
materials

Article

The Migration and Deposition Behaviors of Montmorillonite
and Kaolinite Particles in a Two-Dimensional Micromodel

Bate Bate, Chao Chen, Pengfei Liu, Chen Zhou, Xiao Chen, Shaokai Nie, Kexin Chen *, Yunmin Chen
and Shuai Zhang *

����������
�������

Citation: Bate, B.; Chen, C.; Liu, P.;

Zhou, C.; Chen, X.; Nie, S.; Chen, K.;

Chen, Y.; Zhang, S. The Migration

and Deposition Behaviors of

Montmorillonite and Kaolinite

Particles in a Two-Dimensional

Micromodel. Materials 2022, 15, 855.

https://doi.org/10.3390/ma15030855

Academic Editor: Dimitrios Papoulis

Received: 14 October 2021

Accepted: 3 December 2021

Published: 23 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Institute of Geotechnical Engineering,
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
batebate@zju.edu.cn (B.B.); chao_chen@zju.edu.cn (C.C.); hiyori@zju.edu.cn (P.L.); 112177@zju.edu.cn (C.Z.);
21712211@zju.edu.cn (X.C.); nsk@zju.edu.cn (S.N.); chenyunmin@zju.edu.cn (Y.C.)
* Correspondence: chenkexin@zju.edu.cn (K.C.); zhangshuaiqj@zju.edu.cn (S.Z.)

Abstract: The pick-up, migration, deposition, and clogging behaviors of fine particles are ubiquitous
in many engineering applications, including contaminant remediation. Deposition and clogging
are detrimental to the efficiency of environmental remediation, and their mechanisms are yet to be
elucidated. Two-dimensional microfluidic models were developed to simulate the pore structure of
porous media with unified particle sizes in this study. Kaolin and bentonite suspensions were intro-
duced to microfluidic chips to observe their particle deposition and clogging behaviors. Interactions
between interparticle forces and particle velocity profiles were investigated via computational fluid
dynamics and discrete element method simulations. The results showed that (1) only the velocity vec-
tor toward the micropillars and drag forces in the reverse direction were prone to deposition; (2) due
to the negligible weight of particles, the Stokes number implied that inertia was not the controlling
factor causing deposition; and (3) the salinity of the carrying fluid increased the bentonite deposition
because of the shrinkage of the diffused electrical double layer and an increase in aggregation force,
whereas it had little effect on kaolin deposition.

Keywords: microfluidic model; bentonite aggregates; kaolinite aggregates; clogging; spatial distribu-
tion; salinity

1. Introduction

The pick-up, migration, deposition, and clogging of fine particles in porous me-
dia are frequently encountered phenomena in different engineering fields [1]. These
applications include the injection of zero valence iron (ZVI) particles for environmen-
tal remediation [1–4], grouting [5], the piping failure of earthen dams [6], clogging and
particle loss at the interface of the capillary break layer (coarse-grained layer) and moisture-
retaining layer (fine-grained particles) in a cover system for blocking the ingress of oxygen
and meteoric water into waste landfill [7], the clogging of sandstone in methane hydrate
exploration [8], the movement of clay particles in rock and soil reducing the efficiency of oil
recovery [9–13], the propping of fractures in hydraulic fracking [14,15], and the geological
sequestration of CO2 [16,17]. ZVI particle injection has been proposed to remove heavy
metals, organochlorine, and other contaminants in groundwater and soils [1–4]. However,
its field application has been limited because of the short ZVI migration distance due to
deposition and particle clogging, i.e., only a few meters from the injection point [18]. Kaolin
and bentonite have been used to modify the surface charge and specific surface area of ZVI
particles to increase their migration distance [19,20].

The known influencing factors of the aforementioned particle movement behaviors in
porous media include the relative size of particles (compared to the pore throat geometry
of the porous media), particle shape, surficial electrical properties of porous media, and the
physicochemical properties of the carrying fluid [8,21]. The ratio of pore throat width to
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particle size (o/d) prompts the pore throat clogging phenomenon [21]. Particle blocking
and bridging could occur at o/d ratios between 1.67 and 100 (Figure S1) [22,23]. Auset
and Keller [24] reported the occurrence of pore throat clogging when o/d was less than
2.5 for a system with polystyrene latex particles (Figure 1). Cao et al. [8] used four types
of particles (silica silt, bentonite, kaolin, and mica) mixed with deionized (DI) water and
brine to find the critical o/d ratio in the range of 2.56–24. Platy-shaped particles have been
demonstrated to clog more easily than spherical particles [25]. A summary of critical o/d
ratios for clogging is shown in Figure S1.
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High ion strength reduces the thickness of the diffused electric double layer and re-
duces the repulsive force among fine particles [26], resulting in fine clay particles depositing
into and clogging the pore throats.

When gas and liquid phases coexist in a flow system in a porous medium, fine particles
can be easily adsorbed, and they accumulate at gas–liquid interfaces [27–29]. Jung et al. [30]
reported that fine particles in hydrate-bearing sediment could aggregate at the air–liquid
interface after gas production, which in turn decreased gas production efficiency. Capillary
energy potential and DLVO energy potential are key factors determining the fine particle
behavior at air–liquid interfaces [29]. In non-flowing unsaturated porous media, particles
would migrate toward interfaces to maintain a force balance [31,32] which could cause
clogging at the pore throats. In a multiphase flowing system, however, the capillary
energy potential of fine particles at air–liquid interfaces is several orders greater than the
DLVO energy potential; thus, fine particles are easily mobilized by moving air–liquid
interfaces [28].

Traditional particle migration experiments have been commonly conducted in soil
columns [33,34] as field experiments [35] and numerical simulations [36,37]. However,
such column tests limit the direct observation of real-time particle flow. On the other hand,
microfluidic models have been widely used in the direct observation of multiphase flows
in rock fissures [38], sandstone in methane hydrate exploration [8], microbial-induced
carbonate precipitation in porous media [39], and enhanced oil recovery [40].

Previous studies have focused on the clogging threshold with little attention on pick-
up and deposition behaviors, or fundamental mechanisms. The understanding of the
mechanisms of the entire processes of the pick-up, migration, settlement, and deposition of
fine particles in porous media would help predict and control the location and distribution
of fine particles. Hence, the goal of this study was to simulate the migration and clogging
behaviors of fine clay particles using a microfluidic model. The effects of different o/d
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ratios, grain size (D), position effect, and salinity of the carrying fluid were visually (by a
micromodel) and numerically investigated.

2. Materials and Methods
2.1. Fine Clay Particle Materials

Wyoming bentonite (Wyo-Ben Inc., Billings, MT, USA), kaolin I (China Kaolin Clay
Co., Ltd., Suzhou, China), and kaolin II (Aladdin, Shanghai, China) were used as fine
particles in the experiment. Particle size distribution curves (Figure 1) were measured
by a laser diffraction particle size analyzer (Mastersizer 2000, Malvern Instruments Ltd.,
Malvern, UK), with the mean particle sizes (d50) of bentonite, kaolin I, and kaolin II mea-
sured as 11.909, 8.962, and 3.283 µm, respectively. Clay particles were mixed with DI water
and saturated NaCl solution with a particle concentration of 1 g/L. Clay suspension was
driven into the microfluidic model using a peristaltic pump (Longer Precision Pump Co.,
Ltd., Baoding, China).

2.2. Micromodels

Two-dimensional (2D) polydimethylsiloxane (PDMS) microfluidic chips
(20 mm × 10 mm, length × width) (Figure 2b) were manufactured by the soft lithography
technique. First, a silicon wafer and SU-8 photoresist were used to fabricate the mold with
patterns designed to represent a simplified sand matrix (Figure 2c). Subsequently, liquid
PDMS was poured over the mold. After solidification and hardening, PDMS was bonded
to a glass slide by oxygen plasma [41]. The diameter of micropillars (D) was uniform in a
single chip but varied across different chips (200, 250, 500, 1000, and 2000 µm, respectively).
The pore throat width (o) of each chip was 20, 40, 60, 83, 100, 207, 414, and 830 µm, respec-
tively. The micropillars measured 50 µm in height. The microfluidic chip patterns were
centrosymmetric. Each chip had an inlet and outlet, both with binary tree-like structures,
designed to ensure a uniform flow field.
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Figure 2. The illustration of microfluidic experimental devices: (a) composition of experimental
equipment; (b) microfluidic chip; and (c) internal structure of microfluidic chip. D—micropillar
diameter; o—pore throat width; h—deposition height.

2.3. Experimental Methods

The experimental setup is illustrated in Figure 2. A peristaltic pump was used to
drive the suspension from the beaker into the microfluidic chip at a constant flow rate of
200 µL/min. A mechanical stirrer was adopted and operated throughout the experiment
to prevent the settling of particles before pumping.

Microfluidic chips were cleaned using an ultrasonic cleaner with ethanol for 20 min,
followed by DI water for another 20 min before each test. Before the clay suspension
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injection, DI water was pumped into the microfluidic chip to saturate the pore space. Due
to the low permeability of PDMS, the trapped air could be discharged at a higher flow rate.
The clay suspension was injected into microfluidic chips with various pore throat widths.

In addition, an inertial effect can be described by the Stokes number (Stk):

Stk =
ρpd2v
18µD

(1)

where ρp is the particle mass density; d indicates the migration particle diameter; v denotes
fluid velocity; µ is the fluid viscosity; and D is the micropillar diameter. A low Stokes
number suggests that particles follow fluid streamlines (perfect advection), while a large
Stokes number indicates the fact that particles are dominated by the inertia, and continue
along their initial trajectory.

The flow of the clay suspension and deposition of clay particles were observed using
an inverted microscope (Ti2-U, Nikon Corp., Tokyo, Japan) and recorded using a CMOS
camera (Zyla 4.0, Andor Technology, Belfast, UK). Images were taken when the clay sus-
pension flow reached a steady state. All experiments were conducted at room temperature
(20 ◦C).

o/d ratios were 1.70 to 69.70 for bentonite, 2.23 to 92.61 for kaolin I, and 6.09 to 252.82
for kaolin II.

The pore fluid influences the electrical diffuse layer near the surface of fine particles;
therefore, the stability of the suspension can be maintained by the combined effect of the
van der Waals force between particles and the repulsive force of the diffused electric double
layer (DLVO theory) [42,43]. In the DLVO theory, the thickness of the diffused electric
double layer (θ) can be expressed by the following formula [44,45]:

θ =

√
ε0k

2e2
0Nav

·
√

κT
cz2 (2)

where ε0 = 8.85× 10−12 F/m indicates the permittivity of free space, k = 1.38× 10−23 J/K is the
Boltzmann’s constant, e0 = 1.02× 10−19 C denotes the electron charge, Nav = 6.022× 1023 mol−1

is Avogadro’s number, κ indicates the real permittivity of fluid (F/m), T represents the
absolute temperature (K), c denotes the bulk fluid concentration (mol/L), and z represents
the ionic valence.

2.4. Image Processing

An image analysis program written in Matlab R2018a was developed to quantify the
height of clay particle depositions. The major processes were as follows. First, images were
grayed, and appropriate thresholds were selected to ensure that the particle deposition
profile in the binary image was consistent with that in the original image. The binary
images were then processed by constructing a corrosion matrix to make the images only
retain the binary image of particle deposition. Finally, the images were divided into blocks,
a block matrix was assigned to each deposition, and the deposition area and height along
the flow direction were calculated in pixels.

2.5. Numerical Simulation

Computational fluid dynamics (CFD) (Ansys Fluent) coupled with discrete element
method (DEM) simulation, based on a Hertz–Mindlin with a Johnson–Kendall–Roberts
(JKR) cohesion model [46] were developed to study the migration and deposition mecha-
nism of fine particles in 2D microfluidic chips. The numerical simulation model is shown
in Figure 3c.
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Figure 3. (a) The image captured by CMOS camera; (b) the image was binarized to calculate the
number of pixels in front of the micropillars; and (c) simplified numerical simulation model.

The fluid phase was controlled by the Navier–Stokes equation and particles were
governed by Newton’s second law:

ρ

(
∂V
∂t

+ (V · ∇V)V
)
= f −∇P + µ∇2V (3)

m
dv
dt

= ∑
i

Fi (4)

I
dΩ
dt

= ∑
i

Mi (5)

where ρ represents the density of the fluid; V represents the velocity of the fluid; t represents
time; f represents the external body force; P represents the static pressure; and µ represents
the fluid viscosity. The contact among particles could be described by a Hertz–Mindlin
with a JKR cohesion model:

FJKR = −4
√

πγE∗α
3
2 +

4E∗

3R∗
α3 (6)

δ =
α2

R∗
−
√

4πγα

E∗
(7)

where FJKR represents the cohesion force, γ represents the surface energy density, δ repre-
sents the particle overlap distance, α represents the particle contact radius, E* represents
the equivalent modulus, and R* represents the equivalent radius.

3. Results and Discussion

Deposition of clay particles was observed in front of the micropillars of the microfluidic
chips after the clay suspension was pumped into the microfluidic chips. When the o/d was
low, clogging also occurred at the pore throats. Four factors contributed to the deposition
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and clogging behaviors, namely the salinity of the carrying fluid, the specific o/d ratios,
the micropillar diameter (D), and the distance along the flow direction.

3.1. Effect of Suspension Salinity

When the DI water was used as the carrying fluid, bentonite showed almost no
deposition in front of the micropillars. When 1 mol/L or 2 mol/L of NaCl solution was
used as the carrying fluid, the deposition of bentonite particles was significant (Figure 4a,b).
At a constant flow rate of 200 µL/min in an NaCl solution and DI water, the bentonite
particle migration experiment was repeated three times, and the accumulation height,
volume and distribution were similar.
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Figure 4. (a) 1 g/L Wyoming bentonite in saturated NaCl solution; (b) 1 g/L Wyoming bentonite in
DI water; (c) Kaolin II in saturated NaCl solution; (d) Kaolin II in DI water; (e) Kaolin I in saturated
NaCl solution; (f) Kaolin I in DI water; (g) Zeta potential values in different salinities. Flow direction:
from left to right.

Three main forces control the stability of a clay suspension, namely van der Waals
attraction, electrostatic repulsion, and the drag force caused by the flow [2].

When bentonite formed a suspension in DI water, the two forces could be balanced to
form a substantially stable suspension. While bentonite was added to the brine, the high
concentration of electrolyte compressed the thickness of the diffused electric double layer.
As the electrostatic repulsion decreased, van der Waals forces became dominant, resulting
in the deposition of particles inside the chips.

The strength of repulsion or attraction between fine particles in the solution was
measured by zeta (ζ) potential; the zeta potential values of clay suspension in different
salinities are illustrated in Figure 5c. As observed, the absolute values for Wyoming
bentonite decreased in value with the increasing salinity. The zeta potential of the initial
suspension is −30.7 mV, implying that bentonite particles had good suspension stability
in DI water. The zeta potential (in absolute value) decreased to −14.5 mV in 2_M NaCl
solution; meanwhile, the bentonite suspension became unstable, and the bentonite particles
were aggregated and easily deposited. Salinity, however, had little effect on the zeta
potentials for kaolin I and kaolin II. This was consistent with the deposition behaviors of
kaolin in the microfluidic chips, which did not change with salinity (Figure 4c,d).
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Figure 5. Images of fine clay particles with DI water clogging at pore throats in microfluidic chips:
(a) Wyoming bentonite clogged at pore throats (o = 20 µm); (b) Kaolin I clogged at pore throats (o
= 83 µm); (c) Kaolin II clogged at pore throats (o = 40 µm); and (d) the clogging and non-clogging
boundaries of three kinds of fine clay particles.

The diffused electric double layer thickness between bentonite particles was com-
pressed by NaCl, making it easier for the particles to be deposited and form aggregates,
whereas NaCl had little effect on kaolin behavior. Bentonite particles require higher concen-
trations than those in brine to induce clogging in line with the Sogami-Ise model because
bentonite particles do not readily cluster in the absence of positive ions in the water [47].

To explore the particle size variation range under different salinities, the average sizes
of three kinds of clay were measured by Zetasizer Nano ZS90 (Malvern). The average sizes
are listed in Table 1. The average size of Wyoming bentonite with DI water is approximately
a quarter of that with 1 mol/L and 2 mol/L NaCl solution. The average size of kaolin I
also increased with an increase in salinity, but kaolin II did not significantly change. This
particle size variation is consistent with the deposition results shown in Figure 5. Notably, a
certain difference between the average particle size data in Table 1 and the data in Figure 2
exists because different particle size measurement methods were used.

Table 1. Average size of Wyoming bentonite, kaolin I (China Cay), and kaolin II (Aladdin) particles
with DI water, 1 mol/L, and 2 mol/L NaCl solution.

Carrying Fluid
Clay Wyoming Bentonite Kaolin I (China Cay) Kaolin II (Aladdin)

DI water 1.16 µm 1.28 µm 0.92 µm
1 mol/L NaCl 4.31 µm 2.55 µm 1.35 µm
2 mol/L NaCl 4.11 µm 2.30 µm 1.05 µm

3.2. Particles Clogging at the Pore Throats

Local clogging was observed at certain o/d ratio values, however, the complete
clogging of the entire porous media was not observed. The critical clogging o/d ratios
of Wyoming bentonite, kaolin I, and kaolin II were observed to be 2.52, 10.21, and 15.23,
respectively (Figure 5). Particles clogged at pore throats when the pore throat width was
less than 20 µm for Wyoming bentonite (Figure 5a), 83 µm for kaolin I (Figure 5b), and
40 µm for kaolin II (Figure 5c). Analogously, at a constant flow rate of 50 µL/min and the
given pore throat-to-fine particle size ratios (o/d = 2.6–36.4), 2% fine particles in DI water
can migrate in the pore throat without bridging or clogging [48]. When o/d ratios were
larger than the critical values, particle deposition in front of micropillars and non-clogging
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were observed. The critical clogging o/d ratios of kaolin in this study were similar to the
results of Cao et al. [8], where such values for bentonite and kaolin (with a concentration
of 0.1% w/w) of 13 and 12, respectively, were reported. The critical ratio difference of
bentonite was because the particle size measured in our experiment (d50 = 11.909 µm)
was significantly larger than the particle size used by Cao et al. [8] (d50 = 2 µm). With a
high ratio of particle-to-pore throat size, low fines concentrations are required to induce
clogging [47].

In addition, the attraction between clay particles and PDMS may lead to clay particles
adsorbing onto the walls of the microfluidic system. The adsorbed particles narrow pore
throats, increase o/d ratios, and make clogging occur easier than that to glass walls [21].
Similarly, it was reported that latex particles could be attracted by PDMS walls [22].

3.3. Particle Deposition Criteria

Deposition in front of micropillars could happen when particles migrated in a mi-
crofluidic chip. CFD-DEM simulation results (Figure 6) revealed the particle deposition
process (Figure 6(a1)), as well as the contour of velocity magnitude (Figure 6(a2)) and the
velocity vector field (Figure 6(a3)). Two regions of identical shape and size were chosen
in front of a pillar (Pillar I) for force analysis: Region I was located in the front of Pillar I,
whereas Region II was above Region I (Figure 6(a1)). Particle trajectories were governed by
acting forces, including hydrodynamic force, interparticle electrical force, and gravitational
force. Given the sparse distribution of particles in the running fluid in Regions I and II, the
electrical force did not contribute unless particles were in close affinity (as in the deposited
region). The direction of gravity was perpendicular to the microfluidic chip plane, which
did not contribute to the deposition behavior.
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Figure 6. (a) Particle drag force X and drag force Y in Region I and Region II as recorded, and the
contour and vector map of fluid velocity; (b) distribution of drag force X and drag force Y of the
deposited and non-deposited particles in Region I and Region II.

In this experiment, the calculated Stokes numbers were significantly less than unity,
which meant that the movement of clay particles was mainly controlled by fluid dynamics,
and the inertia of particles had little effect on their trajectories. Therefore, the hydrodynamic
force is the main contributor to particle deposition behaviors [6].

The hydrodynamic force induced by the flow of fluid on migrating particles, also
known as a drag force, was calculated (Equations (8)–(10)) and presented in the X and Y
directions (Figure 6b). Two observations were made: (1) only particles passing through
Region II were deposited; (2) in Region II, particles with a small force in the Y direction
were statistically more prone to deposition than those with a large force in the Y direction.
The primary role of drag forces in Region II was decelerating particles, whose velocity
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vector direction was primarily horizontal. The small force in the Y direction made particles
unlikely to travel around the pillars, facilitating deposition:

dup

dt
= FD

(
u− up

)
+

gx
(
ρp − ρ

)
ρp

+ Fx (8)

Re =
ρdp
∣∣up − u

∣∣
µ

(9)

FD =
18µ

ρpd2
p

CDRe
24

(10)

where FD (u − up) is the drag force per unit particles mass, up is particle velocity, u is
fluid velocity.

3.4. Effects of Micropillar Diameter on Particle Deposition

The particle deposition height of kaolin I in DI water and bentonite in saturated NaCl
solution under different micropillar diameters is illustrated in Figure 7. An approximately
linear relationship between the deposition height and micropillar diameter was observed.
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For kaolin I in DI water, the particle deposition height increased from 93 to 333 µm
at the inlet, from 79 to 200 µm at the middle part, and from 66 to 166 µm at the outlet
(Figure 7a), respectively. A similar trend was observed for bentonite, with an increase in
deposition height from 98 to 738 µm at the inlet, from 48 to 573 µm at the middle part, and
from 20 to 356 µm at the outlet (Figure 7b).

The shapes of the velocity contours of the simulated chips at different micropillar di-
ameters were similar (Figure 7c,d). Triangular regions in front of the micropillars exhibited
low velocity (approximately 70% of the inlet velocity) and hosted the majority of deposited
particles. As the diameter of the micropillar increased, the low-velocity region increased
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nearly proportionally. This could lead to the aforementioned trend of a linear increment in
the deposition height with the micropillar diameter.

At low flow rates, particles can only stick to the wall outside the exclusion zone around
each deposited particle. This repulsion prevents the formation of aggregates. At sufficiently
large velocities, repulsive forces between particles can be overcome and multilayer clusters
form, resulting in the growth of aggregates [49].

3.5. Deposition Height Decline along the Flow Direction

The spatial distribution of the particle deposition height of kaolin I in DI water and
bentonite in saturated NaCl solution with various micropillar diameters (200, 500, 1000,
and 2000 µm) is plotted in Figure 8. The height of the deposition in front of the pillars in
microfluidic chips decreased along the flow direction (Figure 8a,b). For the chip with a
micropillar diameter of 2000 µm, the deposition height decreased to 50% of the deposition
height of the first column, whereas the deposition height decreased to 70% of the first
column for the chip with a 200 µm micropillar diameter. The lower deposition height
percentage for the 2000 µm diameter chip was probably because the flow system had not
reached equilibrium at the limited experimental duration. There was an approximately
linear relationship between the deposition height and micropillar diameter [47]: as the
diameter of the micropillar increased, the deposition height increased. Given the fact that
the available particles along the flow direction decreased, the reduction in the deposition
height of particles seemed reasonable. However, the ratio of reduction between two ad-
jacent columns along the flow direction was not constant, as illustrated in a numerical
simulation (Figure 8c). The number of particles deposited between recording areas 1 and 2
(i.e., lines 1–2 in Figure 8c) increased the fastest, and the total number of particles deposited
was the largest. Simulation results were consistent with the experimental results in that
the number of particles deposited in the front of the micropillars decreased along the flow
direction. Naturally, the particle concentrations near the injection point are ubiquitous,
which was also observed in this study.
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Figure 8. The measured deposition height in front of micropillars decreased from the inlet to the
outlet of the microfluidic chips: (a) 1 g/L kaolin I in DI water; and (b) 1 g/L Wyoming bentonite in a
saturated NaCl solution. The distance from the first pillar to the last pillar was normalized by the
total distance (i.e., a percentage value). The numerical simulation of a five-column chip: (c) deposited
particles in areas 1–5, and the reduced number of particles between two adjacent areas.
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3.6. Effect of Air–Liquid Two-Phase Flow

In methane hydrate exploration, ZVI injection, and other engineering fields, the
presence of a gas phase plays a significant role in engineering efficiency. Consequently, it is
important to investigate how gases influence fine particle distribution in porous media. In
this study, air was injected into the microfluidic chips in which a stable deposition of kaolin
I particles had formed. After introducing air into these chips, several water–air interfaces
were formed (Figure 9). It was also observed that kaolin particles concentrated at these
interfaces, and clogging easily occurred at the pore throats.
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Particles tend to be adsorbed to air–liquid interfaces in a multiphase system. The
migration of fine particles along the water–gas interface locally increased fine particle
concentration and subsequently caused clogging in the pore throat [48]. Self-driven capil-
lary flow pushes suspended particles to the droplet edge in a coffee-ring effect [50]. As a
non-wetting phase (air) invading porous media, fine particles migrate to and aggregate at
the interfaces [31]. In a quiescent system, the particles are activated by Brownian motion
toward air–liquid interfaces and are trapped by capillary forces [32]. Gravity, buoyancy,
air–liquid, air–solid, and liquid–solid interfacial tensions create a force balance of particles
already present at air–liquid interfaces [31]. In our experiment, fine particles concentrated
at air–liquid interfaces, which caused pore throat clogging and blockage. However, the
increasing flow rate caused air–liquid interfaces to move on, the triangular aggregates in
front of the micropillars to rapidly change, and most of the aggregates to be washed away.

3.7. Applicability in Related Engineering Field

Fines transportation in geomaterials is one of the fundamental phenomena in nature
and in engineering practices, such as soil erosion and scour, the piping failure of a dam,
the grouting of bentonite slurry, zero-valence ion (ZVI) injection, clogging during methane
hydrate exploration, clay migration in enhanced oil recovery, and proppant or gel injection
in hydraulic fracturing. Much attention was given to clogging or fines loss behavior, while
the study of the deposition of fines onto the porous media, especially at a particulate
level, is still lacking. This study filled in the gap and identified the factors influencing
the deposition behavior. This study is applicable to the field of grouting as well as the
co-transportation of ZVI and clay particles in contaminated site remediation, where the
suspension properties, velocity, and salinity are crucial to the uniformity and transport
distance. This study was also applicable to the fines migration associated with methane
hydrate exploration and enhanced oil recovery. When the size of the fines (either natural
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clay particles or artificially manufactured proppants or gel) is at least 10 times smaller
than the pore-throat size, deposition is the major phenomenon for fines retardation in a
porous media.

4. Conclusions

2D microfluidic models were developed to evaluate the fine kaolin and bentonite
particle migration and clogging behaviors in porous media. The microfluidic models were
fabricated using the soft lithography method, and the pore network structure consisted
of staggered micropillars and pore throats. DI water and a NaCl solution were used as
carrying fluids to transport fine clay particles.

The o/d ratio was the main factor that controlled the fine clogging behavior at pore
throats. The critical clogging o/d ratios of Wyoming bentonite, kaolin I, and kaolin II were
2.52, 10.21, and 15.23, respectively. Clay particles could smoothly pass through the pore
structure in microfluidic chips, when the ratio was larger than the critical value, and neither
bridging nor clogging was observed.

However, particles were deposited in front of the micropillars and formed triangle-like
depositions when no clogging occurred. The front part of the larger micropillar formed
depositions with a larger area and height, which was related to the flow field inside the
chip. The hydrodynamic force was the main factor that controlled particle deposition in
front of micropillars. A smaller value of drag force Y caused the particles to deposit. When
the direction of the streamline changed, clay particles deviated from the streamline under
the action of inertia and then entered the triangle-like low-velocity area in front of the
micropillars. Larger micropillars formed a wider range of low-velocity areas, resulting in
larger-sized depositions. In addition, the height of the deposition gradually decreased with
the flow direction, which was consistent with numerical simulation results.

The ionic strength of the carrying fluid affected the electrical interaction between
clay particles. Specifically, the rise in salinity broke the balance of diffused electric double
layer force and van der Waals forces between bentonite particles in the suspension and
enhanced the bentonite deposition effect. However, salinity had almost no effect on kaolin
deposition in the microfluidic chips. In addition, the strong ability of air–liquid interfaces
in the flow system to collect fine particles could increase the possibility of particles clogging
the pore throats.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma15030855/s1, Figure S1: A summary of o/d values critical for clogging.
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