evolution of asphalt
and asphalt mixture. In addition, the field studies in most cases were based on one specific
project; thus, the effect of factors such as climate condition, HMA layer thickness and binder
types cannot be well analyzed [14,15]. More importantly, limited research exists on how the
change in field binder properties over time has affected field mixture properties [16,17]. This
study evaluates and quantifies the effect of field aging on the rutting performance of asphalt
binders and asphalt mixture over time using field projects from different climatic zones.
The study also analyzes the effect of asphalt binder property change on mixture alternation.

2. Methodology

Four projects selected from the NCHRP 9–49A project report 843 were used for per-
forming the analysis introduced in this paper. These projects were selected to cover different
pavement structures and material properties. Within each project, field cores were taken
and material properties that are typically used to describe asphalt stiffness and rutting
resistance were tested, consisting of binder high temperature PG, binder multiple stress
creep recovery (MSCR), mixture dynamic modulus and mixture Hamburg rut depth. These
material properties were tested based on field cores taken at two different periods. In the
first series, cores were obtained shortly after pavement construction and in the second
series cores were obtained two to three years after the construction was finished. All the
field cores were taken inside the wheel path to study purely the effect of aging to exclude
the effects of traffic load. Other factors that may affect field aging and field rut depth were
also collected, consisting of in-place air voids, pavement structure and climate. Addition-
ally, aggregate gradation and asphalt content were obtained to confirm that no significant
changes in the cores happened due to traffic. The material properties between the two
series of field aging were compared. The effect of asphalt property change on the asphalt
mixture properties was also analyzed.

3. Project Information

Four projects that were constructed in 2011 and 2012 were investigated, which covered
different climatic zones, pavement types (HMA and WMA), traffic levels and pavement
structures. The four pavement projects were located in four states: Montana, Tennessee,
Iowa and Louisiana, and are therefore referred to the MT I-15, TN SR 125, IA US 34 and LA
US 61. Three 61-m test sections of HMA and WMA pavements were selected for further
study. Field construction information of the four projects that was collected includes:
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• Pre-construction information: mixture design, technology type (i.e., HMA or WMA),
existing pavement structure, existing pavement conditions, target mixing and com-
paction temperatures, mile post or GPS information for the selected three 61 m research
test sections, etc.

• During-construction information: plant modification, weather, material type, aggre-
gate moisture content, mixing and compaction temperatures, transportation distance,
in situ density, procurement of field gyratory-compacted samples, loose mixtures and
raw materials, and any other significant information that should be noted, etc.

• Post-construction information: quality control/quality assurance (QC/QA) data, pro-
curement of cores, falling weight deflectometer (FWD) testing, location of field cores,
annual average daily truck traffic (AADTT).

The key information for the four field projects is concluded in Table 1. Each project
includes at least one WMA technology and a homological control HMA pavement. More
detailed information of the four projects can be found in the NCHPR report 843 [18].

Table 1. Specimen Grading for Indoor Test.

Parameter MT I-15 TN SR 125 IA US 34 LA US 61

Construction year 2011 2011 2011 2012
Warm mix type Sasobit, Evotherm DAT, Foam Evotherm 3G Sasobit, Evotherm 3G Sasobit, Evotherm 3G

Mixing temp. (◦C) H (157–160) W (139–149) H (160–177) W (143–160) H (166–171) W (129–138) H (163) W (146)
Compaction temp. (◦C) H (143–149) W (132–141) H (155–168) W (135–143) H (123–104) W (104–115) H (136–158) W (118–121)

Traffic, AADTT 833 451 703 4779
Aggregate Siliceous Gravel and sand Limestone, quartzite, sand Granite and limestone

NMAS (mm) 19 12.5 12.5 12.5
Asphalt binder PG 70-28 PG 70-22 PG 58-28 PG 76-22

Anti-stripping agent hydrated lime, 1.4% AZZ-MAZ, 0.3% none 0.6%
Polymer modified SBS Yes none SBS

Asphalt content (%) 4.6 6.0 5.4 4.7

Gmm
H (2.458) S (2.466) E (2.459)

F (2.453) H (2.352) E (2.355) H (2.423) S (2.428) E (2.429) H (2.464) S (2.468) E (2.464)

Sampling date, 1st round Sep., 2011 Oct., 2011 and Aug.,2012 Sep., 2011 May–June, 2012
Sampling date, 2nd round Aug., 2013 Dec., 2014 Dec., 2014 Feb., 2015

RAP or RAS none 10% RAP 17% RAP 15% RAP

Note: H—HMA, W—WMA, S—Sasobit, E—Evotherm, F—Foaming, NMAS—nominal maximum aggregate size,
AADTT—average annual daily truck traffic.

3.1. Pavement Structure

The pavement structure that was used for each project is shown in Figure 1. The
thickness of each pavement layer is presented, and the subgrade soil is assumed to be
infinite in depth. Two existing pavement structure types were selected, including flexible
pavements and a combination of asphalt/PCC pavements.
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Figure 1. Pavement structure diagram of each project. (From top to bottom in turn are overlay,
existing HMA, base, and subgrade respectively).

3.2. Field Climate Information

Climate information, consisting of high temperature hour, shortwave solar radiation
and humidity are highly related to asphalt aging [2,18,19] and were obtained from the
long-term pavement performance (LTPP) website, InfoPave. The number of air temperature
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hours referred to in this paper is the hours when the pavement temperatures are higher
than 25 ◦C, as recommended [19]. As shown in Figure 2, the MT I-15 project has the lowest
values of relative humidity, air temperature hour > 25 ◦C, shortwave solar radiation and
indicating the least ageing impact. The other three projects experienced similar relative
humidity and shortwave solar radiation. The LA US 61 project had the highest value of air
temperature hour > 25 ◦C and may have encountered the most severe ageing. Note that
the climate information comprises the accumulated values which cover the period of being
open to traffic until the second round of field core samples were taken.
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Figure 2. Field climate information: (a) relative humidity; (b) air temperature hour > 25 ◦C;
(c) shortwave solar radiation.

4. Data Collection
4.1. Field Climate Information

Cores were taken in the field from the non-wheel path to limit the potential of pre-
existing damage in the material. In the laboratory, the existing pavement was removed
for further core tests. After the core fracture test, binder extraction and recovery were
performed using the entire overlay specimen to evaluate the average aging effect without
taking the aging gradient variation through overlay thickness into account.

4.2. Binder Extraction and Recovery

Asphalt binders were extracted based on AASHTO T164 and recovered according to
AASHTO R59. The used chemical was a combination of 85% Toluene and 15% Ethanol
by volume. Both WMA and HMA on-site cores were heated 110 ◦C until they were loose
enough to separate. The separated mixtures were cooled down at room temperature before
extraction. The minimum mass of samples used for binder extraction was determined by
nominal maximum aggregate size (NMAS). Usually, several extractions were needed until
the extract was no darker than a light straw color. Recovered binders were tested by taking
them as short-term aged (rolling thin-film oven-aged) asphalt, as suggested [14,15].

4.3. Aggregate Gradation and Asphalt Content

Aggregate gradation and asphalt content were checked using the field cores after
fracture tests for both the first-round and the second-round surveys. The asphalt content
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was determined in accordance with AASHTO T 308, and aggregated gradation was checked
following AASHTO T 30.

4.4. Material Properties

In the laboratory, an overlay of field cores and recovered asphalt binders was used
to conduct a series of laboratory tests to determine the physical and engineering material
properties. Table 2 shows the summary of all the laboratory mixture and binder tests. The
MSCR test temperatures were determined based on the high pavement temperature of
specific project locations obtained from LTPPBind Version 3.1 software (Federal Highway
Administration, Washington, DC, USA) at 98% reliability.

Table 2. Summary of Laboratory Mixture and Binder Testing.

Test IDT,
Mixture

HWT,
Mixture

DSR,
Binder

DSR,
Binder

Other
Test

Test conditions

Temperature (◦C): −20,
−10, 0, 10, 20, 30

Frequency (Hz): 20, 10,
5, 1, 0.1, 0.01

50 ◦C Temperature: depends
on asphalt

High pavement
temperature, stress: 0.1,

3.2 kPa
Depends on test

Material properties Dynamic
modulus Rut depth High temperature PG MSCR Jnr, MSCR R AV, Gradation and AC

References/standards Wen et al. 2002 AASHTO T 324 AASHTO MP 1/T
313/T 315 AASHTO T 350 AASHTO T308 AASHTO

T30 AASHTO T209

Note: IDT—indirect tension test, HWT—Hamburg wheel track, DSR—dynamic shear rheometer, AMPT—asphalt
mixture performance tester, PG—performance grade, MSCR—multiple stress recovery, Jnr—non-recoverable
creep compliance, R—percent of recovery, AV—air voids, AC—asphalt content.

5. Results and Analysis
5.1. Air Voids

Air voids are defined as the pockets of air between the asphalt-coated aggregate
particles in a compacted asphalt paving mixture. Asphalt mixtures of high air voids
generally show a faster rate of asphalt aging than the mixture with low air voids [2], which
may be due to the fact that asphalt oxidation is the chemical reaction of asphalt with
oxygen [5], and high air voids increased the contact areas between air and asphalt mixture.

Figure 3 summarizes the average air voids content based on three core replicates. Error
bars that represent standard deviation are also shown. As it can be seen, the air voids from
the first round exhibited similar values in general to the second round for most projects
(except for MT I-15). This is within our expectations since all the cores were taken at the
non-wheel path (with limited traffic load) and the differences in the air voids between the
two rounds could be caused by construction variation. For the MT I-15 project, chip seal
was placed one year after being open to traffic, which could affect the air voids from the
second round.
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5.2. Aggregate Gradation and Asphalt Content

Aggregate gradation is expressed by percent passing of coarse aggregate (aggregate
predominately retained on 4.75 mm sieve) and fine aggregate (aggregate almost entirely
passing the 4.75 mm sieve). Aggregate gradation helps determining important asphalt
pavement properties such as stiffness and rutting resistance. The asphalt content is the
ratio between the asphalt weight and the total mixture weight (asphalt plus aggregate).
Higher asphalt content generates thicker film thickness and reduces aging effect, whereas
lower asphalt content in general increase mixture stiffness and result in better rutting
resistance [2].

Table 3 summarizes aggregate gradation determined based on field cores. Note that the
aggregate gradation shows a range because each project concludes two or more HMA and
WMA pavements; this range covers all the pavements from specific project. As observed,
there is no significant gradation difference between the two rounds for all the projects
except for the IA US 34. A large percentage of the aggregate in the IA US 34 project is
limestone, which has a lower strength and is weaker than the other paving aggregate types
such as granite and gravel.

Table 3. Aggregate Gradation Percent Passing Comparison Between the First- and the
Second-Round Survey.

Sieve Size
(mm)

MT I-15 TN SR 125 IA US 34 LA US 61

1st
Round 2nd Round 1st

Round 2nd Round 1st
Round 2nd Round 1st

Round 2nd Round

19.0 100 100 100 100 100 100 100 100
12.5 89–93 90–93 98 97–98 91 95–96 97–98 97–98
9.5 71–79 70–75 88–89 87–88 81 85–87 82–85 85–86
4.75 45–55 48–50 66–69 63–65 58–62 65–67 52–53 53–56
2.36 32–37 30–33 45 42–44 42–43 45–48 36 35–36
1.18 22–26 24 - - 28–29 31–33 25–26 21–24
0.6 19–22 19 25–26 25–26 19 21–23 18–19 16–17
0.3 14–17 14–15 13 13 9–10 11–12 12 10–11
0.15 9–12 10 7–8 8 5–6 7 7–8 7

0.075 6–7 6–7 6 6 4–5 5 5 5

Asphalt content was also determined based on field cores. The asphalt content dif-
ference between the two rounds is smaller than 0.1%; such a small difference should not
significantly affect the rutting resistance of asphalt pavement.

5.3. Recovered Binder High-Temperature PG

The high-temperature PG evaluates the rheology properties of the binder at various
temperatures. Typically, a greater high-temperature PG value indicates a stiffer asphalt
binder (more rutting resistance) caused by aging or asphalt modification.

Figure 4 illustrates the high-temperature PG comparisons between the first and the
second rounds of the extracted binders. For projects examining TN SR 125, IA US 34, and
LA US 61, as shown, the high-temperature PG of the second round of extracted binders
is always higher than those of the first round, which implies a clear effect of field aging
during the two to three years of service.

For the MT I-15 project, it was observed that the PGs of the extracted binders in the
second round were close to those in the first round. The cold local climate as shown in
Figure 3, plus the chip seals that covered the surfaces, could have reduced the aging effect
of the asphalt. The binders of the TN SR 125 project show the highest PG increase over
time, which may be explained by the thin asphalt layer applied. The IA US 34 binders have
a relatively small high-temperature PG, which indicates less rutting resistance ability.
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For the LA US 61 project, the high-temperature PG increase is relatively small, consid-
ering that the high temperature hour > 25 ◦C is the highest among the four projects. Such
slow ageing could be caused by the PG 76-XX polymer-modified asphalt (PMA) binder
used. Based on on-site cores from more than 20 field projects, Zhang et al. [4] found that
the PG76-XX PMA binders generally aged less than PG64-XX and PG70-XX binders. The
reason for less ageing may be that polymers can prevent the formation of sulfoxides on
ageing [20].

5.4. Recovered Binder MSCR Test

The MSCR test is used to evaluate the asphalt binder’s potential for permanent
deformation. The test is performed by dynamic shear rheometer (DSR) under shear creep
and recovery at two stress levels (0.1 and 3.2 kPa) at a specified temperature. The creep
portion of the test lasts for 1 s at a constant stress, which is followed by a 9 s recovery. Ten
creep and recovery cycles were tested at each stress level. Two parameters, non-recoverable
creep compliance (Jnr) and percent recovery (R), were obtained from the test and can be
calculated using:

∈r (3.2, N) =
(∈1 − ∈10)× 100

∈1
(1)

R3.2 =
SUM[∈r (3.2, N)]

10
f or N = 1 to 10 (2)

Jnr(3.2, N) =
∈10

3.2
(3)

Jnr3.2 =
SUM[Jnr(3.2, N)]

10
f or N = 1 to 10 (4)

where ∈1 is the strain value at the end of the creep portion (i.e., after 1 s) of each cycle, and
∈10 is the strain value at the end of the recovery portion (i.e., after 10 s) of each cycle.

This paper aims at 3.2 kPa stress level since high stress levels are more important for
rut depth development. ∈r (3.2, N) and Jnr (3.2, N) indicate percent recovery and nonre-
coverable creep compliance at each cycle, respectively. Finally, average percent recovery
(R3.2) and average nonrecoverable creep compliance (Jnr3.2) at 3.2 kPa were obtained by
calculating the mean percent recovery and mean nonrecoverable creep compliance from
cycles 1 to 10.

Figure 5a,b compare the Jnr3.2 and R3.2 between the first- and the second-round-
extracted binders, respectively. For the MT I-15 project, no obvious changes in Jnr3.2 and
R3.2 were observed between the two rounds, which again could be ascribed to the reduced
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aging effect due to the chip seal surface treatment. For the other projects, both HMA and
WMA binders from the second-round cores show lower Jnr3.2 and higher R3.2 values than
those in the first round, indicating an improved rutting resistance of the pavements.
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Among the four projects, the IA US 34 project shows the highest Jnr3.2 and the lowest
R3.2, which implies the high potential of rutting susceptibility. Asphalt binders from the
MT I-15 project show the lowest Jnr3.2 and the highest R3.2 values, illustrating good rutting
resistance. The Jnr3.2 and R3.2 values between the TN SR 125 and the LA US 61 are similar
to each other.

5.5. Field Core Dynamic Modulus

The dynamic modulus is defined as the complex modulus absolute value calculated by
dividing the peak-to-peak stress by peak-to-peak strain for a material of a sinusoidal loading
on a material. The dynamic modulus is a performance-related property that can evaluate
the mixture and characterize the stiffness of asphalt mixtures for mechanistic–empirical
pavement design.

The indirect tension dynamic modulus test was conducted to determine the dynamic
modulus while considering the limitations of the core geometry. A sinusoidal compressive
loading was applied to the diametric axis of an unconfined cylindrical test specimen. Test
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temperatures and frequencies are shown in Table 2. The loading was applied on each
sample to achieve the target strain levels (40–60 horizontal microstrain and < 100 vertical
microstrain) in the linear viscoelastic region [21–23]. The load–deformation mathematical
relationship in the indirect tension-loading mode is given by:

|E∗| = 2P0

πad
β1γ2 − β2γ1

γ2V0 − β2U0
(5)

where P0 is the peak-to-peak load in N, a indicates loading strip width measured in meters,
d means the thickness of specimen in meters and V0 and U0 represent peak-to-peak vertical
deformation and peak-to-peak horizontal deformation in meters, respectively. γ1, γ2, β1,
and β2 are geometric constants.

Figure 6 presents the dynamic modulus test results at a test temperature of 30 ◦C and
a test frequency 0.1 Hz since the asphalt pavement is more susceptible to rutting under
relative high temperatures and a low frequency [24]. It is observed in the figure that most
projects show an obviously higher dynamic modulus of the second-round field cores than
that from the first-round. Since all the cores were taken from the non-wheel path, this
dynamic modulus increase is presumably due to the significant field aging of the asphalt
binder. The MT I-15 project shows the least increase in the dynamic modulus, which could
be affected by the chip seals applied. The high amount of asphalt used in chip seal fills
voids of overlay and may increase film thickness and asphalt content, thereby reducing
field aging and resulting in a similar dynamic modulus between the two rounds.
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It is also seen that the field aging increases dynamic modulus up to 800% in the second
round for IA US 34 HMA compared with the value from the first round. Meantime, the
high temperature PG and the MSCR Jnr3.2 and R3.2 of the same pavement changed by
12.8%, 69% and 165%, respectively. This finding denotes that the increase rates of the
asphalt binder and the dynamic modulus are not the same, which will be discussed below.

5.6. Field Core HWT Test Results

The HWT is a widely used test method to determine the rutting resistance and moisture
susceptibility of asphalt mixture due to weakness in the aggregate structure, inadequate
binder stiffness, or moisture damage. This method measures the rut depth and number of
passes to failure and provides information about the rate of permanent deformation from a
moving, concentrated load.

The HWT was performed following AASHTO T 324. All tests were conducted at a
temperature of 50 ◦C under wet conditions. The speed of the wheel was set as 52 passes per
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minute. The test terminated when either the rut depth achieved 12.5 mm or a pass number
of 20,000 was reached.

Figure 7 summarizes the HWT rut depth at 10,000 passes. This pass number was
selected because all the first-round cores from the IA US 34 project reached the test threshold
value of 12.5 mm at 10,000 passes. It is observed that in general, the rutting resistance
of the second-round core is higher than that from the first round, except for the MT I-15
in which the chip seal may have reduced the aging effect. Since the aggregate gradation
and asphalt content between the two rounds did not change greatly, the improved rutting
resistance should have been contributed to to a major extent by asphalt aging. Bonding
between asphalt and aggregate particles provide significant force in resisting mixture
to deform, less aged asphalt is more flow and provides a slip plan between aggregates
which facilitates aggregate movement and mixture is easy to deform. In contrast, flow
conditions of aged asphalt reduced due to increased viscosity, which helped produce better
adhesion between aggregates, and aggregate movement became more restricted. In this
case, deformation lessened.
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It is also seen that the field aging increases the dynamic modulus up to 800% in the
second round for IA US 34 HMA compared with the value from the first round. Meanwhile,
the high-temperature PG and the MSCR Jnr3.2 and R3.2 of the same pavement changed
by 12.8%, 69% and 165%, respectively. This finding denotes that the increase rates of the
asphalt binder and the dynamic modulus are not the same, which will be discussed below.

5.7. Effect of Asphalt Aging on Mixture Properties

In order to study the effects of the variation in asphalt binder properties due to aging
on material properties of asphalt mixture, changes to them between the first and second
rounds were calculated. These are the increase in high-temperature PG, decrease in MSCR
Jnr3.2, increase in MSCR R3.2, increase in dynamic modulus and decrease in HWT rut
depth, respectively.

As seen in Figure 8, the asphalt property changes with dynamic modulus increase
correlate well with ageing. The dynamic modulus values increased with the increase in high-
temperature PG and MSCR R3.2, and the decrease in MSCR Jnr3.2. The magnitude changes
in the binder properties between the two rounds are 1.2–8.4 ◦C for high-temperature PG, 0.1
to 24.6% for MSCR R3.2 and 0.02 to 1.07 kPa for MSCR Jnr3.2. Those changes corresponded
to an increase in dynamic modulus up to 1356 MPa.
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Figure 8. Effect of asphalt binder property change on dynamic modulus change (a) increase in
high-temperature PG, (b) decrease in MSCR Jnr3.2 and (c) increase in MSCR R3.2.

Figure 9 shows the relationship between the binder property change and HWT rut
depth. As noted, there was a loose relationship denoting that rut depth in general increased
with the increase in high-temperature PG and decrease in MSCR Jnr3.2. No correlation
between HWT rut depth and MSCR R3.2 over time was found. As it can be seen, the
increase in high-temperature PG (1.2 to 8.4 ◦C) and the decrease in MSCR Jnr3.2 (0.02
to 1.07 kPa) reduced the HWT rut depth to the maximum value of 7.3 mm between the
two rounds.
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Additionally, the percentage increase/decrease in each material property between
the two rounds was calculated and shown in Figure 10. As it can be seen, regarding
binder properties, the high-temperature PG has the least percentage increase with the
maximum value of 32.2%, whereas the MSCR R3.2 experienced the most increase with the
maximum value of 325%. As for the mixture, the dynamic modulus and the HWT rut depth
increased up to 673.1% and 64%, respectively. The large range of MSCR R3.2 and mixture
dynamic modulus make the prediction more complicated. In addition, it is expected that
the laboratory ageing could be harder for MSCR R3.2 due to its large variation.
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It is evident that the change in binder property is not proportional to the change in
dynamic modulus. Similarly, the change in dynamic modulus is not comparable to the
change in the HWT rut depth. Therefore, it is expected that when different binder properties
are applied to predict mixture performance, the shift factor would be varied greatly.

6. Conclusions

This paper evaluated the effect of field pavement ageing on properties of asphalt
binder and asphalt mixture at two different rounds. The relationship between property
changes in the asphalt and asphalt mixture due to ageing was also analyzed.

Results indicate that asphalt pavement in general became stiffer after years of service
in terms of asphalt binder (high temperature PG, MSCR) and asphalt mixture (dynamic
modulus, HWT rut depth). The asphalt mixture stiffening is caused to a large degree by
asphalt aging, considering that the evaluated cores had no significant differences between
the two rounds in in-place air voids, aggregate gradation and asphalt content. Such findings
were confirmed by observing a good relationship between the change in binder properties
and mixture properties. However, the application of the chip seal significantly reduced the
aging process.

The material properties changed to different extents over time. The parameters that are
most sensitive to field ageing are MSCR R3.2 and dynamic modulus. Thus, the comparison
among lab-tested material properties may be better checked in rank instead of absolute
values. Note that the high variation in MSCR R3.2 could cause some issues for laboratory
aging, which needs further research. The effect of asphalt aging on pavement mixture
properties may not follow a proportional liner trend.

The PG76-22 polymer-modified binders in general aged slower than other binder types
evaluated in this study, for both asphalt binder and asphalt mixture properties. Since it is
already proved that PG 76-22 polymer-modified binders show very good rutting resistance,
such slow aging could also be beneficial to cracking resistance.
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However, there are also some limitations that need improvement in future studies.
For example, only two existing pavement structure types were selected, including flexible
pavements, and a combination of asphalt/PCC pavements. For other types of asphalt
pavement, the effects of field aging on material properties and rutting performance and
their mechanisms need to be further studied.
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