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Abstract: In this work, we present the influence of the decoration of TiO2 nanotubes (TiO2-NTs) with
Ag silver nanoparticles (Ag-NPs) on the photocatalysis of emerging pollutants such as the antibiotic
diclofenac sodium. The Ag-NPs were loaded onto the TiO2-NTs by the anodization of metallic tita-
nium foils. Diclofenac sodium is an emerging pollutant target of the pharmaceutical industry because
of its negative environmental impact (high toxicity and confirmed carcinogenicity). The obtained
Ag-NP/TiO2-NT nanocomposites were characterized by X-ray diffraction (XRD), photoluminescence
spectroscopy (PL), scanning electron microscopy (SEM), transmission spectroscopy (TEM), and X-ray
photoelectron spectroscopy (XPS). In order to study the photocatalytic behavior of Ag-NPs/TiO2-NTs
with visible cold LEDs, the possible photocatalytic mechanism of antibiotic degradation with reactive
species (O2

◦− and OH◦) was detailed. Moreover, the Langmuir–Hinshelwood model was used to
correlate the experimental results with the optimized catalyst. Likewise, reuse tests showed the
chemical stability of the catalyst.

Keywords: Ag-NPs/TiO2 nanotubes; batch reactor; wastewater treatment; reactive species;
kinetic modeling

1. Introduction

Pharmaceuticals are undoubtedly one of the major advances in modern medicine.
Nowadays, they are widely prescribed in humans and animals, both for curative and
preventive purposes. However, excessive use can lead to the emergence of resistant
bacteria through mechanisms such as (i) enzymatic degradation of antibacterial drugs,
(ii) alteration of bacterial proteins that are antimicrobial targets, and (iii) modification in
membrane permeability to antibiotics [1–3]. In addition, these substances are not completely
metabolized by organisms. The immediate consequence is that a certain unmetabolized
amount ends up directly in the soil and in surface water [4,5].

Thus, the sources of pharmaceutical substances in the environment are hospital and
domestic discharges, which end up in wastewater treatment plants where they are not
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completely degraded and therefore discharged into surface water. The concentrations in
the receiving environment can thus vary according to the biodegradability of the molecules
as well as the capacity of the water treatment stations to eliminate or transform them, as
these are designed and mainly sized to treat the so-called physicochemical parameters
“conventional” (suspended solids, BOD5, DCO, nitrogen, phosphorus) [5]. The immediate
consequence of such a situation is that for the past fifteen years, drug residues have been
found in river water because some treatment plants are still not equipped with effective
processes to retain or degrade them [6–10].

To date, several emerging and promising technologies provide a solution to this
problem. Among these, the heterogeneous photocatalysis with visible light reveals inter-
esting prospects in terms of degradation/mineralization of compounds, with low energy
consumption. Recent studies on model pharmaceutical compounds indicate that this
technology has been explored and developed.

In the past decade, titanium dioxide (TiO2) has been one of the most studied materials
thanks to its unique chemical and physical properties, including its high chemical stability,
high resistance to photo corrosion, and its low cost [11]. Nanostructured TiO2 has also
been used in many applications such as sensors [12], photocatalysis [13–16], and solar
energy conversion [17]. TiO2 nanotubes have attracted particular attention because of
their high specific surface area [18], high photoactivity [19], and the rapid transfer rate
of holes and electron–hole pairs (e−/h+) photogenerated along the nanotubes [20–22].
However, two major factors limit the performance of TiO2. On the one hand, due to its
wide forbidden energy band (3.2 eV for anatase TiO2), the optical absorption of TiO2 is
limited to the UV spectrum. On the other hand, the photogenerated (e−/h+) pairs exhibit
a high rate of recombination due to a high density of crystal defects [23]. To overcome
these problems, many strategies have been established, such as doping TiO2 (metallic or
non-metallic dopants) [13,17] and coupling with other semiconductors [19,20,24], which
could expand absorption under visible light and improve the lifetime of the photogenerated
(e−/h+) pairs. Recently, it has been shown that the decoration of TiO2 nanotubes with
noble metal nanoparticles can increase their absorption in the visible range, thanks to the
surface plasmon resonance (SPR) [25] induced in the metallic nanoparticles in the presence
of a light wave. The SPR of the noble metal can be adjusted by controlling the size, shape,
and dispersion of the nanoparticles. Nanoparticles of silver (Ag) are used to improve the
photoactivity of TiO2 nanotubes due to the favorable arrangement of the energy level,
which allows the electrons excited by SPR on the Ag nanoparticles to be transferred into the
TiO2 nanotubes in the presence of visible light. In addition, chemical pathways have been
used to decorate TiO2 nanotubes with Ag nanoparticles. However, using these techniques
cannot control the size and shape of Ag nanoparticles, which can easily accumulate. In
addition, the organic agents employed in the growth of Ag nanoparticles can affect the
electrical and optical properties of the composite.

In this work, Ag nanoparticles were deposited onto TiO2 nanotubes using the pho-
toreduction process, which allows the size of nanoparticles to be controlled by adjusting
the UV irradiation time. TiO2 nanotubes decorated with Ag nanoparticles were used
as photoanodes in a photoelectrochemical system, showing a significant improvement
in photo-conversion efficiency. Moreover, nanotubes (TiO2-NTs) decorated with Ag sil-
ver nanoparticles (Ag-NPs) were used for the photocatalytic degradation of emerging
pollutants, such as the antibiotic diclofenac sodium, with visible cold LEDs.

2. Setup

The samples were 99.99% purity metal (Ti) plates with a surface area of 2 × 1.5 cm2

and a thickness of approximately 0.5 mm. They had identical characteristics to maximize
the probability of the same results. In order to achieve surface activation and to avoid any
adhesion problems, the samples were first polished using abrasive papers with different
grain sizes: 320, 400, 600, 800, 1000, 1200, and 2000. Next, the samples were rinsed with
acetone, ethanol, and then bi-distilled water for 10 min in an ultrasonic bath to remove
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impurities and foreign materials introduced in the polishing step. Finally, the samples were
air-dried for some time. Electrochemical experiments were conducted in the laboratory
at room temperature. All samples were prepared by anodic oxidation under identical
experimental conditions. This was performed in an electrolyte cell containing 100 mL
ethylene glycol, 1% ammonium fluoride (NH4F), and 2% water (H2O). The anodization
was 120 min in duration under a fixed voltage of 60 V at a temperature maintained at
approximately 25 ◦C. The samples obtained were calcined for 1 h at 400 ◦C.

The photoreduction method consists of immersing the TiO2 nanotubes in a solution of
silver nitrate (AgNO3) of 0.1 M concentration for 24 h in the dark to allow the silver ions
to be adsorbed on the TiO2 surface. Afterward, the samples were rinsed with water and
then immersed in methanol under UV illumination (λ = 256 nm) for 10 and 20 min. Under
the effect of UV radiation, silver ions (Ag) reduce to metallic form. By increasing the UV
irradiation time, Ag nanoparticles increase in size and form agglomerates [1].

The synthesized catalysts were placed in Petri dishes containing the antibiotic solution
to be treated. The catalysts were illuminated by visible cold LEDs. This experimental setup
is shown in Figure 1. Antibiotic concentration was also monitored by spectrophotochem-
istry at 270 nm.
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Figure 1. The micro-reactor in a Petri dish used for the treatment of antibiotics by photocatalysis.

Photo-degradation experiments were performed in order to estimate the catalytic
efficiencies of TiO2-NTs and Ag-NPs/TiO2-NTs at various deposition times (10 min, 20 min).
The experimental setup consisted of the catalysts (dimensions: 1.2 × 2.5 cm) placed in the
photocatalytic batch reactor. An initial antibiotic concentration of 1 mg/L was studied.
The lamp was lighted after reaching the adsorption–desorption equilibrium between the
catalyst and the antibiotic. For this reason, the reactor containing the assembly was kept in
the dark for 1 h before lighting the lamp.

3. Results and Discussion
3.1. Characterizations of Ag-NPs/TiO2-NTs

Scanning electron microscopy (SEM, TESCAN VEGA3) was carried out to visualize
the nanostructured morphologies of samples. The elemental analysis of samples was
determined by energy-dispersive X-ray spectroscopy (EDS). The TEM and HRTEM images
were obtained with the FEI Tecnai G20 microscope operating at 200 kV and equipped with
the LaB6 filament. The X-ray photoelectron spectroscopy (XPS) measurements were carried
out using a Jeol JPS-9200 photoelectron spectrometer with an achromatic Mg/Al X-ray
source at 500 W. The spectra excitations were performed using Mg Kα radiation (1253.6 eV).
During XPS data acquisition, the C1s (285.0 eV) peak was used as a reference to correct
XPS data from sample charging. The X-ray diffractometer (Cu Ka radiation, λ = 1.5406 Å,
PANalytical B.V., Almelo, The Netherlands) was used to identify the crystalline structure
and the Pt nanoparticles phase. The photoluminescence (PL) spectra were recorded with a
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PerkinElmer spectrophotometer equipped with a xenon lamp at an excitation wavelength
λ = 340 nm.

Scanning Electron Microscopy (SEM)

Figure 2 shows SEM images of TiO2 nanotubes decorated with Ag nanoparticles
obtained with 10 min and 20 min pulse durations. The TiO2-NTs, without metallic nanopar-
ticles, were vertically aligned on titanium substrates. These nanotubes had a diameter
of around 100 nm and a length of around 15 µm (inset Figure 2a). We note the presence
of small, uniformly dispersed Ag nanoparticles, and a few aggregates at the top of the
nanotubes. The images show a nano-tubular structure with an average diameter of 150 nm.
The Ag nanoparticles are very small in size, so they are not observable with SEM.

Materials 2022, 15, x FOR PEER REVIEW 4 of 13 
 

 

identify the crystalline structure and the Pt nanoparticles phase. The photoluminescence 

(PL) spectra were recorded with a PerkinElmer spectrophotometer equipped with a xenon 

lamp at an excitation wavelength λ = 340 nm. 

Scanning Electron Microscopy (SEM) 

Figure 2 shows SEM images of TiO2 nanotubes decorated with Ag nanoparticles 

obtained with 10 min and 20 min pulse durations. The TiO2-NTs, without metallic 

nanoparticles, were vertically aligned on titanium substrates. These nanotubes had a 

diameter of around 100 nm and a length of around 15 μm (inset Figure 2a). We note the 

presence of small, uniformly dispersed Ag nanoparticles, and a few aggregates at the top 

of the nanotubes. The images show a nano-tubular structure with an average diameter of 

150 nm. The Ag nanoparticles are very small in size, so they are not observable with SEM. 

 

Figure 2. Typical SEM images of TiO2-NTs (a) before and (b) after their Ag-NPs decoration at 10 min and (c) 20 min. 

The chemical composition of TiO2 nanotubes decorated with Ag nanoparticles was 

estimated by EDX. Figure 3 shows the EDX spectra of TiO2 nanotubes decorated with Ag 

nanoparticles; the atomic percentage of silver increases with photo-reduction time: 0.2 at. 

% for 10 min Ag/TiO2 and 0.3 at. % for 20 min Ag/TiO2. 

  

(a) (b) 

Figure 2. Typical SEM images of TiO2-NTs (a) before and (b) after their Ag-NPs decoration at 10 min
and (c) 20 min.

The chemical composition of TiO2 nanotubes decorated with Ag nanoparticles was
estimated by EDX. Figure 3 shows the EDX spectra of TiO2 nanotubes decorated with Ag
nanoparticles; the atomic percentage of silver increases with photo-reduction time: 0.2 at. %
for 10 min Ag/TiO2 and 0.3 at. % for 20 min Ag/TiO2.

The TiO2-NTs adorned with Ag-NPs were examined by TEM (Figure 4) to verify the
presence of Ag-NPs in the TiO2-NTs. A drop of Ag-NPs/TiO2-NTs dispersed in solution
was applied to the TEM holey carbon grids.

Figure 4a reveals the presence of arbitrary shapes of Ag-NPs on the TiO2-NTs’ surface.
Figure 5 shows the X-ray diffractograms of pure TiO2 nanotubes decorated with Ag

nanoparticles annealed at 400 ◦C. All samples crystallized in the anatase structure.
Here, we note that the preferential orientation peak (101) characteristic of the anatase

phase of titanium oxide continues to decrease with the increase in the deposition time of
silver nanoparticles on TiO2 nanoparticles. In addition, it is noted that all the samples
crystallize in the anatase structure, and the additional peaks characterizing Ag can only
be observed from the diffractogram of the TiO2-NTs decorated with silver NPs at 20 min;
they cannot be observed for the deposition time of less than 10 min. Indeed, below
20 min of UV irradiation, the amount of Ag incorporated is too low to be detected by this
characterization technique.

As can be seen in Figure 6, the formation of Ag species was confirmed by the XPS
results. Figure 6a exhibits an O1s peak at 530.8 eV, attributed to the oxide. The appearance
of the Ti-2p peak position at a binding energy of 459 eV (Figure 6b) proved that the main
chemical valence of Ti is +4. This finding corroborates the assigned values for anatase TiO2
in the NIST database. Figure 6c shows the typical XPS signature of the Ag 3d doublet (3d5/2
and 3d3/2) taken from the surface of the TiO2-NTs decorated with Ag-NPs. The signals at
374.3 and 368.3 eV are attributed to Ag 3d3/2 and Ag 3d5/2 of Ag-NPs, respectively.
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These energies often correspond to the metal silver [26], proving the fully metallic
character of the used Ag-NPs. This result confirms the effectiveness of the photoreduction
process used in the preparation step.

The photoluminescence (PL) of TiO2-NTs can inform us about the lifespan and trans-
port of photogenerated charges. Figure 7 shows the photoluminescence spectra of pure
TiO2-NTs decorated with Ag-NPs. The peak located at 365 nm (3.4 eV) is attributed to the
electron transition between the valence and conductive bands of TiO2. The peaks present at
459 nm, 483 nm, and 531 nm are attributed to the oxygen vacancies present on the surface
of TiO2 [27,28].
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Figure 7. Photoluminescence spectra of pure TiO2 nanotubes decorated with silver nanoparticles.

TiO2-NTs decorated with Ag-NPs exhibit a lower PL intensity compared to that of pure
TiO2, which shows that Ag nanoparticles reduce the density of radiative recombination
centers (luminescent centers). This result can be explained by the migration of electrons
photogenerated under UV radiation (λexcitation = 340 nm) from the conduction band towards
Ag nanoparticles, thus reducing radiative recombination within TiO2 [29].

3.2. Photocatalytic Experiments
3.2.1. Effect of Silver Decoration

The photocatalytic performances of Ag-NP/TiO2-NT catalysts were estimated by
photocatalytic degradation of the antibiotic under visible light irradiation at ambient
temperature. Figure 8 shows the pollutant removal using Ag-NPs/TiO2-NTs decorated by
photoreduction for 10 and 20 min. It is seen from Figure 8 that the pollutant removal was
pertinently affected by the different decoration times. In this test, it is readily seen that the
concentrations of pollutants decreased over time under visible light irradiation. Moreover,
a decoration of Ag in 10 min increased the pollutant removal from 35% to 80% of the initial
concentration of 2.5 mg/L. This enhancement is related to the availability of the generated
active sites at the interface of the catalyst deposited at 10 min [30]. However, the pollutant
degradation will tend to be limited at high time values, because these values are too high
to form multiple layers of catalysts, thus generating different ions and charges, which leads
to distinguished charges at the interfaces of thin films and coverage of all TiO2-NTs.

3.2.2. Effect of Inlet Concentration: Kinetic Modeling

A representation of the change in concentration over time for four initial concentrations
is shown in Figure 9a. As was observed, the increase in the concentration generally favors
the pollutant degradation.
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At low concentrations, the kinetics are faster [31]. This can be explained by the fact
that more molecules are “available” in the solution and that visible light accesses the
surface of the catalyst more easily, which leads to an increase in the speed of photocatalytic
degradation [32–35]. However, at high concentrations, molecules begin to act as a filter for
incident visible light, so that light hardly reaches the surface of the TiO2, resulting in slower
photocatalytic degradation [28,36–40]. This same trend has been observed by [41]. Under
visible light, electron–hole pairs were produced in the valence bands (VB) of AgO and TiO2.
Then, the photo-generated electrons passed from the valence bands to their conduction
bands (CB). At the same time, electrons can be rapidly transferred to the semiconductor
(TiO2) interface, which has been reported in Au core–Cu2O shell particles [21,25]. This
could be due to the fact that the heterojunction in Ag-AgO/TiO2 assisted the transfer of
photo-generated electrons and holes. Thus, these electrons can quickly be transferred into
the TiO2 interface and then undergo a transformation, as described below [21].

AgO/TiO2 + hV→ e− + h+ (1)

e− + h+/AgO→ e−/Ag→ e−/TiO2 (2)

O2 + e− → O2.− (3)

O2.− + 2H2O + 2e− → 3OH− + OH· (4)

H+ + H2O→ H+ + OH· (5)

Antibiotic+ O2.−/OH· → CO2 + H2O + other products (6)

To describe the Ag (10 min)/TiO2-NTs’ catalytic performance, the Langmuir–
Hinshelwood (L-H) model was used [42]:

r0 = −d[pollutant]
dt

= kc
K[pollutant]0

1 + K[pollutant]0
(7)

where r0 (mg·L−1 min−1) is the initial photodegradation rate, [pollutant] is the initial BUT
concentration (mg/L), K is the adsorption constant (L/mg), and kc is the kinetic constant
(mg·L−1 min−1) at maximum coverage of the experimental conditions.

The plot of 1/r0 versus 1/[pollutant]0 (Figure 9b) allows determining kc and K values.
The linearized (L-H) equation is:

1
r0

=
1

kcK
× 1

[pollutant]0
+

1
kC

(8)

Table 1 illustrates the kinetic and adsorption constants of L-H.

Table 1. L-H constants (kc and K) on the 10 min AgO-NPs/TiO2-NT catalyst.

kc: Kinetic Constant of L-H (mg/(L. min)) K: Adsorption Constant of L-H (L/mg)

2.9 × 10−3 2.88

3.3. Catalyst Reusability

Catalyst reusability is a major issue to look into because it measures how well a catalyst
can degrade contaminants in solution. Therefore, several visible photocatalytic experiments
were performed to examine the ability of the elaborated silver sample to degrade antibiotics
in four successive cycles.

After each degradation cycle, the 10 min Ag-NPs/TiO2-NTs were well washed and
reused. The photocatalytic findings of repetitive use (four cycles) of the 10 min Ag-NP/TiO2-
NT photocatalyst are shown in Figure 10. Figure 10 shows no loss of sample photoactivity.
These results prove the overall potential of the 10 min Ag-NP/TiO2-NT catalyst for water
treatment applications. Generally, the same slope is noted in each cycle. Consequently, these
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results shown below prove the availability of active sites and the excellent photocatalytic
stability of this catalyst.
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4. Conclusions

The titanium electrochemical anodization and the photochemical reduction of Ag-
NPs on TiO2-NTs were successfully used to create the Ag-NP/TiO2-NT nanocomposites.
Homogeneous nanotubes with a diameter of 100 nm were used to synthesize TiO2-NTs,
which were then crystallized in the anatase phase. The Ag-NP deposition was performed
at various electrodeposition times. The Ag-NPs’ adjunction to the TiO2-NTs increased
the visible light absorption until almost 500 nm. Antibiotic removal experiments were
conducted by TiO2-NTs and Ag-NPs/TiO2-NTs with various photoreduction times un-
der visible light (380–720 nm). These tests revealed a high photocatalytic efficiency. This
finding can be explained by the combination of the energy band level positions of semicon-
ductors and the high visible light absorption of Ag nanoparticles. The Ag-NP/TiO2-NT
photocatalytic system significantly improved the antibiotic degradation concerning the
TiO2-NTs alone, because of the extended photoresponse and the efficient photogeneration
of electron–hole pairs under UV/visible light. Thus, this work shows the high stability of
the Ag-NP/TiO2-NT nanocomposites under UV light irradiation.
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