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Abstract: Compressive and flexural strength are the crucial properties of a material. The strength of
recycled aggregate concrete (RAC) is comparatively lower than that of natural aggregate concrete.
Several factors, including the recycled aggregate replacement ratio, parent concrete strength, water–
cement ratio, water absorption, density of the recycled aggregate, etc., affect the RAC’s strength.
Several studies have been performed to study the impact of these factors individually. However,
it is challenging to examine their combined impact on the strength of RAC through experimental
investigations. Experimental studies involve casting, curing, and testing samples, for which sub-
stantial effort, price, and time are needed. For rapid and cost-effective research, it is critical to apply
new methods to the stated purpose. In this research, the compressive and flexural strengths of
RAC were predicted using ensemble machine learning methods, including gradient boosting and
random forest. Twelve input factors were used in the dataset, and their influence on the strength
of RAC was analyzed. The models were validated and compared using correlation coefficients
(R2), variance between predicted and experimental results, statistical tests, and k-fold analysis. The
random forest approach outperformed gradient boosting in anticipating the strength of RAC, with
an R2 of 0.91 and 0.86 for compressive and flexural strength, respectively. The models’ decreased
error values, such as mean absolute error (MAE) and root-mean-square error (RMSE), confirmed the
higher precision of the random forest models. The MAE values for the random forest models were
4.19 MPa and 0.56 MPa, whereas the MAE values for the gradient boosting models were 4.78 MPa
and 0.64 MPa, for compressive and flexural strengths, respectively. Machine learning technologies
will benefit the construction sector by facilitating the evaluation of material properties in a quick and
cost-effective manner.

Keywords: recycled aggregate concrete; sustainable aggregate; compressive strength; flexural
strength; gradient boosting; random forest

1. Introduction

Numerous tests are performed to measure concrete performance, but compressive
strength is frequently considered the most significant [1]. Compressive strength tests
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offer good insight into the concrete’s diverse properties. The compressive strength of
concrete is directly or indirectly connected to a number of mechanical and durability
properties [2]. Flexural strength is also a key characteristic to consider when designing
structural concrete, since it has an effect on the flexural cracking, shear strength, deflection
properties, and brittleness ratio of the concrete [3]. The compressive and flexural strength
of recycled aggregate concrete (RAC) are reliant on a number of variables, including
the mechanical and physical properties of the recycled aggregate used, as well as the
microstructure of the resulting matrix [4]. Typically, RAC has an inferior compressive and
flexural strength compared to natural aggregate concrete, owing to insufficient bonding
between the aggregate and the old mortar, fractures and cracks in the recycled aggregate
formed during the recycling procedure, and the presence of low-permeability mortar
connected to the recycled aggregate [5–7]. Furthermore, the characteristics of RAC are
reliant on the amount of recycled aggregate substituted and the moisture content [8,9]. The
strength of RAC varies according to the recycled aggregate replacement ratio, the water–
cement ratio (w/c), the recycled aggregate’s moisture content, and the recycled aggregate’s
physical and mechanical properties [9,10]. When w/c is held constant, experimental
data suggest that recycled aggregate replacement content has a significant effect on the
strength of RAC [11,12]. When natural aggregate is totally replaced with recycled aggregate,
the compressive strength of RAC can be reduced by up to 30% [13,14]. Similarly, other
researchers discovered a drop in compressive strength of between 12% and 25% with
100% recycled aggregate incorporation [15,16]. It was discovered that the age of the waste
concrete from which the recycled aggregate was manufactured had a substantial impact
on the strength of the RAC [17]. Moreover, the strength of the parent concrete from which
recycled aggregates are produced affects the strength of the RAC [18]. Hence, there are
several factors that influence the strength of RAC, and to study their combined impact
through experimental investigations is challenging. In contrast, using computational
methods might better examine the combined influence of these factors on the strength
of RAC.

The practice of developing models for forecasting the strength of concrete is ongoing
in order to reduce unnecessary test repetitions and material waste. There are several
prominent models for modeling concrete properties, such as best fit curves (based on
regression analysis). However, due to the nonlinear behavior of concrete [19,20], regression
models generated using this technique may not accurately represent the underlying nature
of the material. Additionally, regression methods may understate the effect of constituent
materials in concrete [21]. Artificial intelligence techniques such as machine learning are
some of the more contemporary modeling techniques that have been used in the area of civil
engineering. These approaches use input parameters to model responses, and the output
models are validated by experimentation. For construction applications, machine learning
algorithms estimate concrete strength [22–26], bituminous mixture performance [27], and
concrete durability [28–30].

This study concentrates on the use of machine learning methods to forecast the com-
pressive and flexural strength of RAC. Two distinct ensemble machine learning techniques
were used—gradient boosting and random forest—and the effectiveness of both methods
was evaluated using correlation coefficients (R2) and statistical checks. Moreover, k-fold
analysis and error distributions were used to determine the validity of each technique.
The reason for selecting the ensemble machine learning method was that the literature
reported their better performance compared to individual machine learning methods,
such as support-vector machines and artificial neural networks [31–33]. This research is
interesting in that it predicts both the compressive and flexural strength via two ensemble
machine learning methods, while experimental studies require considerable human effort,
the cost of experimentation, and time for material collection, casting, curing, and testing.
Since a number of factors—including w/c, recycled aggregate replacement ratio, parent
concrete strength, water absorption of the recycled aggregate, density of the recycled aggre-
gate, etc.—influence the strength of RAC, their combined impact is hard to study through



Materials 2022, 15, 2823 3 of 25

an experimental approach. Machine learning methods are capable of determining their
combined impact at a reduced effort. Machine learning methods require a dataset, which
may be collected from past studies, since many investigations have been undertaken to
determine material strength, and such a dataset might be utilized for training the machine
learning models and forecasting the material properties. The purpose of this work is to
ascertain the most appropriate machine learning method for the compressive and flex-
ural strength estimation of RAC based on the results forecast and the effects of various
parameters on the strength of RAC.

2. Methods
2.1. Data Retrieval and Analysis

To obtain the appropriate result, supervised machine learning techniques need a
varied range of input variables [34–36]. The compressive and flexural strength of RAC
were projected using data obtained from the past studies (see Table S1 in Supplementary
Materials). Experimental data were arbitrarily selected from previous studies so as to avoid
biased images. Twelve variables were chosen as input factors, as listed below:

• Recycled concrete aggregate (RCA) replacement ratio;
• Parent concrete strength, bulk density of natural aggregate;
• Bulk density of RCA;
• Bulk density of natural aggregate;
• Water absorption of natural aggregate;
• Water absorption of RCA;
• Aggregate–cement ratio (a/c);
• Effective water–cement ratio (weff/c);
• Nominal maximum natural aggregate size;
• Nominal maximum RCA size;
• Los Angeles abrasion index of natural aggregate;
• Los Angeles abrasion index of RCA.

In addition, the compressive and flexural strength were chosen as the output variables.
The quantity of input variables and the dataset have a substantial impact on a machine
learning method’s result [37–39]. In the present study, 638 data points (mixes) were em-
ployed to run machine learning methods for compressive strength prediction, and 139 data
points (mixes) were used for flexural strength prediction. Tables 1 and 2 summarize the
descriptive statistic evaluation of each input variable for compressive and flexural strength
prediction, respectively. The mode, median, and mean exemplify basic propensity, while
the standard deviation, minimum, and maximum denote variability. The relative frequency
dispersal of input factors employed to forecast the compressive and flexural strength is
depicted in Figures 1 and 2, respectively. This represents the overall number of readings
linked to each input parameter.
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Table 1. Descriptive statistical values of input factors for the compressive strength dataset.

Parameter
RCA Re-

placement
Ratio (%)

Parent
Concrete
Strength

(MPa)

Bulk
Density of

NA (kg/m3)

Bulk
Density of

RCA (kg/m3)

Water
Absorption
of NA (%)

Water
Absorption
of RCA (%)

Aggregate–
Cement

Ratio (a/c)

Effective
Water–

Cement
Ratio (weff/c)

Nominal
Maximum
NA Size

(mm)

Nominal
Maximum
RCA Size

(mm)

Los Angeles
Abrasion

Index of NA

Los Angeles
Abrasion
Index of

RCA

Mean 53.03 5.00 1538.47 1666.16 0.61 3.49 2.99 0.49 22.14 21.51 4.61 6.75
Range 100.00 100.00 2970.00 2880.00 3.00 11.90 6.50 0.87 38.00 32.00 32.00 42.00
Mode 100.00 0.00 0.00 0.00 0.00 0.00 3.10 0.50 20.00 20.00 0.00 0.00

Maximum 100.00 100.00 2970.00 2880.00 3.00 11.90 6.50 0.87 38.00 32.00 32.00 42.00
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Median 50.00 0.00 2570.00 2330.00 0.40 3.90 2.90 0.49 20.00 20.00 0.00 0.00
Standard
Deviation 40.01 15.38 1315.12 1115.04 0.73 2.94 0.83 0.11 5.48 5.71 10.04 13.89

Sum 33,884 3193 983,081 1,064,677 391 2231 1913 312 14,149 13,747 2943 4312

Table 2. Descriptive statistical values of input factors for the flexural strength dataset.

Parameter
RCA

Replacement
Ratio (%)

Parent
Concrete
Strength

(MPa)

Bulk
Density of

NA (kg/m3)

Bulk
Density of

RCA (kg/m3)

Water
Absorption
of NA (%)

Water
Absorption
of RCA (%)

Aggregate–
Cement

Ratio (a/c)

Effective
Water–

Cement
Ratio (weff/c)

Nominal
Maximum
NA Size

(mm)

Nominal
Maximum
RCA Size

(mm)

Los Angeles
Abrasion of

NA

Los
Angeles

Abrasion of
RCA

Mean 50.74 4.32 1704.24 1823.81 0.70 4.15 3.05 0.52 19.40 19.23 9.32 12.82
Range 100.00 100.00 2820.00 2578.00 2.10 11.90 6.00 0.87 30.00 32.00 32.00 41.40
Mode 100.00 0.00 0.00 0.00 0.00 0.00 2.80 0.50 20.00 20.00 0.00 0.00

Maximum 100.00 100.00 2820.00 2578.00 2.10 11.90 6.00 0.87 30.00 32.00 32.00 41.40
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Median 50.00 0.00 2590.00 2336.00 0.50 4.70 2.90 0.50 20.00 20.00 0.00 0.00
Standard

Error 3.42 1.50 108.88 85.16 0.06 0.24 0.07 0.01 0.34 0.38 1.05 1.36

Standard
Deviation 40.30 17.65 1283.62 1004.03 0.70 2.81 0.81 0.14 4.00 4.49 12.33 15.99

Sum 7053.00 600.00 236,890.00 253,509.00 96.90 577.28 423.40 71.75 2696.00 2673.00 1294.90 1781.30

NA: natural aggregate, RCA: recycled concrete aggregate.
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2.2. Machine Learning Methods Employed

Two ensemble machine learning methods (gradient boosting and random forest) were
used to accomplish the objectives of this research, using Python code and the Anaconda
Navigator program. Spyder 4.3.5 was used to execute the gradient boosting and random
forest methods. Typically, these machine learning methods are used to anticipate desired
outputs based on input factors. These methods are capable of forecasting the temperature
effects, the strength properties, and the durability of materials [40,41]. Ensemble machine
learning methods commonly exploit the weak learner by constructing 20 submodels that
may be trained on data and modified to maximize the R2 value. The strategies to choose
optimal hyperparameters include splitting the data for training and testing models (80%
for training and 20% for testing), selecting the optimal submodel based on R2, and the
k-fold analysis method. R2 represents the performance/validity of machine learning
approaches. The R2 statistic is used to determine the amount of variance in a response
variable provided by a model. In other words, it expresses the model’s fit to the data
quantitatively. A number around zero implies that fitting the mean is comparable to fitting
the model, but a value near one shows that the data and model are nearly completely
matched [42]. The subsections below discuss the machine learning techniques employed in
this study. Moreover, all machine learning methods are validated using k-fold assessment,
statistical checks, and error measures (root-mean-square error (RMSE) and mean absolute
error (MAE)). Furthermore, sensitivity analysis is performed to determine the effect of
each input variable on the predicted findings. The flow diagram in Figure 3 illustrates the
research method used in this study.
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2.2.1. Gradient Boosting

Friedman [43] presented gradient boosting as an ensemble strategy for classification
and regression in 1999. Gradient boosting is only applicable to regression. As seen in
Figure 4, the gradient boosting technique compares each iteration of the randomly chosen
training set to the base model. A weak predictor is constructed using all of the training data.
Then, the training data are predicted using a weak predictor. With the expected outcome,
it is simple to calculate the residuals for each training instance. Gradient boosting for
execution may be sped up and accuracy increased by randomly subsampling the training
data, which also helps to prevent overfitting. The lower the training data percentage,
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the faster the regression, because the model must suit minor data every single iteration.
Gradient boosting algorithms require tuning parameters, including n-trees and shrinkage
rate, where n-trees is the number of trees to be generated; n-trees must not be kept too low,
while the shrinkage factor—normally referred to as the learning rate employed to all trees
in the development—should not be set too high [44].
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2.2.2. Random Forest

Random forest are deployed by bagging decision trees using the random split choice
technique [45]. The modeling procedure for the random forest approach is illustrated
schematically in Figure 5. Each tree in the forest is generated by means of an arbitrarily
selected training set, and each split inside a tree is constructed by means of an arbitrarily
chosen subgroup of input factors, yielding a forest of trees [46]. This element of instability
adds variation to the tree. The forest as a whole is composed completely of mature binary
trees. The random forest technique has established itself as a highly effective tool for
general-purpose classification and regression. When the number of variables surpasses the
number of observations, the technique has proven improved precision by aggregating the
predictions of several randomized decision trees. Additionally, it is adaptable to both large-
scale and ad hoc learning tasks, yielding measures of varying degrees of importance [47].
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3. Results and Analysis
3.1. Gradient Boosting Model
3.1.1. Compressive Strength

The results of the gradient boosting model for RAC’s compressive strength are shown
in Figure 6a,b. Figure 6a depicts the relationships between the experimental and anticipated
results. The gradient boosting approach yielded findings with a satisfactory level of
accuracy and a lower distinction between the experimental and projected values. The
R2 of 0.87 signifies that the gradient boosting model is reasonably precise at forecasting
the compressive strength of RAC. The distribution of forecast and error values for the
gradient boosting compressive strength model is presented in Figure 6b. The discrepancy
between experimental and estimated values was found to be between 0.00 and 27.96 MPa
(44.52% deviation), with an average of 4.78 MPa (11.67%). Additionally, the divergence
from the experimental outcomes was less than 1 MPa for 27 mixes, between 1 and 3 MPa
for 32 mixes, between 3 and 6 MPa for 32 mixes, between 6 and 10 MPa for 21 mixes, and
greater than 10 MPa for 16 mixes. These deviations indicate that the gradient boosting
model’s predicted results deviated less from the experimental results. As a result, the
gradient boosting technique is quite accurate at predicting RAC’s compressive strength.
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Figure 6. Gradient boosting model for compressive strength: (a) relationship between experimental
and predicted results; (b) spreading of predicted and error values.

3.1.2. Flexural Strength

Figure 7a,b provides a comparison of the experimental and predicted outcomes of
the gradient boosting model for the flexural strength of RAC. The correlation between
experimental and estimated findings is exemplified in Figure 7a, where an R2 of 0.79 indi-
cates that the gradient boosting model for the flexural strength is less specific than for the
compressive strength estimation of RAC. This reduced R2 is due to the lower number of
data points used for forecasting the flexural strength compared to the compressive strength.
The distribution of estimated and error values for the gradient boosting flexural strength
model is represented in Figure 7b. The difference between experimental and estimated
values was discovered to be between 0.00 and 4.27 MPa (89.27% deviation), with an average
of 5.86 MPa (11.44%). Furthermore, the difference from the experimental outcomes was less
than 1 MPa for 22 mixes and greater than 1 MPa for 6 mixes. These deviation values suggest
a moderate disparity between the gradient boosting model’s projected and experimental
outcomes. As a result, the gradient boosting approach predicts RAC’s flexural strength less
accurately compared to its precision in foretelling the compressive strength of RAC.
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3.2. Random Forest Model
3.2.1. Compressive Strength

The outcomes of the random forest model for the compressive strength of RAC are
presented in Figure 8. In Figure 8a, an R2 value of 0.91 indicates that the random forest
model outperforms the gradient boosting model in this study in terms of precision. The
dispersion of projected and error values for the random forest compressive strength model
is shown in Figure 8b. The variation (error) between experimental and estimated values
was found to range between 0.07 and 25.57 MPa (39.28% variation), with an average of
4.19 MPa (10.50% variation). Furthermore, the difference from the experimental outcomes
was less than 1 MPa for 18 mixes, between 1 and 3 MPa for 41 mixes, between 3 and 6 MPa
for 39 mixes, between 6 and 10 MPa for 22 mixes, and larger than 10 MPa for only 8 mixes.
These values show that the difference between experimental and expected outcomes is
less compared to the gradient boosting model. As a result, the random forest approach is
superior for assessing the compressive strength of RAC with the greatest precision.

Materials 2022, 15, x FOR PEER REVIEW 14 of 24 
 

 

 

 

 

(a) (b) 

Figure 8. Random forest model for compressive strength: (a) relationship between experimental and 
predicted results; (b) spreading of predicted and error values. 

3.2.2. Flexural Strength 
The experimental and anticipated outcomes of the random forest model for the flex-

ural strength of RAC are shown in Figure 9. Figure 9a represents the relationships between 
experimental and projected outcomes, with an R2 of 0.86 indicating that the random forest 
model for the flexural strength is less specific than the compressive strength prediction of 
RAC. This reduced R2 is because there are fewer data points used to forecast the flexural 
strength than the compressive strength. Figure 9b indicates the distribution of estimated 
and error values for the random forest flexural strength model. The discrepancy between 
experimental and estimated values ranged from 0.02 to 2.24 MPa (34.46 variances), with 
an average of 0.56 MPa (10.43% variance). Moreover, for 23 mixes, the variation from the 
experimental outcomes was less than 1 MPa, whereas it was greater than 1 MPa for only 
5 mixes. These values indicate a lower difference between the random forest model′s pre-
dicted and experimental results. As a result, the random forest technique is more accurate 
in forecasting RAC’s flexural strength than the gradient boosting model. 

0 20 40 60 80 100 120

20

40

60

80

100

120
 Data
 Best fit

Pr
ed

ic
te

d 
(M

Pa
)

Experimental (MPa)

Equation y = a + b*x

Slope 0.79172 ± 0.03116
R-Square 0.91473
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3.2.2. Flexural Strength

The experimental and anticipated outcomes of the random forest model for the flexural
strength of RAC are shown in Figure 9. Figure 9a represents the relationships between
experimental and projected outcomes, with an R2 of 0.86 indicating that the random forest
model for the flexural strength is less specific than the compressive strength prediction of
RAC. This reduced R2 is because there are fewer data points used to forecast the flexural
strength than the compressive strength. Figure 9b indicates the distribution of estimated
and error values for the random forest flexural strength model. The discrepancy between
experimental and estimated values ranged from 0.02 to 2.24 MPa (34.46 variances), with
an average of 0.56 MPa (10.43% variance). Moreover, for 23 mixes, the variation from
the experimental outcomes was less than 1 MPa, whereas it was greater than 1 MPa for
only 5 mixes. These values indicate a lower difference between the random forest model’s
predicted and experimental results. As a result, the random forest technique is more
accurate in forecasting RAC’s flexural strength than the gradient boosting model.
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3.3. Models’ Validation

The machine learning methods were validated by employing k-fold and statistical
methods. The k-fold technique, in which related data are randomly spread and separated
into 10 groups, is widely used to determine a technique’s validity [48]. Nine groups
are employed for training the model, and one group is used for validation, as shown in
Figure 10. The model is more accurate when the errors (MAE and RMSE) are less and
the R2 is high. In order to get a reasonable conclusion, the operation should be repeated
10 times. The model’s outstanding accuracy is due in large part to this enormous effort.
In addition, both models were statistically tested based on errors (MAE and RMSE), as
shown in Table 3. In comparison to the gradient boosting technique, this assessment also
validated the random forest model’s superior accuracy due to reduced error readings.
Equations (1) and (2), which were obtained from prior investigations [31,49], were used to
determine the approaches’ prediction performance statistically.

MAE =
1
n ∑n

i=1|Pi − Ti|, (1)

RMSE =

√
∑

(Pi − Ti)
2

n
, (2)

where n = total number of data points, Ti = experimental value, and Pi = predicted value.

Table 3. Statistical measurements of the models for validation.

Model
Compressive Strength (MPa) Flexural Strength (MPa)

MAE RMSE MAE RMSE

Gradient Boosting 4.776 6.976 0.642 1.199
Random Forest 4.194 5.642 0.560 0.859
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Figure 10. K-fold analysis procedure [50].

MAE, RMSE, and R2 were measured to see how well the k-fold analysis was executed,
and the results are shown in Table 4. Figures 11–13 show a comparison of k-fold analysis
for all of the machine learning techniques used. The MAE values for the gradient boosting
compressive strength model ranged from 4.78 to 14.60 MPa, with an average of 10.27 MPa.
In contrast, the MAE values for the random forest compressive strength model ranged
from 4.19 to 10.92 MPa, with an average of 8.34 MPa. Likewise, the gradient boosting and
random forest models for the compressive strength of RAC had average RMSE values of
11.05 and 9.41 MPa, respectively. When R2 values were evaluated, the average R2 values
for the gradient boosting and random forest models were 0.67 and 0.72, respectively. When
compared to the gradient boosting model, the random forest model—with smaller error
values and greater R2 values—was more precise in projecting the compressive strength of
RAC. A similar distribution of error and R2 values was discovered for the flexural strength
of RAC for both the gradient boosting and random forest models, and this also validated
the higher precision of the random forest model. Hence, the random forest model might
be employed for the strength estimation of RAC in order to reduce the number of trials
required for experimentation.

Table 4. Results of k-fold analysis.

K-Fold

Compressive Strength Flexural Strength

Gradient Boosting Random Forest Gradient Boosting Random Forest

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 14.60 10.23 0.74 10.92 8.44 0.90 0.64 1.37 0.75 0.63 0.97 0.74
2 7.33 9.28 0.53 7.13 9.45 0.67 0.67 1.20 0.92 0.66 0.97 0.44
3 11.04 7.98 0.87 8.16 7.56 0.73 0.75 1.52 0.60 1.33 1.51 0.35
4 8.57 13.86 0.84 4.19 11.87 0.84 0.85 1.81 0.45 0.71 0.93 0.63
5 11.16 12.42 0.87 7.25 9.83 0.91 0.74 1.21 0.79 0.91 0.86 0.43
6 13.10 7.10 0.86 9.87 5.64 0.66 2.00 2.02 0.20 0.56 0.86 0.41
7 8.01 15.95 0.37 7.78 12.06 0.79 0.96 1.23 0.21 0.97 0.90 0.75
8 13.14 8.76 0.74 9.98 15.00 0.47 1.56 1.28 0.44 1.30 1.47 0.56
9 4.78 6.98 0.61 10.09 8.18 0.74 0.79 1.22 0.24 0.87 1.28 0.74

10 10.94 17.97 0.27 7.98 6.10 0.49 0.69 1.29 0.50 0.90 1.34 0.86
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RF: random forest, CS: compressive strength, FS: flexural strength.

3.4. Sensitivity Analysis

The purpose of this evaluation was to discover the impact of input factors on RAC’s
compressive and flexural strength prediction. The anticipated result is considerably influ-
enced by the input factors [51]. Figure 14 shows the influence of the input factors used in
this research on the compressive strength evaluation of RAC. The analysis revealed that the
RCA replacement ratio was the crucial element, accounting for 18.7% of the overall impact,
followed by parent concrete strength at 15.3% and weff/c at 14.8%. The contribution of the
other input factors to the strength estimation of RAC was found to be lower, with the Los
Angeles abrasion index of RCA, water absorption of RCA, a/c, nominal maximum RCA
size, bulk density of RCA, Los Angeles abrasion index of natural aggregate, bulk density of
the natural aggregate, nominal maximum natural aggregate size, and water absorption of
the natural aggregate accounting for 11.6%, 8.7%, 8.1%, 6.5%, 5.0%, 3.7%, 2.8%, 2.5%, and
2.3%, respectively. Sensitivity analysis produced results associated with the quantity of
input variables and the dataset used to build the machine learning models. The impact of
an input factor on the method’s results was found using Equations (3) and (4).

Ni = fmax(xi)− fmin(xi) (3)

Si =
Ni

∑n
j−i Nj

. (4)

where

fmax(xi) = highest estimated value on the ith result;
fmin(xi) = lowest estimated value on the ith result;
Si = attained impact percentage for a certain variable.
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4. Discussions

The goal of this study was to add to the existing domain of research on the use of
modern methods for evaluating the strength of RAC. This sort of exploration will benefit
the building sector by allowing for the advancement of fast and cost-effective material
property projection methods. Furthermore, by implementing these techniques to encourage
environmentally friendly construction, the acceptance and usage of RAC in the build-
ing sector could be expedited. Figure 15 depicts the advantages of adopting RAC in the
construction industry. Significant infrastructural renovation is required as a result of ur-
banization and industrialization, resulting in high volumes of construction and demolition
waste. Therefore, desirable areas are turned into garbage ditches, land prices continue to
rise, and trash dumping costs rise, with landfill space becoming increasingly rare. As a
result, waste management has become of leading significance in emerging countries and is
a global concern that demands long-term solutions. In addition, extracting and processing
natural aggregates for concrete uses a lot of energy and produces a lot of CO2 [52]. Thus,
using RAC in concrete production could result in lower energy consumption, resource
conservation, building sustainability, cost savings, and a significant decrease in construction
and demolition waste.

This research shows how machine learning methods may be used to forecast the
compressive and flexural strength of RAC. The study employed two ensemble machine
learning techniques—gradient boosting and random forest—to determine which technique
is the most accurate predictor. The random forest model, with an R2 of 0.91 for compressive
strength and 0.86 for flexural strength prediction, suggested a higher precision compared
to the gradient boosting model, which produced R2 of 0.87 and 0.79 for compressive
and flexural strength prediction, respectively. Furthermore, the accuracy of all machine
learning methods was tested through the use of k-fold and statistical methods. The model



Materials 2022, 15, 2823 19 of 25

is more precise if there are fewer error values in it. However, selecting and suggesting
the best machine learning model for forecasting outcomes in a range of fields is difficult,
because a model’s validity is highly dependent on the input factors and size of the dataset
employed [53]. Ensemble machine learning techniques frequently take advantage of the
weak learner by building 20 submodels that might be trained on data and altered to
maximize the R2 value. The random forest model has also been found to be more exact
in forecasting the strength of concrete by other researchers [54–56] in terms of R2 and
error values. Farooq et al. [54] compared the functioning of random forest with that of the
artificial neural network, gene expression programming, and decision tree methods, and
found that the random forest model, with an R2 of 0.96, had a higher precision than the
others. The reason for the higher accuracy of random forest is that it employs the bagging
approach to combine all regression trees [57,58]. By minimizing the variation associated
with prediction, bagging can increase prediction accuracy.
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Figure 16 depicts the R2 value dispersion for the gradient boosting and random forest
submodels. For gradient boosting compressive strength submodels, the lowest, average,
and maximum R2 values were 0.818, 0.844, and 0.869, respectively. Additionally, the least,
average, and highest R2 values for the gradient boosting flexural strength submodels were
noted to be 0.731, 0.762, and 0.793, respectively. Similarly, for random forest compressive
strength submodels, the lowest, average, and highest R2 values were 0.877, 0.907, and
0.915, respectively. Meanwhile, the least, average, and greatest R2 values for the random
forest flexural strength submodels were identified to be 0.803, 0.834, and 0.863, respectively.
These findings revealed that the random forest submodels had greater R2 values than the
gradient boosting submodels, indicating that the random forest model was more precise
in estimating RAC’s strength. A sensitivity analysis was also conducted to determine the
effects of all inputs on the projected strength of RAC. The size of the dataset and the input
parameters may have an impact on the model’s performance. The sensitivity analysis
determined the contributions of each of the 12 input parameters to the expected output.
The three most important input factors were discovered to be the RCA replacement ratio,
parent concrete strength, and weff/c.
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5. Conclusions

This study aimed to employ two ensemble machine learning algorithms to anticipate
the compressive and flexural strength of recycled aggregate concrete (RAC). Gradient boost-
ing and random forest were chosen to achieve the study’s goals. The dataset containing the
strength of RAC of 638 mixes was collected, of which all contained compressive strength
results and 139 contained flexural strength results. Both gradient boosting and random
forest models were employed to predict the compressive and flexural strength of RAC, and
their accuracy was compared. The conclusions of this study are as follows:

1. The random forest model outperformed the gradient boosting model in estimating the
compressive and flexural strength of RAC, with an R2 value of 0.91 for compressive
strength and 0.86 for flexural strength prediction. However, the results of the gradient
boosting model for the compressive strength estimation of RAC were also in the
reasonable range, with an R2 of 0.87, but for the flexural strength estimation, the
accuracy of the gradient boosting model was lower, with an R2 of 0.79. The lower R2

values for the flexural strength estimation in both models were because of the lower
number of input data points. Hence, the random forest technique is suitable to be
used for the strength prediction of RAC;

2. The analysis of predicted results indicated a lower variance from the experimental
results for the random forest model compared to the gradient boosting model, which
also validated the higher precision of the random forest model in predicting the
strength of RAC;

3. K-fold and statistical evaluations further validated the model’s precision. These
assessments also validated the higher precision of the random forest model due to the
lower error values in comparison with the gradient boosting model;

4. Sensitivity analysis revealed that the RCA replacement ratio was the most important
constituent affecting the model’s outcome, accounting for 18.7% of the total, followed
by parent concrete strength at 15.3% and the effective water–cement ratio at 14.8%.
However, the other input parameters had less contribution to the forecast of RAC’s
compressive strength, with the Los Angeles abrasion index of RCA, water absorption
of RCA, a/c, nominal maximum RCA size, bulk density of RCA, Los Angeles abrasion
index of natural aggregate, bulk density of natural aggregate, nominal maximum
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natural aggregate size, and water absorption of the natural aggregate accounting for
11.6%, 8.7%, 8.1%, 6.5%, 5.0%, 3.7%, 2.8%, 2.5%, and 2.3%, respectively;

5. This sort of study will benefit the building sector by allowing for the advancement
of rapid and cost-effective techniques for estimating the strength of materials. Fur-
thermore, by encouraging computational techniques, the adoption and application of
RAC in the building sector will be accelerated.

This study proposes that future studies should use experimental research, mixture
proportions, field trials, and other numerical assessment methods to increase the amount
of data points and findings (e.g., Monte Carlo simulation). Furthermore, to enhance the
models’ responsiveness, environmental characteristics (e.g., elevated/low temperature and
humidity) and a full description of the raw materials may be included as input variables.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma15082823/s1, Table S1: Data used for modeling. References [59–121] are cited in the
Supplementary Materials.
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