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Abstract: The issue of brittleness and low post-peak load energy associated with the plain HSC led
to the development of fiber-reinforced concrete (FRC) by using discrete fiber filaments in the plain
matrix. Due to the high environmental impact of industrial fibers and plasticizers, FRC development
is ecologically challenged. Sustainability issues demand the application of eco-friendly development
of FRC. This study is aimed at the evaluation of coir as a fiber-reinforcement material in HSC, with
the incorporation of silica fume as a partial replacement of cement. For this purpose, a total of
12 concrete mixes were produced by using three different doses of coir (0%, 1%, 1.5%, and 2% by wt.
of binder) with silica fume (0%, 5%, and 10% as volumetric replacements of cement). The examined
parameters include compressive strength, shear strength, splitting tensile strength, ultrasonic pulse
velocity, water absorption, and chloride ion permeability. The scanning electron microscopy (SEM)
technique was adopted to observe the microstructure of the CF-reinforced concrete. The results
revealed that due to the CF addition, the compressive strength of HSC reduces notably; however, the
splitting tensile strength and shear strength experienced notable improvements. At the combined
incorporation of 1.5% CF with 5% silica fume, the splitting tensile strength and shear strength of the
concrete experienced improvements of 47% and 70%, respectively, compared to that of the control mix.
The CF incorporation is detrimental to the imperviousness of concrete. The combined incorporation
of CF and silica fume is recommended to minimize the negative effects of CF on the permeability
resistance of concrete. The SEM results revealed that CF underwent a minor shrinkage with the age.

Keywords: supplementary cementitious material; natural fibers; coconut waste; ultrasonic pulse
velocity; high strength concrete; shear strength

1. Introduction

In recent years, applications of HSC have risen in the construction sector due to several
customized advantages as compared to conventional plain concrete, such as improved
workability, higher compressive strength, and excellent durability characteristics. These
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properties are attained by utilizing appropriate amounts of supplementary cementitious
materials (SCMs) and water-reducing admixtures at a low water to binder ratio. The
use of waste SCMs has significantly increased in HSC development in recent years as a
consequence of increased awareness about environmental issues. Incorporating waste
SCMs, e.g., silica fume, ground steel slag, waste glass powder, and fly ash, can substantially
reduce the cement content of concrete [1–4], and subsequently, it produces environmental-
friendly concrete. Solid wastes from municipal, industrial, and agricultural fields can
be used as SCMs. Reusing solid waste materials or industrial by-products as a partial
replacement of cement is a sustainable approach to resolve environmental issues.

Silica fume is a by-product of ferro–silicon alloys owing to its extremely fine particle
size, and it contributes to the strength and durability of concrete due to its high pozzolanic
potential [5]. The portlandite generated during the hydration of the cement reacts with
the fine silica particles and contributes to the strength of concrete, besides filling the space
between cement particles to yield high imperviousness [5,6]. Despite environmental and
technical benefits, high binder contents with SCMs cause high vulnerability to early-age
shrinkage cracking, and this can lead to the service degradation of structural concrete
elements [7,8]. The presence of micro-cracks in the matrix of concrete can facilitate the
permeability of harmful chemicals (sulfates, chlorides, and carbon dioxide, etc.) inside the
concrete structures and it may also increase the brittleness of plain concrete. The brittleness
of concrete also increases with an increase in the cement content and the strength class of
concrete families [9].

To supplement the tensile strength and toughness of HSC and to control the cracks,
fibers have proven to be very encouraging [8,10]. Fiber reinforcement also advances the
flexural strength, impact toughness, and energy absorption capacity under both compres-
sion and tension by containing the crack proliferation [2,11–13]. It also helps in controlling
the cracks developed during the shrinkage of high binder contents in HSC families [10,14],
thus delaying the onset of failure under different types of loads. Owing to high tensile and
flexural strength per unit volume, FRC elements are lighter and more slender as compared
to those of plain concrete [15] and they facilitate long-span construction.

Generally, industrial fibers, such as steel fibers, glass fibers, polypropylene fibers,
polyvinyl alcohol fibers, basalt fibers, and carbon fibers, have been used for the develop-
ment of FRC [16–21]. The type and dosage of fiber are usually selected based on the appli-
cation of FRC. Despite offering several ductility benefits, FRC development is expensive
due to the requirement of costly fibers and water-reducing admixtures. The environmental
impact of FRC at the production end is significantly higher when compared to conventional
plain concrete [22]. Ali et al. [23] estimated the FRC containing a 1% volume fraction of
steel fiber, glass fiber, and polypropylene fiber, respectively, yielded 60%, 15%, and 5%
more carbon footprint compared to that of the plain concrete. Industrial fibers contribute a
large portion to the cost and carbon footprint of concrete. In addition to the high cost of
fibers, the addition of superplasticizers to control the workability also increases the final
cost and footprint of FRC development. This situation under the prevailing environmental
challenges demands the application of eco-friendly substitutes of conventional fibers.

There are several inexpensive and eco-friendly alternatives for industrial fibers. These
include recycled waste fibers and natural fibers. FRC can be developed with waste fibers
derived from the tire and polymer scrapes. The carbon footprint of processing recycled steel
fibers from scrap tires is 20 times smaller than that of industrial steel fiber [24]. Recycled
steel fiber has demonstrated significant improvement in the ductility behavior of con-
crete [25,26]. Polymer fibers from scrap tires can also substitute the function polypropylene
fiber in HSC [27,28]. Similarly, recycled carbon fibers have exhibited substantial increments
in the compressive and flexural behavior of HSC [29]. Meanwhile, researchers have also
advanced the research on the engineering performance of concrete with natural fibers. Sev-
eral natural fibers that have been used by humans for centuries possess very high tensile
strength and flexibility, e.g., coir, jute, sisal, Musaceae, and hemp, etc. [30–34]. Multiple
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options for natural fibers are available in many countries, which can be used for FRC
development without seriously affecting the carbon footprint of concrete.

Compared to most natural fibers, coir is generated as a waste product of coconut fruits.
The global annual production of coconut is around 60 million tons [35]. Generally, coconut
seed is separated from the fruit for edible purposes, and coir and coconut shells are the
byproducts. Coir consists of thick bundles of strong natural fibers, also called filaments. It
possesses low density, high tensile strength, and high abrasion resistance; thus, it is suitable
to make ropes, brushes, mattresses, and mats, etc. [36]. It is one of the few natural fibers
that is resistant to saltwater, and can withstand high tensile and flexural deformations,
making it suitable for composites subjected to dynamic and elastic deformations [37–39].
The tensile strength of coir ranges between 80 MPa and 150 MPa; thus, it can be considered
as a substitute for low-density polymer fiber for FRC manufacturing.

Until now, the feasibility of coir as a fiber reinforcement for cementitious materials
has been examined by several researchers [40–44]. Ali et al. [45] investigated the dynamic
properties of medium strength concrete (MSC) made with coir. It was found that the
damping of concrete increased significantly with the increasing coir content. FRC having
coir chopped in lengths of 50 mm and at a content of 5% by wt. of cement yielded the
best dynamic properties. Baruah and Talukdar [46] studied the properties of normal
strength concrete (NSC) with various volume fractions of CF. It was observed that at a
1.5% volume of CF, the compressive strength, splitting tensile strength, flexural strength,
and shear strength of plain concrete were improved, respectively, by 17%, 17%, 25%, and
32%. Hwang et al. [40] studied the mechanical properties of different strength grade
cementitious composites with coir incorporation. It was found that higher volumes of
coir were detrimental to the workability, density, and compressive strength of concrete.
However, there was a distinct rise in the flexural capacity and impact resistance of the
concrete with coir incorporation.

Khan and Ali [47] reported the effects of adding plasticizer and silica fume on the
mechanical properties of coir-reinforced MSC. Synergistic behavior was observed when coir
was incorporated with silica fume and plasticizer. It was demonstrated that the compressive
and flexural toughness of concrete were substantially improved when coir was used in
conjunction with plasticizer and silica fume. Ahmad et al. [31] studied the properties of
HSC with varying dimensions (25, 50, and 75 mm) and contents (0.5%, 1%, 1.5%, and 2%)
of coir. A maximum increase in the compression and flexural properties was observed
with incorporation of 50 mm long coir at 1.5% by wt. of cement. The compressive strength
of HSC was observed to be increased by 25% at a 1.5% incorporation of 50 mm long coir.
Flexural and splitting tensile strength of the HSC experienced minor improvements due to
the coir addition. Sekar and Kandasamy [48] observed the characteristics of NSC with coir
and coconut shells. Increasing the incorporation of coir demonstrated moderate increments
in the compressive strength and flexural strength of NSC, while a substantial increment in
the impact toughness of concrete was observed due to the coir addition with and without
coconut shells as aggregate replacements.

Studies relevant to the durability properties are still very few. Hwang [40] studied the
water absorption and plastic cracking of coir-reinforced concrete. The water absorption of
concrete increased with the rise in coir content and water-binder ratio. However, plastic
cracking of cementitious composites was reduced with coir. No plastic cracking was noticed
in samples of 2.5% and 4% volume of coir, respectively, at a 0.3 and 0.35 water-binder
ratio. Mydin et al. [49] demonstrated a reduction in the porosity and water absorption of
lightweight concrete due to the addition of alkali-treated and untreated coir. An increase
in ultrasonic pulse velocity also suggested that the density and porosity of concrete were
reduced due to the coir addition. Ramli et al. [50] found that the intrinsic permeability and
carbonation of HSC increased with the increase in the utilization of the coir reinforcement.
This was linked with the low density and shrinkage of coir. Sivaraja et al. [51] reported
that the mass loss due to the freeze-thaw in the coir-reinforced concrete was acceptable
compared to that of conventional concrete.
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An overview of the existing literature demonstrated that fewer investigations [50,52]
have been conducted to understand the mechanical and permeability behavior of HSC
with coir, as fiber reinforcement has one of the major applications in advancing the ductility
of HSC. Moreover, the effect of a mineral admixture used in conjunction with coir should
also be investigated on the performance of HSC to maximize sustainability, ductility, and
durability benefits. The main objective of this study is to explore the mechanical and
permeability characteristics of HSC with silica fume and coir. Therefore, a total of twelve
concrete mixes were made by using three different contents of coir (0%, 1%, 1.5%, and 2% by
wt. of binder) with and without silica fume (0%, 5%, and 10% as the volumetric replacement
of cement). The workability of coir-reinforced mixes was controlled by the manipulation
of the superplasticizer dosage. The studied parameters include compressive strength,
shear strength, splitting tensile strength, ultrasonic pulse velocity, water absorption, and
chloride ion permeability. SEM technology was adopted to observe the microstructure of
the CF-reinforced matrix. To the best knowledge of the authors, this is the first study to
assess the shear strength and chloride ion penetration of CF-reinforced mixes. The results
of this would benefit the development of ecofriendly FRC and promote the application of
biowaste fibers in the construction industry.

2. Experimental Program
2.1. Characteristics of Materials
2.1.1. Binding Materials

Ordinary Portland cement (OPC) was used as the main binder for the preparation of all
mixtures. This general-purpose cement complies with ASTM C150 [53], having 53 Grade.
This cement is commercially available as a Maple Leaf 53 Grade general-purpose cement
suitable for high-performance concretes. Table 1 shows the important properties of OPC.
Silica fume, which is a waste of ferrosilicon alloys, in condensed form was obtained from
Sika Pvt. Ltd. Lahore, Pakistan. The silica content of silica fume is around 98.5% and it has
a specific surface area of 27,000 m2/kg. Owing to its extremely small particle size compared
to that of the cement, silica fume offers a filling effect and a high pozzolanic potential with
OPC. Granulometry of silica fume and OPC is shown in Figure 1.

Table 1. Properties of OPC.

Properties Name Result

Chemical composition

Lime-CaO (%) 64.6
Silica-SiO2 (%) 20.4
Alumina-Al2O3 (%) 7.3
Magensia-MgO (%) 3.2
Loss on Ignition-LOI (800 ◦C) 1.4

Physical characteristics
Specific-surface area (m2/kg) 368
Specific-gravity 3.12
Bulk-density (kg/m3) 1443

Mechanical strength Compressive strength at 7 days (MPa) (water-cement ratio 0.29) 48

2.1.2. Aggregates

For fine aggregate, siliceous sand was used. This sand was picked from the Lawran-
cepur quarry in the Northern Punjab region (situated at 33.8308◦ N, 72.5057◦ E) of Pakistan
(Attock, Punjab). Owing to well-gradation, this sand is recommended for high-performance
concrete development. Dolomitic sandstone was used as coarse aggregates. This high-
quality aggregate was obtained from the Kirana Hills quarry situated in the central Punjab
region of Pakistan (Sargodha, Punjab, 31.9667◦ N, 72.7029◦ E) was used as coarse aggregate.
For the development of high-performance concrete, the maximum aggregate size of the
coarse aggregate was kept smaller than 12.5 mm. The characteristics of both aggregates are
provided in Table 2. Gradation of both types of aggregate is shown in Figure 2.
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Table 2. Properties of aggregates.

Property Name Fine Coarse

Maximum particle size (mm) 4.75 12.5
Minimum particle size (mm) 0.075 4.75
Water absorption (%) 0.85 0.96
Specific gravity 2.68 2.71
Dry-rodded density (kg/m3) 1685 1655
Fineness modulus 2.91 -
Material Siliceous-sand Dolomitic-sandstone
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2.1.3. Water and Superplasticizer

Tap water of concrete laboratory, free from organic matters, was used for the mixing
and curing of all batches. The water has a pH of 7.9. Whereas, to control the workability of
CF-reinforced mixtures, Sika Viscocrete 3110 was used. This belongs to the polycarboxylate-
based 3rd generation of water-reducers. It complies with the ASTM C494 [55] as a type
G plasticizer.

2.1.4. Coir or Coconut Fiber

Coir was extracted from waste coconut husks and chopped manually into lengths of
50 mm. This length of coir was selected based on its optimum effect on the mechanical
performance reported in the literature [31,45]. The color of the coir was light tan, and its
diameter was around 0.1 mm as assessed from the SEM observation, as shown in Figure 3.
According to several studies [56–58], the axial tensile strength of coir ranged between
47–178 MPa. The tensile strength of coir is also suspected to vary among the filaments of
the same parent fruit due to natural imperfections.
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2.2. Details about the Preparation of Concrete Mixes

A total of twelve concrete mixes were designed in this study to examine the singular
and combined effects of silica fume and coir on the properties of HSC, as shown in Table 3.
The first mix served as the control mix; its designated compressive strength, over 50 MPa
at the age of 28 days, was selected after performing various trials under the guidance
of literature [2,59]. Even though there is no specific boundary between normal strength
concrete and HSC, the American Concrete Institute (ACI) conservatively defined HSC as
concrete with 28-days’ cylindrical compressive strength above 42 MPa [60]. Moreover, in
Pakistani studies [31,61,62], HSC is referred to as concrete having compressive strength
from 45 MPa to 60 MPa. The workability of high-performance HSC is usually higher than
conventional mixes; therefore, the design of the control mix was chosen for the slump of
200 ± 20 mm [63]. In the control batch, silica fume was incorporated as 0% (SF0), 5% (SF5),
and 10% (SF10) by volume replacement of OPC. With each level of silica fume, coir was
incorporated at four different percentages, i.e., 0% (CF0), 1% (CF1), 1.5% (CF1.5), and 2%
(CF2). For varying percentages of SF, the dosage of CF was taken as wt. of binder in the SF0
family. Using this method, the constant quantity of CF was attained for each percentage
of SF (0%, 5%, and 10%). These contents of coir were selected based on their optimum
effects on the mechanical performance of concrete [31,56]. Coir contents higher than 2%
demonstrated negative effects on workability and strength. With the incorporation of silica
fume and coir, the workability of concrete was reduced; thus, the superplasticizer dosage
was modified to control the workability of mixes. All mixes yielded slump values in the
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range of 150–210 mm. Mixes containing 1% and 1.5% coir qualified for high-performance
concrete based on their high workability, as no segregation was observed and slump values
were well between 180–220 mm [63]. Meanwhile, mixes containing 2% coir exhibited
slump values relatively lower compared to the plain mix family. The tangling effect became
dominant at 2% coir content; thus, the slump value could not be increased beyond 156 mm,
despite increasing the plasticizer dosage. To avoid bleeding, the dosage of the plasticizer
was not increased further to achieve workability in the case of the 2% coir content.

Table 3. Nomenclature and design of mixtures.

Serial.
No. Mix IDs CF (%) SF (%)

OPC
(kg/m3)

SF
(kg/m3)

Aggregates
Water

(kg/m3)
CF

(kg/m3)
SP

(kg/m3)
Slump
(mm)Fa

(kg/m3)
Ca

(kg/m3)

1 SF0/CF0 0 0 475.0 0.0 650 1079 166.3 0.0 2.38 205
2 SF5/CF0 0 5 451.3 18.4 650 1079 166.3 0.0 2.47 209
3 SF10/CF0 0 10 427.5 36.8 650 1079 166.3 0.0 3.13 204
4 SF0/CF1 1 0 475.0 0.0 650 1079 166.3 4.8 2.61 189
5 SF5/CF1 1 5 451.3 18.4 650 1079 166.3 4.8 2.71 194
6 SF10/CF1 1 10 427.5 36.8 650 1079 166.3 4.8 3.44 196
7 SF0/CF1.5 1.5 0 475.0 0.0 650 1079 166.3 7.1 2.85 185
8 SF5/CF1.5 1.5 5 451.3 18.4 650 1079 166.3 7.1 2.96 181
9 SF10/CF1.5 1.5 10 427.5 36.8 650 1079 166.3 7.1 3.75 184

10 SF0/CF2 2 0 475.0 0.0 650 1079 166.3 9.5 2.97 154
11 SF5/CF2 2 5 451.3 18.4 650 1079 166.3 9.5 3.08 156
12 SF10/CF2 2 10 427.5 36.8 650 1079 166.3 9.5 3.91 151

Note: CF = coir; SF = silica fume; OPC = ordinary Portland cement; Fa = fine aggregate; Ca = coarse aggregate;
SP = superplasticizer.

All mixtures were prepared in a rapid-speed mechanical mixer equipped with a speed
regulator. Firstly, the binding materials and aggregates were mixed together for 2 min at
a rotary speed of 30 rpm. Then, the required amount of water and plasticizer was added
to the dry mixture, and mixing was done at the speed of 60 rpm for 3 min. In the case of
plain concrete mixtures, the freshly mixed concrete was tested for a slump and proceeded
for casting. Whereas, in the case of fiber-reinforced mixes, the coir was gradually added
to the fresh concrete in the running mixer to ensure uniform dispersion of fibers. The
mixing speed during the addition of coir was increased to 80 rpm and this stage lasted for
about 2 min. The high-speed mixing ensured a thorough mixing of coir filaments without
accumulation. After completion of mixing, the samples were tested for slump testing
and subsequently for casting. The schematic representation of the mixing procedure is
illustrated in Figure 4.
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Figure 4. Mixing sequence for the preparation of concrete mixes.

2.3. Experimental Testing Methods

A CONTROLS Universal Testing Machine of 3000 kN capacity was used to perform
the compressive strength test on 100 mm × 100 mm × 100 mm cubical samples according
to BS: EN 12390 [64]. The compressive strength of each mix was determined at the age of
28 and 90 days. To understand the ductility of coir-reinforced mixes, shear strength and
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splitting tensile strength tests were conducted. A bi-surface shear strength (Bs) test was
conducted on the specimens of 150 mm × 150 mm × 150 mm dimensions, as shown in the
schematic setup in Figure 5. This testing technique was adopted from the literature [65].
Bs is calculated using Equation (1). Where Pu is the peak load (kN), As = area of shear
plane. For the determination of the splitting tensile strength, 100 mm × 200 mm cylindrical
samples were tested in a CONTROLS Universal Testing Machine as per ASTM C496 [66].
The shear strength and splitting tensile strength of each mix was determined at the age of
28 days.

Bs =
Pu

2As
(1)
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Figure 5. Schematic representation of bi-surface shear test.

Ultrasonic pulse velocity test was performed on 100 mm cubical samples of all mixes
following ASTM C597 [67] to assess the effect of silica fume and coir on the homogeneity
and density of the concrete mix. For the assessment of permeable pore volume, the water
absorption capacity of all concrete mixes was determined. For this purpose, 100 mm diam-
eter × 50 mm thick samples were tested to determine the absorption capacity according to
ASTM C948 [68]. Chloride permeability in all mixes was estimated by using the immersion
method [69,70]. Concrete samples cured for 28 days were soaked in a 10% sodium chloride
(NaCl) solution for a period of 90 days. After conditioning in chloride solution for 90 days,
the samples were split into halves using a compression load. The failed surfaces of the
chloride-conditioned samples were sprayed with a 0.1 normality solution of silver nitrate
(AgNO3). When the nitrate solution reacted with the penetrated chlorides, it left silver-
colored precipitates forming silver chloride (AgCl), also indicating the penetration depth of
chloride ions, as shown in Figure 6. The depth of chloride penetration was recorded at six
different points and the average value was taken as the representative value of the sample.
In this study, three replicate samples of each mix were tested to determine a parameter. The
results with the standard deviation values between the three samples are presented in the
results and discussion section.
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3. Results and Discussion
3.1. Compressive Strength

The effect of the coir addition with and without silica fume on the compressive strength
of HSC is shown in Figure 7. The net change in the compressive strength with the variation
in the silica fume and coir content is depicted in Figure 8. The compressive strength of HSC
improved significantly due to the partial replacement of cement with silica fume. As the
silica fume possesses pozzolanic potential, it can help in consuming free portlandite in the
binder matrix and transforming it into a dense calcium silicate hydrate gel [71,72]. The filler
effect of mineral admixtures improves the density of microstructure [73]; ultimately, the
strength of the HSC is improved. The compressive strength was improved by around 10%
and 16%, respectively, at 5% and 10% replacement of cement with silica fume. At the age of
90 days, concrete mixes containing 10% silica fume demonstrated the highest compressive
strength values for a given coir content. The maximum strength gain between 28 and
90 days was observed for mixes containing 10% silica fume. This is because the pozzolanic
reaction between the micro-silica particles and portlandite is slow; therefore, concrete mixes
made with the silica fume develop strength over a long period and demonstrate high net
gains in the strength between 28 and 90 days.
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Figure 8. Net change in compressive strength due to silica fume and coir addition.

The incorporation of coir fibers led to notable reductions in the compressive strength
of HSC. Compressive strength was reduced by about 4%, 15%, and 17%, respectively, due
to the incorporation of 1%, 1.5%, and 2% coir. These reductions can be blamed on the two
factors: (1) the density of coir is considerably smaller compared to the concrete and binder
matrix; (2) fiber accumulation may increase the porosity of concrete. Fiber-reinforcement
is not as effective in compression as it is in splitting tensile strength and flexural strength.
Similar to coir, industrial polypropylene and polyvinyl fibers, due to their lower density,
have also exhibited negative effects on the compressive strength [15,74,75].

Low-density fibers may also act as the voids in concrete, such that increasing the coir
content is anticipated to increase the porosity of concrete. Previous studies have confirmed
both positive and negative effects of coir on the compressive strength [31,76]. The findings
of this study are in agreement with Ramli et al. [50], who studied the HSC with different
contents of coir. Meanwhile, the positive effects of coir were observed on the compressive
strength of lightweight concrete [77,78]. As lightweight concrete (with densities of 1050
and 1350 kg/m3) is not sensitive to the incorporation of low-density coir content, thus the
confinement effect of fibers demonstrated an increase in compressive strength. It is also
postulated that the HSC family is highly sensitive to the strength reduction owing to the
coir addition as compared to lower strength class families, i.e., MSC, NSC, lightweight
concrete, etc. Silica fume controlled some of the negative effects of coir addition on the
compressive strength of HSC. This could be credited to the strengthening of the concrete
matrix owing to the pozzolanic reactions. Silica fume may also solidify the bond between
the fibers and concrete matrix.

3.2. Shear Strength

The effect of varying contents of coir and silica fume on the bi-surface shear strength
of HSC is illustrated in Figure 9. The results demonstrated that both silica fume and
coir positively affected the shear strength of concrete. The incorporation of 5% and 10%
silica fume led to a 14.9% and 8.7% increment in the shear strength of plain concrete.
These improvements have been credited to the microstructural growth caused by the
reaction between portlandite and high active micro-silica particles. The silica fume addition
influences compressive and tensile properties similarly, as both properties mainly depend
on the development and density of the microstructure.



Materials 2022, 15, 2616 11 of 21

Materials 2022, 15, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 8. Net change in compressive strength due to silica fume and coir addition. 

3.2. Shear Strength 
The effect of varying contents of coir and silica fume on the bi-surface shear strength 

of HSC is illustrated in Figure 9. The results demonstrated that both silica fume and coir 
positively affected the shear strength of concrete. The incorporation of 5% and 10% silica 
fume led to a 14.9% and 8.7% increment in the shear strength of plain concrete. These 
improvements have been credited to the microstructural growth caused by the reaction 
between portlandite and high active micro-silica particles. The silica fume addition influ-
ences compressive and tensile properties similarly, as both properties mainly depend on 
the development and density of the microstructure. 

  
(a) (b) 

Figure 9. Effect of silica fume and coir incorporation on (a) 28 days’ bi-surface shear strength of 
HSC; (b) net change in the bi-surface shear strength of HSC compared to SF0/CF0. 

The incorporation of coir proved to be extremely useful in enhancing the shear 
strength of HSC. The shear strength of SF0/CF0 or control mix was increased by 39.3%, 

0

3

6

9

12

15

SF
0/

C
F0

SF
5/

C
F0

SF
10

/C
F0

SF
0/

C
F1

SF
5/

C
F1

SF
10

/C
F1

SF
0/

C
F1

.5
SF

5/
C

F1
.5

SF
10

/C
F1

.5
SF

0/
C

F2
SF

5/
C

F2
SF

10
/C

F2

Bi
-s

ur
fa

ce
 s

he
ar

 s
tre

ng
th

-B
s

(M
Pa

)

0.0

14.9

8.7

39.3

52.5
45.3

59.0

70.0
61.5

45.5
53.2

49.5

0

15

30

45

60

75

90

SF
0/

C
F0

SF
5/

C
F0

SF
10

/C
F0

SF
0/

C
F1

SF
5/

C
F1

SF
10

/C
F1

SF
0/

C
F1

.5

SF
5/

C
F1

.5

SF
10

/C
F1

.5

SF
0/

C
F2

SF
5/

C
F2

SF
10

/C
F2

N
et

 c
ha

ng
e 

in
 B

s 
(%

)
Figure 9. Effect of silica fume and coir incorporation on (a) 28 days’ bi-surface shear strength of HSC;
(b) net change in the bi-surface shear strength of HSC compared to SF0/CF0.

The incorporation of coir proved to be extremely useful in enhancing the shear strength
of HSC. The shear strength of SF0/CF0 or control mix was increased by 39.3%, 59%, and
45.5%, respectively, at 1%, 1.5%, and 2% contents of coir. As coir filaments possess high
tensile strength, these can effectively supplement the shear resistance of the plain HSC
matrix. Similar to industrial fibers, i.e., glass, polypropylene, and steel fibers [79,80], coir
is also beneficial to the shear strength of the plain matrix. However, the contribution of
coir to the shear strength is smaller compared to those observed in the case of industrial
fibers [79]. This could be because of the weaker bond between organic fibers and binder
compared to the bond of industrial fiber with the binder. Fiber reinforcement did not only
improve the peak strength of concrete but also increased the energy absorption capacity
under the shearing stress [80].

The shear strength of HSC was improved by more than 70% (w.r.t SF0/CF0), due to
the incorporation of 5% silica fume and 1.5% coir. The results of the mixes made with
the combined incorporation of silica fume and coir demonstrated that the benefits of coir
and silica fume can be combined to obtain a higher shear strength. However, synergistic
behavior was not observed due to the combined incorporation of coir and silica fume.

The relationship between the compressive strength (fc) and bi-surface shear strength
(Bs) is shown in Figure 10. The correlation of Bs with fc

0.5 was derived as the function of
coir percentage (CP). As the ratio between fc and Bs (i.e., Bs/fc) for plain and coir-reinforced
mixes are significantly different, the relationship between these two parameters was derived
as the function of CP. The value of Bs/fc

0.5 also indicates the ductility of concrete. The
increase in the Bs/fc

0.5 value with the rising CP implies an increase in ductility. A strong
linear correlation is found between CP and Bs/fc

0.5, as the coefficient of the determination
value is 0.827. Thus, using fc, the value of Bs can be predicted with good accuracy at a
required CP.

3.3. Splitting Tensile Strength

The effect of coir and silica fume incorporation on the 28-day splitting tensile strength
of HSC is shown in Figure 11. The incorporation of silica fume exhibited minor improve-
ments of 5–9% in the splitting tensile strength. Plain mixes containing 5% silica fume
demonstrated higher tensile strength than those containing 10% silica fume. A higher
percentage of silica fume demonstrates higher strength at the later ages, as shown in the
results of compression testing at 90 days. Generally, the incorporation of silica fume is
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useful to the tensile strength of concrete owing to the pozzolanic reactions between free
portlandite and micro-silica particles.
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Figure 11. Effect of silica fume and coir incorporation on (a) 28-day splitting tensile strength of HSC;
(b) net change in the splitting tensile strength (f ct) of HSC compared to SF0/CF0.

With the variation in dosage, the coir reinforcement exhibited alternating effects on
the splitting tensile strength. The incorporation of 1% and 1.5% coir contents improved the
tensile strength of plain HSC by 6% and 4%, respectively. Whereas, the 2% coir exhibited
the reduction in the tensile strength value of w.r.t plain HSC. The positive effect of low
contents of coir on the tensile strength can be credited to a nominal increase in the crack-
bridging capacity of concrete. Whereas, at higher contents, the splitting tensile strength of
HSC decreased, probably due to the increasing issue of the accumulation of coir filaments.
This can significantly reduce the porosity of concrete, as well as the efficiency of fiber
reinforcement. Ahmad et al. [31] observed an optimistic net gain of 20% in the splitting
tensile strength of HSC at 1.5% coir content. Literature [50,81] also confirmed the negative
effects of higher contents of coir on the short-term and long-term mechanical properties
of concrete.
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It is worth mentioning here, that similarly to synthetic fibers, the coir reinforcement
shows a positive influence on the ductility of concrete. Unlike plain HSC, the failure of
coir-reinforced mixes is delayed by the bridging effect of fibers, as shown in Figure 12.
Despite nominal contributions towards the peak tensile strength, coir advances the ductility
of concrete by delaying the onset of failure. The residual tensile strength of fiber-reinforced
HSC was notable after the application of the peak load.
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The mixes made with the combined addition of silica fume and coir demonstrated
superior tensile strength compared to the mixes with the individual incorporation of silica
fume and coir. Furthermore, the net effect of combined incorporation of silica fume and coir
on splitting tensile strength was greater than the sum of net effects due to the individual
incorporation of silica fume and coir, as shown in Figure 11b. The bond strength of coir
with concrete is anticipated to be improved due to the strengthening of the binder matrix
with the silica fume addition. The dispersion of fibers may also be improved with the
use of silica fume as a partial replacement of cement. The efficiency of coir reinforcement
increased with the increasing level of silica fume. The fiber-reinforced mixes containing 10%
silica fume yielded higher tensile strength than the mixes with 5% silica fume. The increase
in the dispersion of fibers and bond strength with the silica fume addition improves the
transfer of tensile stresses from the plain concrete matrix to the fiber reinforcement [82].

3.4. Ultrasonic Pulse Velocity (UPV)

Indirect assessment of the quality of concrete is usually done by conducting a UPV test.
The values of UPV can be linked with the accurate strength and density of concrete. UPV
values ranging between 3.5 km/s and 4.5 km/s indicate a good quality concrete, while UPV
values above 4.5 km/s indicate excellent quality of concrete [83]. Usually, HSC concrete
families exhibit UPV values for excellent quality. The results of UPV testing are illustrated
in Figure 13. Silica fume improves the quality of concrete by advancing its strength and
density. Thus, all mixes incorporating silica fume with and without coir exhibited UPV
values higher than 4.5 km/s. Fine particles of silica fume increase the CSH gel responsible
for the strength enhancement and reduce the porosity of concrete by the filler action. This
leads to a faster propagation of ultrasonic waves through the concrete media.
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Figure 13. Effect of silica fume and coir reinforcement on the ultrasonic pulse velocity (UPV) of HSC.

A decline in the UPV value of HSC was noticed with the increasing coir content.
These reductions in the UPV can be primarily caused by the introduction of a low-density
material in concrete. Furthermore, the increasing number of interfacial transition zones
(ITZs) within a concrete mass is also found to negatively influence the UPV value [84]. The
UPV value reduces by 10% when 2% coir content is used in HSC. This demonstrates that
the incorporation of coir can reduce the quality of concrete.

The incorporation of low-density synthetic fibers has also demonstrated a minor
decline in the UPV of concrete [85]. Das et al. [86] showed that the incorporation of a
1% volume fraction of polypropylene fiber reduces the UPV of NSC by 3.2%. However,
in this study, a higher degradation in the UPV was observed because of the absorbent
nature of coir. During the mixing, coir can absorb water from the fresh concrete, and this
may cause shrinkage problems within the filament of fibers. The reductions in the size
of filaments can increase the porosity and micro-channels inside the concrete. Thus, the
coir incorporation demonstrated a negative effect on the UPV of HSC. The silica fume
minimized or compensated the loss in UPV due to coir incorporation. Owing to the silica
fume addition, mixes made with 1.5% and 2% coir exhibited UPV values corresponding to
excellent quality. The positive effect of silica fume on the UPV and quality of cementitious
materials is also reported in the literature [87,88]. As both compressive strength and UPV
are related to the density and the hydration of cementitious compounds, both of these
parameters can be correlated with high accuracy, as shown in Figure 14. The change in the
density and porosity of concrete due to the incorporation of silica fume and coir similarly
affects the compressive strength and UPV; thus, both of these parameters are linearly
proportional to each other with a good value of the coefficient of determination (R2 > 0.85).

3.5. Water Absorption Capacity

The durability of concrete structures is directly affected by the transport of water into
the microstructure of concrete. The water absorption capacity indicates the permeable
porosity of concrete. The permeable pore volume in concrete is affected by the connectivity
and tortuosity of pores inside the concrete media. A water absorption test was conducted
on the samples cured for 28 days. The effect of the different contents of silica fume and coir
on the water absorption capacity of concrete is shown in Figure 15.

It was observed that the increase in silica fume content from 0% to 10% reduced
the water absorption capacity of HSC by 32%. The decrease in the water absorption is
due to the decline in the connectivity of pores. Silica fume refines the size of pores and
increases the tortuosity between pore connections. This ultimately reduces and slows
the absorption of water into the microstructure of concrete. Furthermore, the reaction
between free portlandite and silica generates dense CSH gel to enhance the impenetrability
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of concrete. The water absorption capacity of concrete was increased by 5%, 11%, and 33%
due to the incorporation of 1%, 1.5%, and 2% coir by wt. of binder, respectively. Fiber
reinforcement is known to increase the permeability and absorption of concrete due to the
increased interaction between pores [89,90]. Although fiber reinforcement provides control
over the drying, shrinkage and cracking in the binder matrix [10], it can also increase the
porosity due to the accumulation of filaments inside the concrete.
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Figure 15. Effect of silica fume and coir reinforcement on the water absorption capacity of HSC.

Owing to the positive effect of silica fume, the water absorption of coir-reinforced
mixes is significantly controlled. All mixes containing silica fume with or without coir
fibers exhibited water absorption capacity more than that of the plain HSC. The growth of
more CSH gel due to a pozzolanic reaction can reduce the gap between the fiber filaments
and matrix, consequently leading to the restriction of water transport.

3.6. Depth of Chloride Ion Penetration

The permeability of chloride ions in concrete causes the corrosion of steel rebars in
reinforced concrete structures. Thus, it is convenient to study the chloride ion permeability
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of concrete families for the assessment of durability. The permeability of chloride ions into
concrete is highly influenced by similar factors that influence water permeability, i.e., pore
size, pore connectivity, etc. The effect of varying coir and silica fume contents on the
chloride ion penetration depth (CPD) of HSC concrete is shown in Figure 16.
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Figure 16. Effect of silica fume and coir reinforcement on the chloride ion penetration of HSC.

It was noticed that the incorporation of coir increased the CPD value. An increase of
66% in the CPD was observed when 2% coir reinforcement was incorporated into the plain
HSC. As coir reinforcement makes the HSC more permeable, it allows a deeper penetration
of the chloride-bearing solution into the concrete. Unlike coir reinforcement, silica fume
incorporation drastically reduced the CPD. The incorporation of 5% and 10% silica fume
by mass of cement reduced the CPD by 50% and 63%, respectively. The CPD value reduces,
as the porosity and permeability of concrete are reduced by the silica fume incorporation.
The literature [1,89,91] has exhibited that the incorporation of mineral admixtures is highly
useful in enhancing the permeability-related durability properties of concrete. Besides
improving the long-term mechanical strength, the mineral admixtures owing to the filler
effect demonstrate a positive effect on improving the imperviousness of concrete from an
early age. Thus, silica fume also controls the negative effects of coir on the CPD of HSC.

3.7. SEM Image Analysis

SEM images of coir reinforcement in the binder paste were analyzed, see Figure 17.
The small chunks of hardened binder pastes containing coir were derived from the samples
cured for 56 days in tap water. It can be observed that the coir filaments exhibited little or
negligible change in volume upon drying. Under the crushing action on the binder sample,
some fibers exhibited breaking failure and some exhibited a bonding failure. As can be
noticed, some coir filament remained undamaged after extraction; this was the indication
that the binder matrix was weaker than the coir, and the coir filament had a higher tensile
strength or a short embedded length. Meanwhile, coir can also be observed splitting due to
the action of tensile loading on the paste samples. The variance in the failure forms of coir
filaments can also be caused by the variation in the embedment lengths of fibers across a
contained crack. As under the most common circumstances, the embedment length of fiber
is divided unevenly across a crack, thus the failed surface with a long embedment length
will tend to cause a splitting fracture of fiber. Whereas the fractured surface containing a
short length of filament will most possibly exhibit a pullout failure. The observation of
ITZ between coir filament and hardened paste demonstrated that there was little space
between fiber and matrix. This little gap is suspected to have been developed due to the
pulling action of fibers or due to the minor shrinkage of fibers. SEM images also showed
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that the crack propagation is stopped by the introduction of coir. This proves that coir
reinforcement is important to the fracture toughness of HSC.
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4. Conclusions

In this study, the effect of varying contents of coir and silica fume was investigated on
the properties of HSC. The following are the main conclusions of this study:
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• The coir reinforcement demonstrated a negative effect on the compressive strength of
HSC. Silica fume helped in controlling the negative effect of coir on the compressive
strength of concrete.

• The shear strength of HSC improved drastically with the addition of both silica fume
and coir. The maximum increase of about 45.5% in shear strength of HSC was observed
upon the addition of 2% coir without silica fume. With 5% silica fume and 1.5% coir,
the shear strength of HSC was increased by 70% compared to that of the plain HSC.

• The splitting tensile strength demonstrated a nominal change with the varying contents
of coir. A maximum splitting tensile strength, about 6% higher than that of the plain
HSC, was observed at 1% coir content. Higher contents of coir negatively affected the
splitting tensile strength.

• The addition of silica fume with coir exhibited synergistic behavior in the results of
splitting tensile strength, as silica fume improves the bond strength of fiber filaments
by strengthening the binder matrix.

• The incorporation of low-density coir in the plain concrete reduces the UPV. However,
CF-reinforced mixes containing silica fume exhibited higher UPV values compared to
those without silica fume.

• The incorporation of coir drastically increased the water absorption and CPD in
plain HSC. Silica fume controlled the negative effects of coir incorporation on the
permeability-resistance of HSC.

• SEM observations indicate a minor shrinkage in coir filaments, which might have
increased pore connectivity. Furthermore, both pullout and breaking types of failures
were observed for coir filaments.

• Based on the results of mechanical performance, 1% coir by wt. of binder can produce
higher net gains in tensile and shear strength. For further enhancement of mechanical
and durability performance of coir-reinforced HSC, the inclusion of 5% silica fume
yields the best results.
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