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Abstract: TiNi intermetallic alloys were prepared with 2, 4 and 6 at.% niobium (Nb) addition. The
mechanical properties and microstructures of the alloys were investigated under both static (1 × 10−1

to 1 × 10−3 s−1) and dynamic (4 × 103 to 6 × 103 s−1) loading conditions. The intermetallic alloy
structures and surface morphologies of the alloys were examined by X-ray diffraction (XRD) and
scanning electron microscopy (SEM), respectively. In addition, the fracture morphologies were
observed by optical microscopy (OM). It was shown that the addition of 2 to 4 at.% Nb increased
the strength of the TiNi alloy. However, as the level of Nb addition was further increased to 6 at.%,
a significant reduction in strength occurred. For a constant Nb addition, the plastic flow stress and
strain rate sensitivity increased with increasing strain rate under both loading conditions (static and
dynamic). The XRD and SEM results showed that the original surface morphologies were composed
primarily of dendritic structures and fine β-Nb + TiNi eutectic systems. Moreover, the OM results
showed that the alloys underwent a transition from a brittle fracture mode to a ductile fracture mode
as the level of Nb addition increased.

Keywords: TiNi-based intermetallic alloy; universal testing machine; split-Hopkinson pressure bar;
mechanical properties

1. Introduction

Intermetallic compounds (IMCs) consist of two or more metallic or metalloid elements
with specific atomic ratios and have an ordered crystalline structure. Such alloys have an
attractive combination of physical and mechanical properties, including a high melting
point, light weight, high strength, and good oxidation and creep resistance. As a result,
they are regarded as promising materials for a wide range of applications in the aerospace,
automobile, and nuclear energy fields [1–3]. Many IMCs have been developed in recent
decades, including FeAl, Ni3Al, TiAl and TiNi [4–10]. Among these alloys, TiNi intermetal-
lic alloys have been used for many practical applications in biomedical and engineering
fields due to their excellent performance, such as biocompatibility, anti-corrosion and high
mechanical properties and shape memory effect. However, the TiNi alloy waas first used
for shape memory due to good transform hysteresis [11–13]. TiNi alloy also has a hardness
comparable to that of tool steel, and good superelasticity. So, it is one of the most promising
alloy systems for bearings, automobiles and related applications [14]. TiNi-based alloys
have also found widespread application in fields such as aerospace engineering, intelli-
gent control, and medical implants [15–17]. As with all IMCs, TiNi has good mechanical
strength at elevated temperatures; however, it exhibits relatively brittle behavior under
ambient temperature conditions, and thus has restricted applicability at lower working
temperatures.

The microstructure of TiNi alloy is B2 high temperature matrix phase. The microstruc-
ture has super-elasticity and shape memory; this makes TiNi alloys difficult to be machined
and to be highly resistant to deformation. These factors are due to diffusionless martensitic

Materials 2022, 15, 3124. https://doi.org/10.3390/ma15093124 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15093124
https://doi.org/10.3390/ma15093124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-5433-1812
https://doi.org/10.3390/ma15093124
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15093124?type=check_update&version=1


Materials 2022, 15, 3124 2 of 12

transformation. Over recent decades, many studies have been conducted on the effect of
using ternary alloying elements for the improvement of mechanical properties or grain
refinement treatment [18,19]. Many studies have shown that the properties of IMCs can
be tuned through the addition of carefully chosen doping elements. For example, the
addition of hafnium (Hf) reduces the solid solution temperature and is hence advantageous
in lowering manufacturing costs at an industrial scale [20,21]. Similarly, the addition of Al
induces a grain refinement effect, which is beneficial in enhancing IMC hardness [22,23].
The addition of Nb as a doping element has attracted particular attention due to its effects
in enhancing the yield strength through the formation of ultrafine grains, good corrosion
resistance at high temperature, and high dislocation density [24–26]. Co-addition is also
beneficial in improving the solid solution strengthening effect and magnetic hysteresis,
thereby improving the thermal coupling performance and oxidation resistance [27]. During
the forming process and application, the TiNi alloy will suffer differential strain rate defor-
mation, so it is necessary to investigate the strain rate effect on the TiNi alloy. Intermetallic
alloys can be fabricated through various methods, including casting, powder metallurgy,
self-propagation high-temperature synthesis (SHS), directional solidification, selective laser
melting, and electron beam melting [28–30]. However, the vacuum arc melting method
is easy to operate and a low-cost method. This study used this method to fabricate the
experimental specimens.

Some studies have reported that the addition percentage of Nb is high, but will
enhance the high yielding strength due to the β-Nb phase composite mechanism [31,32].
However, high yielding strength was also shown to be associated with decreased ductility.
It is important to achieve good mechanical properties including both strength and ductility.
Accordingly, the present study prepared TiNi alloys with 2, 4 and 6 at.% Nb addition
and investigated their mechanical properties and microstructural evolution over a wide
strain rate range of 10−3 s−1 to 6 × 103 s−1. The effects of the precipitation phase on the
mechanical properties of the TiNi-Nb alloys were examined by X-ray diffraction (XRD) and
scanning electron microscopy (SEM). Finally, the fracture mechanisms of the various alloys
were investigated by observing fracture surfaces using an SEM facility.

2. Experimental Procedures

In the present study, TiNi-Nb alloys were prepared in a vacuum arc melting furnace
under argon gas. High-purity (99.99%) Ti, Ni and Nb powders were purchased from
the Golden Optoelectronic Company (Taipei, Taiwan). The TiNi alloys were prepared
using a constant Al content of 44 at.%, Nb contents of 2, 4 or 6 at.%, and a balance of Ti.
The TiNi44Nb2, TiNi44Nb4 and TiNi44Nb6 ingots were melted at temperatures between
1573 K and 1673 K for 6 h, allowed to cool to room temperature in the furnace, and then
reheated once again. To ensure compositional homogeneity, each ingot was remelted
five times. Furthermore, to ensure homogenization, the homogenization process was
performed keeping the alloys at 1060 ◦C for 20 h in a vacuum furnace. The as-cast ingots
were machined into cylindrical bars with a diameter of 5 mm. and the bars were then cut
into test specimens with a length of 5 mm using a low-speed cutter. The phase compositions
and microstructures of the three alloys were examined via XRD analysis and SEM (JEM7001,
JEOL Ltd., Akishima, Japan). The mechanical characteristics of each specimen were then
investigated under room temperature conditions using quasi-static and dynamic tests. In
the quasi-static tests, the specimens were deformed at strain rates of 10−3 s−1, 10−2 s−1

and 10−1 s−1, respectively, using a material testing system (MTS Landmark; Sinodynamics
Enterprise Co., Ltd., Taipei, Taiwan). The dynamic tests were performed under lubricated
conditions using a compression split-Hopkinson pressure bar (SHPB) at strain rates of
4000 s−1, 5000 s−1 and 6000 s−1, respectively. Finally, the fracture surfaces of the specimens
were observed by SEM.
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3. Results and Discussion
3.1. XRD Structural Analysis

XRD analyses were performed to identify the intermetallic alloy structures of the
as-cast TiNi44Nb2, TiNi44Nb4 and TiNi44Nb6 alloys. The XRD pattern shown in Figure 1a
for the TiNi44Nb2 alloy contained prominent peaks corresponding to the TiNi (B2) phase in
the (110), (200) and (211) directions, together with several peaks corresponding to Ti2Ni. As
the Nb addition increased to 4 at.%, the intensity of the Ti2Ni peaks decreased substantially
with the peak at 42◦–50◦ disappearing completely. Finally, for 6 at.% Nb addition, a soft
β-Nb phase with a BCC crystal structure was newly formed. In other words, the addition
of a larger quantity of Nb produced a mixed TiNi (B2) + βNb phase structure through a
eutectic reaction.
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Figure 1. XRD patterns of: (a) TiNi44Nb2, (b) TiNi44Nb4, and (c) TiNi44Nb6 alloys.

3.2. Surface Morphology Analysis

In order to observe microstructure, all the tested specimens were cold-coated with
polyester resin, and then polished. Then, the specimens were etched in chemical solution
with a volume ratio of HF:HNO3:H2O = 1:1:7 for 20 s and their microstructures and
chemical composition were determined with SEM and EDX systems. Figure 2a–c present
SEM surface morphology images of the TiNi44Nb2, TiNi44Nb4 and TiNi44Nb6 alloys. It
can be seen that all the alloys comprise a dendritic TiNi (B2) substrate with a black Ti2Ni
intermetallic phase. As the level of Nb addition increased, the alloy structure became
more refined, and the dendritic structure became denser. As indicated by the XRD analysis
results, the TiNi44Nb6 alloy was composed of a dendritic TiNi (B2) matrix together with
eutectic structures around the grain boundaries. Figure 2d,e present the EDX analysis for
Figure 2a–c, respectively. From the EDX analysis, the microstructure containing Ti, Ni and
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Nb elements can be seen. The primary and secondary dendrites for TiNiNb2 were about
40 µm and 5 µm in size. The primary and secondary dendrites for TiNiNb4 were about
30 µm and 10 µm in size. The primary dendrites for TiNiNb6 were less than 10 µm and
almost disappeared, while the secondary dendrites for TiNiNb6 were about 12 µm and
became discontinuous. The precipitate β-Nb in the matrix can also be seen (Figure 2g is
the large magnification figure for Figure 2c). In the literature, it is suggested that as the
Nb content increases the temperature of the phase transformation and related mechanical
properties will increase [33,34].

Materials 2022, 15, x FOR PEER REVIEW 4 of 12 
 

 

Figure 2a–c, respectively. From the EDX analysis, the microstructure containing Ti, Ni and 
Nb elements can be seen. The primary and secondary dendrites for TiNiNb2 were about 
40 μm and 5 μm in size. The primary and secondary dendrites for TiNiNb4 were about 30 
μm and 10 μm in size. The primary dendrites for TiNiNb6 were less than 10 μm and almost 
disappeared, while the secondary dendrites for TiNiNb6 were about 12 μm and became 
discontinuous. The precipitate β-Nb in the matrix can also be seen (Figure 2g is the large 
magnification figure for Figure 2c). In the literature, it is suggested that as the Nb content 
increases the temperature of the phase transformation and related mechanical properties 
will increase [33,34]. 

  

 

 

Element              Atomic% 

Ti K                      53.89 
Ni K                      43.98 
Nb K                       2.13 

Total                 100.00 
 

(d) 

1 2 3 4 5 6 7 8
keV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 cps/eV

  Ti   Ti   Ni   Ni   Nb Nb 

Figure 2. Cont.



Materials 2022, 15, 3124 5 of 12Materials 2022, 15, x FOR PEER REVIEW 5 of 12 
 

 

 

Element             Atomic% 

Ti K                     51.73 
Ni K                      44.02 
Nb K                       4.25 

Total                  100.00 
 

(e) 

 

Element             Atomic% 

Ti K                    49.80 
Ni K                      44.25 
Nb K                     5.95 
Total                   100.00 

 

(f) 

 

Figure 2. SEM surface morphologies of: (a) TiNi44Nb2, (b) TiNi44Nb4, and (c) TiNi44Nb6 alloys. EDS 
analysis for (d) TiNi44Nb2, (e) TiNi44Nb4, and (f) TiNi44Nb6 alloys, (g) the higher magnification view 
for (c). 

1 2 3 4 5 6 7 8
keV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 cps/eV

  Ti   Ti   Ni   Ni   Nb Nb 

1 2 3 4 5 6 7 8
keV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 cps/eV

  Ti   Ti   Ni   Ni   Nb Nb 

Figure 2. SEM surface morphologies of: (a) TiNi44Nb2, (b) TiNi44Nb4, and (c) TiNi44Nb6 alloys. EDS
analysis for (d) TiNi44Nb2, (e) TiNi44Nb4, and (f) TiNi44Nb6 alloys, (g) the higher magnification view
for (c).
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3.3. Mechanical Properties

Figures 3–5 show the mechanical response of the TiNi44Nb2, TiNi44Nb4 and TiNi44Nb6
alloys, respectively, under quasi-static and dynamic compressive loads. In general, the
results show that for Nb additions of less than 4 at.%, an increasing Nb content led to
a higher failure stress and failure strain. In other words, the interstitial insertion of the
Nb atoms prompted a distortion of the TiNi lattice, which increased the lattice strain and
impeded the movement of dislocations, thereby resulting in a solid solution strengthening
effect. However, as the level of Nb addition was further increased to 6 at.%, the strength
decreased and the ductility increased due to the formation of a soft β-Nb phase, as shown
in Figures 1 and 2.
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3.4. Strain Rate Sensitivity Effect

Figures 6 and 7 show the variation in the flow stress with the strain rate for the three
alloys as a function of the strain under static and dynamic loading conditions, respectively.
It can be seen that, for both deformation regimes, the strain rate and Nb content had a
significant effect on the plastic flow stress. Moreover, for a constant strain rate, the flow
stress increased with increasing strain. Among all the alloys, the TiNi44Nb4 alloy exhibited
the maximum plastic flow stress for all values of the strain and strain rate. The effect of the
strain rate and Nb content on the mechanical response of the three alloys can be evaluated
via the following strain rate sensitivity (β) [35]:

β =
σ2 − σ1

ln
( .
ε2/

.
ε1
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Figures 8 and 9 show the variation in the strain rate sensitivity exponent with the true
strain as a function of the strain rate under quasi-static and dynamic loading conditions,
respectively. For both deformation regimes, and all values of the strain rate, the strain rate
sensitivity increased with increasing strain. In other words, the strain rate increased with
increasing strain. The maximum strain rate sensitivity occurred in the TiNi44Nb4 alloy,
irrespective of the loading condition (quasi-static or dynamic). Moreover, the strain rate
sensitivity reduced significantly in the TiNi44Nb6 specimen with 6 at.% Nb addition. It is
speculated that the reduced strength and enhanced ductility of the TiNi44Nb6 alloy was
due to the softening effects of the β-Nb phase formed at the grain boundaries, as shown in
Figure 2c.
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3.5. Fracture Surface Morphology Analysis

As shown in the stress-strain curves in Section 3.3, all the specimens failed under
the considered quasi-static and dynamic strain rates. To investigate the failure mode for
each sample, the facture surfaces were examined by SEM. Figure 10a,b show the fracture
surface of the TiNi44Nb2 alloy under quasi-static and dynamic strain rates of 10−1 s−1 and
5 × 103 s−1, respectively. For both strain rates, the fracture surface contained multiple
fracture planes and numerous cracks at the grain boundary, which suggests that the onset
of specimen failure occurred at the grain boundaries. Overall, the results show that the
failure mode was one of intergranular fracture (i.e., brittle failure). For the TiNi44Nb4 alloy,
both facture surfaces contained intergranular fractures and granular equiaxed dimples. In
other words, the fracture surfaces showed evidence of a mixed brittle-ductile failure mode
(see Figure 11). For the TiNi44Nb6 alloy, the addition of a greater amount of Nb reduced the
number of intergranular fracture features and increased the density (i.e., reduced the size)
of the equiaxed dimples (see Figure 12). Overall, the OM images shown in Figures 10–12
indicate that the addition of 2–4 at/% Nb resulted in a grain refinement effect, which
prompted solid solution strengthening of the alloy with corresponding improvement in the
mechanical performance. However, for a higher level of Nb addition (6 at.%), a soft β-Nb
phase was formed, which reduced the strength of the alloy and increased its ductility.
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4. Conclusions

TiNi intermetallic alloys were prepared with 2, 4 and 6 at.% niobium (Nb) addition.
The mechanical properties and microstructures of the alloys were investigated under both
static and dynamic loading conditions. The experimental results support the following
main conclusions.

1. The TiNi44Nb2 and TiNi44Nb4 alloys were composed principally of TiNi and Ti2Ni
phase. However, for a higher Nb addition of 6 at.%, the microstructure contained a
mixture of TiNi phase and eutectic TiNi + β-Nb phase.

2. All the TiNi-Nb alloys had a dendritic structure. As the Nb content increased, the
alloys underwent a densification of the dendritic structure and a grain refinement
effect. The eutectic TiNi + β-Nb phase in the TiNi44Nb6 alloy was located at the grain
boundaries and resulted in a significant softening effect.

3. For both deformation regimes (i.e., quasi-static and dynamic), the maximum stress
occurred in the TiNi44Nb4 alloy.

4. As the level of Nb addition increased, the fracture mode transited from a predomi-
nantly brittle fracture mode (2 at.% Nb) to a mixed brittle-fracture mode (4 at.%), and
finally a predominantly ductile fracture mode (6 at.%).

5. In this study, we determined that the addition of Nb to TiNi alloy could enhance
the mechanical properties for engineering applications. In particular, Nb addi-
tion can enhance the ductility and strength of the high strain rate application at
room temperature.
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