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Abstract: The current work investigates the viability of utilizing a friction stir deposition (FSD)
technique to fabricate continuous multilayer high-performance, metal-based nanoceramic composites.
For this purpose, AA2011/nano Al2O3 composites were successfully produced using AA2011 as a
matrix in two temper conditions (i.e., AA2011-T6 and AA2011-O). The deposition of matrices without
nano Al2O3 addition was also friction stir deposited for comparison purposes. The deposition process
parameters were an 800 rpm rod rotation speed and a 5 mm/min feed rate. Relative density and
mechanical properties (i.e., hardness, compressive strength, and wear resistance) were evaluated on
the base materials, deposited matrices, and produced composites. The microstructural features of the
base materials and the friction stir deposited materials were investigated using an optical microscope
(OM) and a scanning electron microscope (SEM) equipped with an EDS analysis system. The
worn surface was also examined using SEM. The suggested technique with the applied parameters
succeeded in producing defect-free deposited continuous multilayer AA2011-T6/nano Al2O3 and
AA2011-O/nano Al2O3 composites, revealing well-bonded layers, grain refined microstructures, and
homogeneously distributed Al2O3 particles. The deposited composites showed higher hardness,
compressive strengths, and wear resistance than the deposited AA2011 matrices at the two temper
conditions. Using the AA2011-T6 temper condition as a matrix, the produced composite showed the
highest wear resistance among all the deposited and base materials.

Keywords: additive manufacturing; friction stir deposition; AA2011; nanocomposites; temper
conditions; hardness; compressive strength; wear resistance

1. Introduction

Aluminum matrix ceramic composites (Al-MCCs) are of strong interest in the design
of engineering parts in a vast number of industrial applications [1–3]. There are differ-
ent uses for Al-MCCs in many sectors such as the aerospace, transportation, and marine
industries. In general, Al-MCCs have superior properties, such as strength, hardness,
and wear resistance, compared with aluminum alloys [4–7]. Different techniques have
been used to introduce ceramic particles into aluminum matrix alloys: powder metallurgy
(PM) [8–10], casting [11–14], fusion-based additive manufacturing (FB-AM) [15–17], and
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solid-state-based additive manufacturing (SS-AM) [18–20]. Producing complex 3D ge-
ometries of Al-MCCs using PM and casting techniques is difficult. Moreover, applying
the FB-AM technique to produce Al-MCCs is a challenge due to the weak wettability
between the liquid matrix and reinforcement phases [21] and, in some cases, the chemi-
cal reactions between the two phases result in undesired compounds [22]. Furthermore,
using the FB-AM technique, the produced additive manufacturing composite parts have
several flaws, especially for Al-MCCs, such as quick solidifications, hot cracking, pores,
and agglomeration of dispersed oxide particles [23,24]. The limitations mentioned above
have been necessary to discover and try alternative technologies to develop Al-MCCs.
Nowadays, friction additive manufacturing (FAM) technology is an effective technology to
outdo the limitations of FB-AM and successfully produce Al-based composites for many
industrial applications, e.g., biomedical, aerospace, marine, and transportation [25,26]. This
technology is suitable for various materials, such as ceramics, metals, and composites, with
more complex geometric designs, mass customization, and much less material waste [23,27].
The FAM technology can be classified into friction stir additive manufacturing, friction
surfacing additive manufacturing (using the hollow shoulder or consumable rod), and
friction stir deposition (FSD) [21,23,28]. In friction stir additive manufacturing, the plates
are joined one over the other using a friction stir welding tool. The tool pin length is longer
than the thickness of the one plate to ensure the joining of the two plates at one time [29–31].
The effect of the addition of SiC on the six layers of AA5059-O produced using friction stir
additive manufacturing with a threaded tapered pin at 63 mm/min, 450 rpm, and a 2◦ tilt
angle was investigated by Srivastava and Rathee [32]. The results revealed good bonding
between the SiC particle and the AA5059-O, and the hardness of the composite achieved
140 HV compared with 85 HV for the base material. Tan et al. [19] successfully produced
four AA6061-T6/nano Al2O3 composite layers via friction stir additive manufacturing
at 1000 rpm and 100 mm/min using different Al2O3 sizes. They concluded that the pro-
duced AA6061-T6/nano Al2O3 composites had higher hardness compared to the additive
materials without Al2O3 addition. Friction surfacing additive manufacturing depends
on friction stir principles and enables the production of surface composite coatings via
two techniques. The first one utilizes a consumable rod filled with ceramic particles. The
second one inserts a mixture of ceramic particles and metal matrix inside a hollow tool
shoulder and deposits the mixture on the surface to achieve surface composite coatings.
Gandra et al. [18] produced three layers 20 mm in diameter of AA6082/SiC coating surface
composite on an AA2024-T3 substrate plate using the consumable rod technique filled with
different microsizes of SiC. The authors concluded that the hardness of the deposited com-
posite layers was higher than the deposited layers without SiC. In addition, the addition of
SiC particles enhanced the wear performance of the AA6082-T6 layers. The FSD process
(a solid-state process) can be applied with a wide range of metals and alloys [33–35] to
produce continuous multilayer additive manufacturing parts (AMPs) [36,37] and additive
manufacturing composite parts (AMCPs) [20,38]. This technique promotes continuous
feeding of a rotating consumable rod towards a fixed substrate plate through rubbing action
(stirring process). This high friction generates torsional shear stress between the plasticized
material and rotating rod, producing deposited continuous layers on the substrate [39–43].
Karthik et al. [38] utilized this technique to produce an AA5083/ 6 Vol% titanium particle
metal–metal composite. The results showed the composite had much better compressive
strength, and the microstructure of the deposited material showed uniformly distributed
Ti particles. Moreover, Karthik et al. [44] successfully produced another system of metal–
metal composite (i.e., AA5083/CoCrFeNi high-entropy alloy particles) using the same
technique. They concluded that the compressive strength and the bulk hardness of the
composite were more than 1.8 times higher than that of the AA5083-H112 base material.
Dilip et al. [42] fabricated the AMPs using FSD with 20 mm diameter AA2014-T6 rods.
The produced AMPs consisted of five well-bonded layers with microstructures with fine
grains and refined second-phase particles. Alzahrani et al. [45] succeeded in depositing an
A356 cast alloy using the FSD process at different feeding rates. Compared to the as-cast



Materials 2022, 15, 2926 3 of 22

material, the grain size of the deposited material decreased by 97.9%, 95.0%, and 92.2%
at feeding rates of 3, 4, and 5 mm/min, respectively, and the enhancement in hardness
attained was 43.6%, 34.3%, and 29.7%, respectively. Ahmed et al. [46] studied the effect
of temper condition and feeding speed rate on the fabrication of AA2011 AMPs utilizing
the FSD process at a 1200 rpm rotation rod speed and 3, 6, and 9 mm/min feeding rates.
According to microstructural analyses, significant grain refining and fine intermetallic
particle were detected in the AMPs from the two temper conditions of AA2011-T6 and
AA2011-O. According to the available literature review, there has been no attempt to dis-
perse nanoceramic particles in high-strength aluminum alloys (2xxx series) via the FSD
technique. In the present study, the FSD process was utilized to produce AA2011 nano
Al2O3 composites. Two matrices of AA2011 (i.e., sAA2011-T6 and AA2011-O) were used.
The deposited composite materials were evaluated in terms of physical and mechanical
properties and compared with the deposited materials without nano Al2O3.

2. Materials and Methods
2.1. Initial Materials

In order to study the influence of the initial matrix conditions on the properties of the
produced composites, two temper conditions (i.e., T6 and O) were utilized. The parent
material was AA2011-T6 rods with a diameter of 40 mm and a length of 150 mm. The
annealing procedure was carried out at 415 ◦C for 2.5 h, followed by slow cooling in
the furnace to room temperature [46]. Table 1 shows the chemical composition of the
as-received AA2011 material.

Table 1. Chemical composition of the initial AA2011 material.

Elements Cu Si Fe Ti Bi Zn Pb Ni Al

Wt.% 5.12 0.39 0.70 0.31 0.22 0.24 0.20 0.04 Balance

Nano Al2O3 powder was supplied by Sigma-Aldrich (Burlington, MA, USA), and ac-
cording to the supplier, the purity was 99.99%. Figure 1 shows the XRD analysis (Figure 1a)
and an SEM micrograph (Figure 1b) of the morphologies of the Al2O3 particles. The XRD
patterns confirm the high purity of the Al2O3 powder, and the SEM image shows that the
nano Al2O3 powder was irregular in shape with a particle size ranging from 20 to 40 nm.

A spark electric discharge machining (SK703-3040 CNC EDM drilling machine, Xiang
Cheng, Suzhou, China) was used to drill holes for the AA2011-T6 and AA2011-O consum-
able rods with a diameter of 2 mm and a depth of 50 mm; the number of holes was six. The
design of the distribution of the holes is shown in Figure 2a. Before the FSD process, the six
drilled holes were filled with the nano Al2O3 powder (Figure 2b).

2.2. Production of Additive Manufacturing Composites

A friction stir welding/processing machine (EG-FSW-M1, Suez University, Suez,
Egypt) was used to produce the additive manufacturing composites (AMCs) via the FSD
technique [43]. Figure 3 shows pictures of the FSD process applied to produce AMCs. The
FSD process involved three steps: (1) fixing the consumable AA2011 rods in the machine
shank to ensure the complete fixation of the rods throughout the FSD process (Figure 3a);
(2) rotating it at a constant rotation speed (800 rpm) while moving downward to reach
the AA6082 substrate plate (Figure 3b); (3) finally, under a continuous feeding speed
(5 mm/min) for the deposition of the two temper conditions, AA2011-T6 and AA2011-O
(Figure 3c), the rods are plastically deformed due to the generated frictional heat between
the rotating rods and the substrate plate that caused the material to deposit from the
rotation rods to the substrate plate to build continuous layers of AMCs (Figure 3d,e). The
appearance of the consumed rod end tends to form a conical shape with a thin section as
shown in Figure 3f. Additive manufacturing parts (AMPs) from AA2011-T6 and AA2011-O
were also friction stir deposited (FSDed) without Al2O3 addition using the same processing
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parameters for comparison purposes to investigate the role of the nano Al2O3 reinforcement
on the behavior and properties of the FSDed composites.
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Figure 3. Photographs of the FSD process of AA2011: (a) setup of FSD and the consumable rod and
substrate ready for the process; (b) start of the FSD; (c) start of the deposition; (d) formation of a cone
flash around the deposits; (e) end of the deposition process; (f) the final deposited material and the
rest of the consumable rod.

2.3. Characterization of AMPs and AMCs

For each building condition of the fabricated AMPs and AMCs, four test specimens
were cut vertically (parallel to the build direction, YD axis) by a wire cut machine (DK77
High-Speed EDM wire cutting machine, Jiangsu, China), as shown in Figure 4, to be used
in the characterization processes. Table 2 illustrates the specification and objectives of each
test specimen. The cut specimens of the AA2011 initial conditions, AMPs, and AMCs were
investigated in terms of microstructure, physical properties, and mechanical properties
(i.e., hardness and compression). Furthermore, the wear behavior was also evaluated.

Table 2. Dimensions and standards of the cut specimens for different tests.

Specimen No. Deposited Material
(mm) Test Standard

(a) ∅10 × 32 Compression ASTM E9
(b) ∅10 × 32 Wear ASTM G99
(c) 10 ×10 × 32 Density JIS R2205-1992

(d) 25 × 10 × 32 Hardness and
microstructure ASTM E92
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Figure 4. Image of the cut specimens from produced AMPs and AMCs for further investigation:
(a) compression test sample; (b) wear test sample; (c) density measurement sample; (d) hardness and
microstructure sample.

The OM examination was carried out using an optical microscope (Olympus, BX41M-
LED, Tokyo, Japan). The specimens were ground and polished to a 0.05 µm Al2O3 surface
finish followed by chemical etching with Keller’s regent solution (i.e., 95 mL water, 2.5 mL
HNO3, 1.5 mL HCL, and 1.0 HF), immersing for up to 20 s. Density was measured based on
Archimedes’ principle using distilled water as a liquid medium according to the JIS R2205-
1992 standard. Vickers hardness measurements were carried out using a Vickers hardness
tester (Model: HWDV-75, TTS Unlimited Osaka, Japan) with a 0.2 Kg load and 15 s dwell
time. The hardness maps were plotted by collecting eleven vertical and eleven horizontal
lines with a 2 mm step as shown in Figure 5. The compression test was carried out using
a universal testing machine (Model: WDW-300D Testing Machine, 30 tons, Guangdong,
China) at a constant cross-head speed displacement rate of 1 mm/min at room temperature.
The compression test specimen was 10 mm in diameter and 15 mm in height. Wear tests
using a pin-on-disc technique were also conducted. The wear test samples were cylindrical
with a 10 mm diameter and an effective height of 12 mm. The disc (counter surface) was
a hardened steel disc (64 HRC) with a diameter of 110 mm. The tests were conducted for
a 2072 m sliding distance at different loads of 10, 20, and 30 N. After the wear test, the
final weight of the test specimen was recorded, and the wear rate was estimated using the
weight loss. The SEM, equipped with an EDS analysis system (Model: QUANTA FEG 250,
FEI company, Hillsboro, OR, USA), was used to characterize the microstructure of the
AA2011-T6/nano Al2O3 composite and the worn surface specimens of the AA2011’s initial
conditions, AMPs, and AMCs.

Materials 2022, 15, x FOR PEER REVIEW 7 of 25 
 

 

 

Figure 5. Sketch of hardness map measurements of AMPs and AMCs. 

3. Results and Discussion 

3.1. Fabricated AMPs and AMCs 

To carry out the FSD process and produce the AMPs or AMCs for the two temper 

conditions, AA2011-T6 and AA2011-O, with a diameter of 40 mm, several experiments 

were performed to observe the behavior of the consumable rod to avoid buckling of the 

rotating rod due to the FSD process and ensure the continuous building of layers of the 

AMPs or AMCs without any visual defects. Based on these experiments, a feed rate of 5 

mm/min and a rotation speed of 800 rpm were considered as the processing parameters 

for fabricating AMCs in the current study. Figure 6 shows the deposited materials and the 

remains of the AA2011-T6 and AA2011-O consumable rods. The FSD process using a ro-

tation speed of 800 rpm and a 5 mm/min feeding rate succeeded in fabricating the AMPs 

and AMCs at the two temper conditions of the initial consumable rod: AA2011-T6 (Figure 

6a,b) and AA2011-O (Figure 6c,d). 

 

Figure 6. Photographs of the additive manufacturing materials: (a) AMP and (b) AMC using 

AA2011-T6 and (c) AMP and (d) AMC using AA2011-O deposited at an 800 rpm rotation speed and 

a 5 mm/min feed rate. 

According to the available data from the literature review, no research works clarify 

the deposition stages in producing Al-based composites via FSD. Moreover, the deposi-

tion load value given in the monitor for the FSW/FSP machine in the present work can be 

Figure 5. Sketch of hardness map measurements of AMPs and AMCs.



Materials 2022, 15, 2926 7 of 22

3. Results and Discussion
3.1. Fabricated AMPs and AMCs

To carry out the FSD process and produce the AMPs or AMCs for the two temper
conditions, AA2011-T6 and AA2011-O, with a diameter of 40 mm, several experiments
were performed to observe the behavior of the consumable rod to avoid buckling of the
rotating rod due to the FSD process and ensure the continuous building of layers of the
AMPs or AMCs without any visual defects. Based on these experiments, a feed rate of
5 mm/min and a rotation speed of 800 rpm were considered as the processing parameters
for fabricating AMCs in the current study. Figure 6 shows the deposited materials and
the remains of the AA2011-T6 and AA2011-O consumable rods. The FSD process using
a rotation speed of 800 rpm and a 5 mm/min feeding rate succeeded in fabricating the
AMPs and AMCs at the two temper conditions of the initial consumable rod: AA2011-T6
(Figure 6a,b) and AA2011-O (Figure 6c,d).
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Figure 6. Photographs of the additive manufacturing materials: (a) AMP and (b) AMC using
AA2011-T6 and (c) AMP and (d) AMC using AA2011-O deposited at an 800 rpm rotation speed and
a 5 mm/min feed rate.

According to the available data from the literature review, no research works clarify the
deposition stages in producing Al-based composites via FSD. Moreover, the deposition load
value given in the monitor for the FSW/FSP machine in the present work can be used as an
indicator for the resistance of consumable rod material to deposit on the substrate plate, as it
depends on the as-received material used. The FSD stages and the recorded load during the
FSD process of the AA2011/nano Al2O3 composites using the two matrices, AA2011-T6 and
AA2011-O, are given in Figure 7a,b, respectively. The FSD of the composite materials can
be distinguished into four stages: friction onset, material plasticizing, deposition process,
and process end. In the first stage, the rotating consumable rod touched the substrate
surface, and then the recorded load suddenly increased due to the mutual friction between
the rotating AA2011 consumable rod and the fixed substrate to achieve the friction onset.
During the second stage, the stirring action between the consumable rod and the substrate
with a continuous feeding rate resulted in sufficient frictional heat able to plasticize the
material to form the first deposition layer. This stage could be recognized as the transition
stage of the FSD process due to the instability of the recorded load as given in Figure 7.
The third stage represents the building of composite materials in continuous layers, from
bottom to top, at a nearly stable recorded load, for a particular period of time, called the
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deposition time. The initial material properties of the consumable rods controlled their
behavior during the FSD, and this was related to the hardness of the materials. It was
noted that there was a strong resistance to friction agitation for the hard material of the
AA2011-T6 matrix than for the soft material of the AA2011-O during FSD when the other
processing parameters (i.e., feeding rate, rotation speed, and consumable rod volume) were
constant. Thus, the time needed to build continuous layers of AA2011-T6 was longer than
that consumed in building AA1011-O, as given in Figure 7a,b, respectively. Finally, the
deposition load decreased sharply at the end of the process because the rotating rod leaves
upward after finishing the deposition process.
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Figure 8 shows the height of AMPs and AMCPs as a function of the temper condition
of the AA2011 initial material. From the experimental results, it can be said that the height
of the friction stir deposited material depended on the deposition time. The deposition
time was related to the hardness of the consumable rod at a constant feeding rate [43,45,47].
Thus, the AA2011-T6 showed a higher multilayer building with a shorter diameter than
the produced multilayer using the AA2011-O consumable rod, as a certain volume of the
consumable rod was targeted to friction stir deposit as shown in Figure 8. Furthermore,
the presence of the Al2O3 nanoceramic phase during the stirring process increased the
resistance of the plasticized material to compatibility with an increase in the feeding rate,
resulting in a higher building layer compared to that produced without alumina addition
for the two temper AA2011 materials. This increase in height was at the expense of the
increase in diameter.
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3.2. Macrostructure and Microstructure Investigation

Figure 9 shows the macrostructure of the AMPs and AMCPs produced using a rotation
speed of 800 rpm and a 5 mm/min feed rate at the two temper conditions of AA2011-T6
and AA2011-O. It should be noted that, as illustrated in Figure 9, the macrostructure of
the deposited AMPs and AMCPs cross-sections demonstrated fully continuous structures
without any bonding voids and defects.

The AA2011 BM had a high material hardness as a result of work hardening. The
annealing temperature will lower the dislocation density after the annealing process. In
addition, according to the Hall–Patch relationship, the grains continued to merge into
larger grain sizes, resulting in a continuing decline in hardness and material softening
properties [48,49]. Figure 10 depicts the microstructure of the initial consumable rod
materials: (a) AA2011-T6 and (b) AA2011-O. The grain size analysis of the initial materials
(i.e., AA2011-T6 and AA2011-O) (Figure 11) shows grain sizes from 8.62 to 25.32 µm with
an average of 13.75 µm for the AA2011-T6 rod material. The grain size analysis of the
AA2011-O shows a larger grain size than for the T6 temper condition; the grain size of the
AA2011-O ranged from 5.29 to 29.46 µm with an average grain size of 14.87 µm.
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The FSD, as a thermomechanical process, is identical to friction stir processing
(FSP) [45,46,50] in terms of heat mechanisms (i.e., generation, dissipation, and transfer) in
the stir zone. In the continuous deposition process of AMPs and AMCPs, the frictional heat
was generated between the rotating AA2011 (T6 and O temper conditions) consumable rods
and the substrate plate during the dynamic contact friction process (DCF). Then, it caused
severe plastic deformation (SPD) of the consumable rod material during the feeding rate
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and transferred the plasticized material to build AMP and AMCP during the deposition
process. The deposited material’s microstructural features were nearly similar to those
gained in the stir zone material (SZ) during the FSP [51,52]. During the FSD process, the
material of the rotating consumable rod is subjected to SPD at high homologous tempera-
tures. As a result, the friction deposited material undergoes dynamic recrystallization [46]
and develops a very fine grain size. The OM observations of the microstructure indicated
the presence of an equiaxed refined grain for the deposited AMPs and AMCPs, as shown
in Figure 12a–d, compared to that shown in the initial materials (Figure 11). The FSD
process produced significant grain refining with average grain sizes of 2.57 and 2.41 µm
for the AA2011-T6 (Figure 12e) and AA2011-O (Figure 12f) deposited matrix materials.
The as-received, extruded consumable rods, AA2011-T6 and AA2011-O, were altered
from coarse grains to refined, equiaxed grains throughout the deposited microstructure of
AMPs. These grain sizes were similar to those seen in FSW weld nuggets. The observed
equiaxed grain refining was as severe as that occurring in the FSD of aluminum, which
reported ultrafine grains [53–55]. This difference can be credited to the higher stacking
fault energies inherent in aluminum alloys and is akin to other severe plastic deformation
processes such as FSW and high-pressure torsion [34,42]. While for the production of the
AMCPs, the average grain size of the AA2011-T6/nano Al2O3 composite (Figure 12g) and
AA2011-O/nano Al2O3 composite (Figure 12h) were 2.07 and 1.75 µm, respectively. It can
be concluded that the FSD achieved a reduction in the grain size of 81.31 and 83.79% for
the deposited material of AA2011-T6 and AA2011-O, respectively. Furthermore, a slight
grain size refining was observed for the produced composites with the addition of nano
Al2O3. While a slight reduction was detected for the addition of Al2O3 nano compared
with the deposited matrices at the two temper conditions, the grain size reduction for the
composites were 3.63 and 4.44% for AA2011-T6/Al2O3, and AA2011-O/Al2O3 deposited
layers, respectively. It was hypothesized that during the FSD that produced the AMCPs
in the two temper conditions, the aluminum matrix material developed a significantly
higher dislocation density owing to the differences in the deformation and the thermal
characteristics of the matrix and the Al2O3 reinforcement nanoparticles. Consequently,
during the FSD to produce AMCPs, hot restoration processes occurred more actively in the
matrix material resulting in a finer grain size.

The intermetallic precipitates in the AA2011-T6 BM, deposited matrix, and AA2011/nano
Al2O3 composite were examined using a SEM equipped with EDS analysis. The SEM
analysis showed different morphologies of intermetallics: spherical (S); almost spherical
(A–S); irregular (I); rod-like (R), as given in Figure 13a–d. According to the chemical
composition of the AA2011-T6 (Table 1), only two intermetallics were detected: Al2Cu
and Al7Cu2Fe [46,56]. It can be remarked that the precipitate size decreased with the
stirring action during the deposition process for the deposited matrix (Figure 13c) and the
deposited composite (Figure 13d) compared to the as-received AA2011 BM (Figure 13a,b).
The fragmentation and dispersion of these intermetallics in the aluminum matrix has been
reported in other works [42,46,57]. The first intermetallic Al2Cu (Spot 1), as shown in
Figure 13a,c, was presented in different morphologies (i.e., S, A–S, and I shapes) through
the AA2011-T6 and the deposited materials. Its nominal composition is given in Figure 13e.
The second detected intermetallic was Al7Cu2Fe (Spot 2), as shown in Figure 13b,d. Its
morphology was an R shape, and the nominal composition is illustrated in Figure 13f. It
can also be noticed that these intermetallics were well coherent with the aluminum matrix
AA2011-T6 BM (Figure 13a,b) without pulling out. During the grounding and polishing of
the deposited materials, the pullout phenomena were detected (Figure 13c,d), indicating
the weak interface bond between the intermetallics and the matrix after FSD. The elemental
map distribution of the reinforcement nano Al2O3 phase and the high alloying element (Cu)
in the AA2011 alloy are dotted in different colors (Figure 14) to ensure the dispersion of the
reinforcement and the intermetallic Al2Cu in the aluminum matrix after FSD. Figure 14a
shows the map distribution of all elements. Figure 14b–d represent the elemental maps of
Al, Cu, and O, respectively.
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Figure 12. The microstructures of the deposited (a) AA2011-T6 AMP; (b) AA2011-O AMP; (c) AA2011-
T6/Al2O3 composite; (d) AA2011-O/Al2O3 composite produced at a rotation speed of 800 rpm and
a 5 mm/min feeding rate. The grain size analysis of the produced AMPs of (e) AA2011-T6 and
(f) AA2011-O. (g) The AMCPs using the temper condition AA2011-T6 and (h) the AMCPs using the
temper condition AA2011-O.
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and (d) AA2011/nano Al2O3 composite; (e,f) EDS analyses of spot 1 and spot 2, respectively, in (a–d).

3.3. The Physical and Mechanical Properties

Figure 15 illustrates the variation in the relative density of the initial materials (i.e.,
AA2011-T6 and AA2011-O) and the produced AMPs and AMCPs. It can be seen that no
less than a 99.935% relative density for all the measured specimens was attained. Moreover,
a slight increase in density was observed for the friction stir deposited materials and
composites compared to the as-received materials. This increase may be ascribed to the
densification of the deposited building layer due to the downward force of the consumable
rod during the feeding rate and the presence of the Al2O3 ceramic phase [58–61].
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Figure 15. The relative density of the BM, AMPs, and AMCPs.

The hardness of a material is a good indicator of its mechanical characteristic, and
its value is related to the initial chemical composition, heat treatment program, and de-
formation process parameters. The contour maps of Vickers hardness measurements of
base materials, the deposited materials, and the deposited composites at a 800 rpm rotation
speed and a 5 mm/min feed rate are displayed in Figure 16. These measurements through
the cross-section of the tested specimens are a good representation of the hardness variation,
which is related to the microstructural features and the material processing. The AA2011-T6
initial material hardness map (Figure 16a) shows a wide range of hardness measurements,
ranging from 106 to 130 HV with an average hardness value of 117 HV. The high hardness
of the AA2011-T6 temper condition was attributed to the high internal stresses stored in
the material due to the cold working [62,63]. The drop in the hardness measurements
of AA2011-O BM (Figure 16d) was attributed to the stress relief and the precipitation
coarsening [64]. The hardness variation ranged from 60 to 75 HV in the annealed state
with an average of 69 HV, and the wide range variation of measurements for the two
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temper conditions of T6 and O was likely due to the different morphologies, sizes, and
distribution of the precipitates (Figure 10b and Figure 13a,b, respectively). It can also be
seen that the FSD process showed more homogenous hardness distribution (narrow range
of hardness measurements) across the build materials of AMPs (Figure 16b,e) and AMCPs
(Figure 16c,f) compared to the initial materials, indicating an isotropy structure. After the
FSD of AA2011-T6, the AMP exhibited a hardness map variation (Figure 16b) ranging
from 87 to 98 HV with an average of 91 HV. At the same time, the deposited AA2011-O
revealed a variation in hardness (Figure 16e) from 100 to 118 HV with an average of 107 HV.
Furthermore, the hardness variation of AA2011-T6/nano Al2O3 composite ranged from
101 to 112 with an average of 106 HV, and for the AA2011-O/nano Al2O3 composite, it
ranged from 116 to 125 HV with a 118 HV average hardness. It is widely established that
two mechanisms regulate the hardness of this alloy. The first mechanism is the decrease in
grain size, which increases with hardness (Hall–Petch relation). The second mechanism is
the shape and dispersion of the precipitates. In friction stir deposited material using the
AA2011-T6 hard consumable rod, the hardness decreased after the deposition process. The
dominant mechanism that affected the hardness was the fragmentation of hard precipitates,
while the hardness of the deposited material using the AA2011-O rods enhanced after the
deposition, as the dominant mechanism is the grain size refining. The addition of nano
Al2O3 to produce the AMCPs improved the hardness values for the two deposited matrices.
This enhancement in hardness was ascribed to the high hardness nature of the Al2O3
nanoceramic particles with it high dispersion through the friction stir deposited materials.
Moreover, the individual Al2O3 nanoparticles suppressed grain coarsening by impeding
the motion of grain boundaries, resulting in grain refining [65,66]. In general, it can be said
that the hardness properties of the deposited AMPs and AMCPs depended on the grain
size, nanoparticles addition, temper conditions, dislocation density, and precipitates (i.e.,
morphology, dispersion, and size).
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The compression test is critical for determining how the examined materials behave un-
der compressive load. The stress–strain compression curves and the compressive strength
at a 35% strain of the initial materials, AMPs, and AMCPs are plotted in Figure 17a,b,
respectively. It can be seen that the compressive strength of the AA2011-T6 deposited mate-
rial (543 MPa) was lower than the AA2011-T6 initial material (583 MPa) due to the hardness
loss accompanying the exposure of the thermomechanical process during FSD [67]. The
addition of Al2O3 promoted a slight enhancement in the strength of the AA2011-T6/nano
Al2O3 composite (558 MPa) compared to the deposited material without Al2O3 due to the
increase in thermal stability and hardness associated with the presence of the nanoceramic
phase [68,69]. The compressive strength of the AA2011-O deposited material (536 MPa)
and its composites (527 MPa) improved over the AA2011-O BM (425 MPa) due to the fact
of grain refining and the nano Al2O3 addition.
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AA2011-T6 and AA2011-O; (b) compressive strength values at a strain of 35% for the initial materials,
AMPs, and AMCPs at both temper conditions of T6 and O.
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Wear resistance of a material refers to its capacity to withstand material loss due to
the fact of mechanical activity. Wear resistance is calculated as the inverse of the wear rate
(which is the volume loss per sliding distance), and its value is related to the material type,
microstructure features, and the wear test conditions. The wear behavior of the initial ma-
terials, AMPs, and AMCPs in terms of wear resistance were examined at different applied
loads from 10 to 30 N at a constant sliding distance of 2072 m. The wear resistance results
were plotted against load as given in Figure 18. In general, the applied loads were sufficient
for surface damage, and the wear resistance of all of the tested specimens decreased with
the increasing applied load. The friction stir deposited materials showed a slight wear
resistance improvement over the initial two temper conditions. Moreover, both the pro-
duced composites showed higher wear resistance than the deposited material without nano
Al2O3 addition and the initial materials. The AA2011-T6/nano Al2O3 composite attained
the highest wear resistance at all the applied loads. These results agree well with the
density, hardness, and strength results, except for the AA2011-T6 BM. Figure 19 shows SEM
images of the worn surfaces of the initial materials, AMPs, and AMCPs at the wear load
of 20 N and a sliding distance of 2072 m. The worn surface of the initial materials shows
clear damage (Figure 19a,d) in terms of the delamination layer, transverse micro-cracks,
detached debris, and small smooth regions interspersed with wear scars. Due to the rise in
temperature of the AA2011 aluminum surface throughout the wear process, the applied
friction force induced cyclic stresses on both sides of the rubbing surfaces. This temperature
increase weakened the hardness and strength of the aluminum, resulting in significant
plastic deformation and the peeling off of certain aluminum grains [70,71]. The delamina-
tion wear mechanism produced delamination layers (deep grooves), while microcracks
were produced by the adhesive wear mechanism [72]. The different morphologies of the
intermetallics (i.e., Al2Cu and Al7Cu2Fe) imparted detrimental effects on the worn surface
during the dry friction process (Figure 19a). They pulled out through the process between
the two rubbing surfaces (the specimen surface and the test rig surface), causing weight
loss in terms of micro-abrasion scratches. Considerable wear resistance was attained for
the deposited materials and their composites as shown by the features of the worn surfaces,
as shown in Figure 19b,e and Figure 19c,f, respectively, in terms of parallel shallow wear
tracks with the absence of microcracks and delamination layers. Moreover, micro-abrasion
scratches were detected on the worn surface due to the loose fragmented intermetallics
between the two rubbing surfaces (Figure 19b,e). The enhancement in wear resistance of
the deposited composites was due to the increase in material thermal stability with nano
Al2O3 ceramic addition accompanied by hardness improvement due to the grain refining.
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4. Conclusions

1. The FSD process successfully deposited sound continuous multilayers of the AA2011
at the two temper conditions of T6 and O with and without the addition of Al2O3
nanoceramic particles at a rotation speed of 800 rpm and a feed rate of 5 mm/min;

2. The hard material AA2011-T6 consumable rod showed stronger resistance and took
a longer time to deposit, achieving higher building material than the soft material
AA2011-O rod during the FSD at a constant processing parameter;

3. The FSD process showed a more homogenous hardness distribution with a narrow
range of hardness measurements across the built materials of AMPs and AMCPs than
the base materials;
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4. The compressive strength of the deposited composites was higher than the deposited
matrices without Al2O3 in the two temper conditions;

5. The deposited composites showed higher wear resistance than the deposited AA2011
matrices and the base materials at a sliding distance of 2072 m with the applied load
ranging from 10 to 30 N. Furthermore, the AA2011-T6/nano Al2O3 composite showed
the highest wear resistance among all the deposited and base materials.
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Abbreviations

Al-MCCs Aluminum matrix ceramic composites
PM Powder metallurgy
FB-AM Fusion-based additive manufacturing
SS-AM Solid-state based additive manufacturing
FAM Friction additive manufacturing
FSD Friction stir deposition
AMCs Additive manufacturing composites
AMPs Additive manufacturing parts
AMCPs Additive manufacturing composite parts
FSDed Friction stir deposited
FSW Friction stir welding
FSP Friction stir processing
BM Base material
DCF Dynamic contact friction
SPD Severe plastic deformation
SZ Stir zone
S shape Spherical shape
A–S shape Almost spherical shape
I shape Irregular shape
R shape Rod-like shape
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