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Abstract: This article deals with the problem of predicting the brittle fracture of rocks and similar
materials, which can also include frozen sandy soils. Such materials, due to the diversity of their
conditions of origin, are characterized by natural heterogeneity at the micro-, meso-, and macro-levels,
which makes it difficult to develop sufficiently universal criteria for their strength. Despite a number
of known models and criteria of strength and fracture, the search for such criteria remains an urgent
problem. In this paper, using the energy approach to the mathematical modeling of mechanical
systems, the fracture criterion is justified, which differs from the known criteria that do not require
integration to calculate the strain energy We and dissipation energy Wd. The well-known relation for
the input energy W = We + Wd is used. The object of the study was the ratio of dW = dWe + dWd.
The main research question concerned what the ratio of dWe and dWd would be at the point of brittle
failure. The search for an answer to the question led to the justification of a differential energy
criterion for the failure of brittle materials on the descending branch of the full stress–strain curve.
It was found that the point of predicted fracture is determined by the equality σ = 0.5 εEtangential

(if there is an inflection point on the ascending branch) or σ = 0.5 εEsecant_secant. The main result
of the work was ascertaining the differential strength and fracture criteria of brittle materials in the
form of inequalities and equations, which were oriented for application in engineering calculations.
Examples of application of the developed criteria are given; their consistency with the experimental
data known from the literature confirmed.

Keywords: fracture mechanics; brittle materials; complete stress–strain curve; differential energy
criterion fracture

1. Introduction
1.1. The Research Problem

Rocks, due to the diversity of their conditions of origin, are characterized by natural
heterogeneity at the micro-, meso- and macro-levels. As a consequence, laboratory studies
show that individual samples of the same rock type can exhibit somewhat different be-
havior and strength under the same influences [1–3]. These differences make it difficult
to predict the behavior of rocks under natural and man-made influences (which are also
inherently variable), so there is a set of topical problems, the solution of which is necessary
to ensure sustainable development [4–8]. Studies aimed at solving the complexity of these
problems are conducted in different directions. Accordingly, the problems can be classified
according to different criteria, namely by the following: by separate directions; by research
methodology within each direction; by the level of the problem (macro-, meso-, micro-level,
according to the hierarchical nature of matter). Since the problem is multifaceted, methods
of geophysics, geochronology, geochemistry, fracture mechanics and methods of mathemat-
ical modeling are used to predict the behavior of rocks [6–10]. Reviews of research in this
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area can be found in [1–3]. The direction of research in this paper was limited to models
for predicting the fracture of rocks and similar materials. Numerous studies in this broad
area use numerical and analytical modeling techniques, including artificial intelligence,
machine learning, and artificial neural network algorithms [11–15]. These studies focus on
analyzing brittle material behavior and predicting brittle fracture conditions [16,17]. What
these studies have in common is that they use material failure criteria; certain strain, stress
and strain energy ratios are usually used as such criteria, and other prediction criteria are
also investigated in order to reduce the risk of brittle failure [18–22]. This paper is devoted
to analytical modeling of the behavior of rocks and stone-like materials (e.g., concrete)
under monotonically increasing loading and predicting the brittle fracture of the material
taking into account the accumulated and dissipated strain energy.

1.2. Two Classes of Fracture Criteria for Brittle Materials

Numerous models of behavior and fracture of brittle materials can be systematized
and classified according to various criteria. For our study, it was sufficient to consider two
classes of models, taking into account only the scale of the object of study: micro- and
meso-level models; macro-level models.

1.2.1. Micro- and Meso-Level Models

Based on the fact that the presence of cracks is characteristic of brittle materials, a
number of models of mechanical behavior and energy criteria have been developed, which
are based on the analysis of the causes of damage near the crack tip. The current stage
of development of these criteria is reflected, for example, in articles [23–27]. In the new
approaches, in addition to the analysis of energy, strain and stress variations near the crack
tip, the failure causes also include the influence of the fracture process zone (FPZ) [26]. For
the theoretical justification of the criteria of the indicated class, methods of elasticity theory,
and methods of mathematical modeling, are used. Laboratory test results are used to verify
these criteria and the corresponding models [23,26]. Since the models of the mentioned
class consider a small region of the material near the crack tip, these models can be referred
to as micro- and meso-level models.

1.2.2. Macro-Level Models

Another class of fracture criteria, and corresponding models of brittle material be-
havior, can include macro-level models and criteria. When justifying models and criteria
of this class, it is explicitly or implicitly (by default) assumed that only part of the input
energy is spent on deformation of the macro-object, while another part of the input energy
is dissipated, both in the material and in the environment, and converted into other types
of energy. Due to this, deformation of a real object is accompanied by gradual destruction
and displacement of brittle material grains, friction over the grain–grain contact area, heat-
ing, acoustic emission and other physical effects [28–33]. Further description focuses on
macro-level models, while crack evolution and other internal processes are not detailed,
i.e., black-box methodology is used.

1.3. Working Hypothesis and Purpose of the Study

We used a frequently used approach, according to which a certain external force is
required to fracture a material, which generates an input energy W, which can be divided into
two parts [34,35]. One part of the energy (We) is spent on the elastic deformation of particles
and bonds between particles; another part of the energy (Wd) is dissipated in the material and
in the environment. Thus, at any moment of time, the following equation is fulfilled:

W = We + Wd, (1)

There are no infinitely strong materials in nature, so a real material cannot accumulate
and dissipate an infinite amount of energy. If the input energy W is too excessive for the
given state of the material, then the above-mentioned bonds and/or material particles are
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destroyed and the excess energy is released. Depending on the loading conditions, there
may be an explosive nature to the destruction, for example, of granite and basalt in uniaxial
compression, which is reflected in the literature [36]. Thus, Equation (1) generally models
the state of a brittle material, so it is of interest to compare the ratio of accumulated strain
energy and dissipated energy for real materials, for example, for granite, sandstone, and
basalt. Note that for ideal materials Wd = 0.

Variants of such elastic-dissipative energy relations for brittle materials are known in
the literature, but they are usually presented in integral form [37–39]. If integration is used,
a load–load–displacement (or stress–strain) equation is necessary [38]. However, despite
several important scientific results in this area, obtaining such equations is difficult because
many different properties of real materials and loads must be considered [40–42]; e.g., the
effect of test machine characteristics was studied in [36]. An analysis of the literature [43–46]
showed that the differential criteria of strength remain understudied. To obtain such a
criterion, using Equation (1) the relation (2) can be obtained:

dW = dWe + dWd. (2)

In physical terms, Equation (2) models the state of the specimen at time dt, when the
material strain ε and stress σ change by dε and dε, respectively (or displacement u and
load F change by du and dF, respectively). To analyze the state of the material at any
time interval dt using the differential fracture criterion, a complete load–displacement (or
stress–strain) curve equation is needed, but integrating this equation to calculate energy is
not required.

Taking into account the above information, we formulated a working hypothesis:
there is a certain relation dWe and dWd (Equation (2)), which can be used as an energy
criterion of brittle materials failure in a differential form. Accordingly, we formulated
the goal of the work: to construct a complete stress–strain curve, justify the energy crite-
rion of brittle materials fracture in the differential form and perform verification of the
developed criterion.

2. Methodology
2.1. Complete Stress–Strain Curve of a Brittle Material

Brittle materials are characterized by micro- and meso-scale pores and cracks, whose
development with increasing load leads to gradual destruction of a conglomerate of mate-
rial particles [47], which is manifested in the non-linearity of the stress–strain diagram. The
process of destruction of solids is ordered, and “the hierarchy of the scale of destruction
begins with the size of the crystal lattice and continues up to the size of the tectonic plates
in the geospheres” [48]. A review [49] showed that for a more complete understanding of
the mechanical properties of heterogeneous materials it is necessary to consider that they
are in some sense an intermediate link between the material and the structure. A model of
such a structure can be a macro-object, consisting of meso-scale elements, the mechanical
state of which, and their interaction with each other, determine the strength and stiffness of
a brittle material [48,50].

A mathematical description of such a physical model is given in [51]; it was shown
that the problem is reduced to the solution of Equation (3), which is known as the Furamura
model (Figure 1) [52,53].

F = Fpeak
u

upeak
e
(1− u

upeak
)

(3)
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Figure 1. Load–displacement pattern.

Equation (3) models the relationship between the force and the displacement of its
conditional point of application. In this work, it was necessary to switch to stress–strain
terms in order to obtain comparative estimates of the destructive stresses and strains
in compression of the brittle material samples, for example, in the form of a cylinder.
To switch from load–displacement terms to stress–strain terms, we used the following
relations: σ = F/A0, σpeak = Fpeak/A0, ε = u/H0, εpeak = upeak/H0; here A0 and H0 are
cross-section area and sample height, respectively; it is assumed that all displacements are
small. Using these relations, we transformed Equation (3) to the form (4) (see also Figure 2):

σ = σpeak
ε

εpeak
e
(1− ε

ε peak
)

(4)
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Figure 2. Stress–strain pattern.

Equation (4) models the relationship between stress and strain in compression of a
brittle material sample. It should be noted that not all brittle materials in compression
show a pattern similar to Figure 2. In some cases, for example, when compressing granite
and sandstone specimens [36], an inflection point appears on the ascending branch of the
full stress–strain curve. Another feature of the full stress–strain curves for rigid brittle
materials is that the descending branch of this curve is almost vertical if the material is in
the stage of macro-crack growth with decreasing stress on the way to failure; at this stage,
the axial stress decreases rapidly, accompanied by a small increase in deformation and an
increase in the number of macro-cracks which coalesce and propagate through the sample
volume. In uniaxial compression, explosive fracture can occur in, for example, granite,
basalt and sandstone [36].

Consider the stress–strain curve, which has the above-mentioned inflection point (Figure 3).
It is possible to draw infinitely many tangents to the curve in question. The angle

of inclination of each of these tangents can be considered as the tangential modulus of
elasticity. However, only point a on the ascending branch corresponds to the state in which
the tangential modulus of elasticity E = dσ/dε reaches the highest values, because the
condition of extremum of the function E = E(ε) is satisfied at this point: E = E(ε). From
the physical point of view, the maximum value of the tangential modulus of elasticity is
explained by the closure of cracks at a certain value of load, i.e., the real material at this
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stage of deformation is transformed into an almost ideal linearly elastic material. Therefore,
if we compare a real brittle material at the model level with an imaginary ideal material
without cracks, the tangential modulus of elasticity of the real material should be chosen as
the modulus of elasticity of the ideal material (Figure 3).
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However, mathematical description of complete curves with an inflection point on
the ascending branch requires modification of Equation (4), because in the presented
form this equation models only a particular case when there is no inflection point on the
ascending branch of the stress–strain curve (Figure 2). Therefore, more universal models of
approximately the same level of complexity have been developed [51–53]. In this research
area, the works, [52,53] have indicated a tendency towards independent control of the
branches of the full stress–strain curve (or load–displacement). Following this trend, let us
perform decomposition of the Blagojevich model [52,53]:

σ = σpeak

(
ε

εpeak
e
(1− ε

ε peak
)
)c

; c = a, if 0 ≤ ε ≤ εpeak; c = b, if ε ≥ εpeak. (5)

Parameters a and b are determined at the stage of model fitting (5). To determine the
values of εpeak and σpeak experimental data are required; these values can be determined by
direct or indirect methods, by analogy with [51–53].

Commenting on Figure 3, we note that the secant modulus of elasticity is used in
engineering calculations [54]; for example, if there is no inflection point on the ascending
branch of the stress–strain curve (Figure 2). Therefore, the secant modulus of elasticity is
used in one of the variants of the fracture criterion, which is considered below.

2.2. Justification of the Energy Differential Fracture Criterion for Brittle Materials

Taking into account the working hypothesis formulated in Section 1.3, we assume that
a compression test is performed on an ideal material whose tangential modulus is defined
as shown above (Figure 3). In this case, the stress–strain relation is modeled by the linear
equation σ = εEsecant.

During loading, the weakest particles of the brittle material and particle–particle
junctions collapse gradually, so that the load is redistributed over the not yet collapsed
particles; therefore, the stress in these particles increases, but the number of undestroyed
particles decreases, and in the post-peak state the bearing capacity of the sample decreases.
Since weak particles are the first to collapse when the load increases, and the modulus of
elasticity and strength correlate positively, it is reasonable to assume that the modulus of
elasticity of the material of the undestroyed particles tend to increase. In contrast to an
ideal material, in a real brittle material only part of the input energy is stored in the form of
potential strain energy, the other part of the input energy is dissipated, which is modeled
by Equation (3) and shown in Figure 4.
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Equation (2) and Figure 4 induce two important questions.
Question 1: If ε > 0, is equality dWd = 0 possible? Answer: Yes, it is possible. Equality

dWd = 0 is realized, for example, at point a (Figure 4).
Question 2: If ε > 0, is equality dWe = 0 possible? Answer: If ε > 0, the equality dWe = 0

is impossible. In this case, according to Equation (2), dW = dWe + dWd = 0 + dWd = dWd.
From a physical point of view, the equality dW = dWd means that the input energy is
completely dissipated and the voltage σ = 0, i.e., the material is non-functional. Consequently,
if σ = 0, then dWe > 0.

From the answers to questions 1 and 2 it follows: if ε > 0, then that, for real brittle
materials, the inequality is fulfilled:

dWe > dWd. (6)

From Equation (2) follows:

dWd = dW − dWe. (7)

Substitute dWd (7) into inequality (6):

dWe > dW − dWe. (8)

Inequality (8) is equivalent to inequality (9):

dWe >
dW
2

(9)

From the physical point of view, inequality (9) means that the material is functional,
i.e., the material resists the load if at any time the strain energy dWe = σdε is greater than
half of the input energy dW = σ̂dε = εEtangentialdε. On this basis, taking into account the
notations used above, the differential energy criterion of strength can be written in the form
of inequality (10):

σdε >
1
2

εEtangentialdε or σ >
1
2

εEtangential . (10)

Accordingly, the differential energy criterion for fracture of brittle material can be
written in the form of inequality (11):

σ ≤ 1
2

εEtangential . (11)
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The fracture point on the stress–strain curve is determined by equality (12) (Figure 5).

σ =
1
2

εEtangential . (12)
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elasticity (right).

As noted above, in engineering calculations of the strength of brittle materials, e.g.,
concrete, the secant modulus of elasticity is used [54]. From the point of view of methodol-
ogy, there are no fundamental differences in the justification of fracture criterion (11) using
the secant modulus of elasticity instead of the tangential modulus of elasticity. Therefore,
using the secant modulus of elasticity, by analogy with the criterion in the form of (11),
we can write the fracture criterion in the form of (13); then, the predicted fracture point is
determined by equality (14) (Figure 5).

σ ≤ 1
2

εEsecant. (13)

σ =
1
2

εEsecant. (14)

The seeming illogic (sign≤) in fracture criteria (11) and (12) is explained by the fact
that the stress σ is determined at a point on the descending branch of the full stress–strain
curve Figure 2), that is, in this case the strain increases, but the stress decreases [50,55].

Figure 5 shows that failure occurs at the point where curve (5) crosses the line
σ = 0.5εEtangential or σ = 0.5εEsecant. The stress σ is determined by Equation (5) depending
on the strain ε; the tangential modulus of elasticity Etangential is determined taking into
account the remarks in Figure 3. Thus, the use of the tangential and secant modulus of
elasticity provides an interval of possible values of the fracture criterion. However, if there
is no inflection point on the ascending branch of the stress–strain curve (Figure 2), only the
secant modulus of elasticity is used.

3. Examples and Comparison with Experiments Known in the Literature
3.1. Example 1. Sandstone

Let us consider an example of applying Equation (5) and the fracture criterion in the
form of (12) and (14) to the analysis of sandstone compressive test results. The analysis
is performed using the experimental data known from the literature [36], according to
which σpeak = 82 MPa and εpeak = 0.00827 for sandstone. These data were substituted into
Equation (5); values of parameters a and b were obtained by fitting: a = 3.5 and b = 1000.
The stress–strain curve thus obtained is shown in Figure 6.
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Figure 6. The stress–strain curve (5) for sandstone in uniaxial compression. A tangent (black dashed
line) passes through point k, the slope angle of which determines the tangential modulus of elasticity.
At point t, we predict failure according to criterion (12), at this point the line σ = 0.5 εEtangential
intersects the curve (5) (see also Figure 5). A secant (red dotted line) passes through point b, the slope
angle of which determines the secant modulus of elasticity. At point s the failure is predicted by
criterion (14), at this point the line σ = 0.5 εEsecant intersects the curve (5). The red curve simulates
the experimental curve from [36]. The thin red and black lines correspond to Figure 5.

The coordinates of point k (Figure 6) are determined from the condition d2F/dε2 = 0
using Equation (5): ε = 0.00385; σ = 36.64 MPa. According to criterion (12), failure is
predicted at point t, for which ε = 0.00850; σ = 59.5 MPa. According to criterion (14),
the destruction at point s, for which ε = 0.0086; σ = 42.5 MPa is predicted. In work [36]
experimental values at a point of failure of sandstone at uniaxial compression were received:
σ = 58.5 MPa; ε = 0.0091; stress at the fracture point almost coincides with the prediction
by criterion (12): 58.5 ≈ 59.5 MPa.

3.2. Example 2. Medium Coarse Sand (−10 ◦C)

Let us consider an example of application of Equation (5) and fracture criterion in the
form of (12) and (14) to the analysis of test results of Medium coarse sand (−10 ◦C). The
analysis is performed using the experimental data known in the literature [56], according
to which σpeak = 4.6 MPa and εpeak = 0.0528. These data were substituted into Equation (5);
values of parameters a and b were obtained by fitting: a = 1 and b = 1. The stress–strain
curve thus constructed is shown in Figure 7.

In this case (Figure 7), there is no inflection point on the ascending branch of the
stress–strain curve. Therefore, we will use criterion (14). According to criterion (14), the
failure is predicted at point s, for which ε = 0.089; σ = 3.92 MPa. Predicted values almost
coincide with the experimental data from work [56]: ε = 0.088; σ = 3.99 MPa.

In the case under consideration, the tangent modulus of elasticity is determined by
the angle of inclination of the black dotted line in Figure 7. In order to use the tangent
modulus of elasticity to determine the failure point in accordance with criterion (12), it is
necessary to construct a straight σ = 0.5εEtangential (solid black line in Figure 7) and justify
the method of calculation, which, however, is beyond the scope of this paper.
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Figure 7. Stress–strain curve (5) for frozen sand under uniaxial compression. A secant (red dotted
line) passes through point b, the slope angle of which determines the secant modulus of elasticity. At
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(5). The red curve simulates the experimental curve from [56].

4. Discussion

The above examples show that the developed differential energy criterion for fracture
of brittle materials (11)–(14) can be used to analyze brittle materials of both high and
low stiffness. The examples discussed in Section 3 show that the parameter b for brittle
materials (Example 1, b = 1000) is much larger than that for a material of low stiffness
(Example 2, b = 1). Parameters a and b can be determined by the least-squares method, by
analogy with papers [52,53], in which models of the same class are proposed. Parameters
a and b were chosen according to test results. Analysis of the load–displacement curves
showed that the values of parameters a and b correlated positively with the stiffness of the
specimen [57]. We noticed that an empirical rule could be used: if there is an inflection
point on the pre-peak branch of the load–displacement (or stress–strain) curve, parameter
a can be determined from the condition of coincidence of the inflection points on the
experimental and theoretical curve. The parameter b positively correlated with the absolute
value of the post-peak modulus of elasticity, which can be used to determine the value of
this parameter. The method of determination of post-peak elasticity modulus of granite,
marble and other brittle materials is considered in article [58]. In addition, an empirical
relationship linking the b parameter to the strain at the fracture point (εs) can be used:
= (1 − A/2)/(A − 1); A = εs/εpeak. This ratio is used if εs > εpeak. These remarks indicate
that parameters a, b, n in Equation (5) depend on the stiffness of the material [52,53,57], but
the physical meaning of these parameters is not disclosed in this paper, which may be the
subject of further research.

The fracture point of brittle material under laboratory conditions depends on the
characteristics of the testing machine, as shown in [36,58,59]. Hence, it follows that the
parameters σpeak, εpeak in Equation (5) can be determined with some deviations from true
values. These deviations affect the simulation results. For example, if we assume, that
parameters σpeak, εpeak are defined with accuracy ±5%, then using Equation (5) we obtain
for initial data from examples 1 and 2 the results shown in Figure 8.

Figure 8 shows that deviations of ±5% in values of parameters σpeak and εpeak do not
lead to critical changes in predicted values of stresses using Equation (5), which indicates the
possibility of the practical use of this equation. However, we should take into account the
limitations of the presented model. Namely, Equation (3) models only the load–displacement
relation, i.e., the external process. The development of cracks and other damages (internal
process) is not directly considered. Thus, the presented model considers only input and
output data without any specific knowledge of material properties, which corresponds to the
“black box” methodology [60]. The input data are only the peak load and the corresponding
displacement (peak displacement). This approach is justified in [51]; in this approach, the a
priori damage variable is not used, but the hypothesis of stiffness (dS) and displacement (du)
deterioration is introduced, which logically leads to Equations (3) and (4) [51].
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Figure 8. Effect of deviations in σpeak, εpeak on uniaxial compression behavior of samples: (a) Sand-
stone from example 1; (b) Frozen sand from example 2. The red line corresponds to the parameters
σpeak, εpeak. Thin lines correspond to parameters with deviations:σpeak·(1 ± 0.05) , εpeak·(1 ± 0.05).
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The peak load and peak displacement are determined experimentally using direct
or indirect measurement methods. When using the direct method, the test is carried out
before failure, which is not always technically possible or economically feasible; in this case,
the indirect measurement method is used. In [51,57], using frozen sandy soil as an example,
it was shown that peak load and peak displacement could be determined (predicted) using
experimental data for three points on the pre-peak branch of the load–displacement curve.
In this case, there is no need to destroy the test object, but prediction errors appear, which
decrease with increasing accuracy of experimental data, so it is necessary to use modern
test machines [36,58], and appropriate instruments and equipment [59–62].

Other more versatile and accurate approaches are known for modeling the behavior of
brittle materials under loading, and although such approaches require fairly accurate data
on material properties, it is a relatively small price to pay for high accuracy in predicting
brittle failure of engineering structures. The fracture process can be accurately investigated
using fracture models, such as phase-field fracture [63–65]; a model of this class [63–65] is a
complete model and is much more versatile than models (3), (4), (5) presented above. The
advantage of models (3), (4), (5) is the small amount of initial data and the possibility to
use them for prediction of the full load–strain curve from experimental data at three points
on the pre-peak branch of the mentioned load–strain curve; besides, no prior knowledge of
material properties is required, as shown by examples in [51,57].

5. Conclusions

This work uses the well-known load–displacement model for brittle material in uniax-
ial compression, which was justified in previous work using black-box methodology. The
advantage of this methodology is that no specific knowledge of the physical and mechanical
properties of the material is required in the simulation. The relationship between the strain
energy dWe and the dissipation energy dWd was studied using this model.

It was proved that at the point of fracture on the post-peak stress–strain curve there is
uniaxial compression dWe = dWd. Based on this relationship, two variants of the differential
energy criterion for fracture on the post-peak curve stress–strain during uniaxial compression
of a brittle material were obtained: σ = 0.5 εEsecant, where Esecant is the secant modulus of
elasticity. If the pre-peak stress–strain curve has an inflection point, the fracture criterion has
the form: σ = 0.5 εEtangential, where Etangential is the tangential modulus of elasticity.

The model and variants of the brittle material fracture criterion under uniaxial com-
pression were verified using experimental data from the literature for frozen sandy soils.
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53. Stojković, N.; Perić, D.; Stojić, D.; Marković, N. New stress–strain model for concrete at high temperatures. Teh. Vjesn. 2017,
24, 863–868.

54. Pereira, L.R.S.; Penna, S.S. Nonlinear analysis method of concrete structures under cyclic loading based on the generalized secant
modulus. Rev. IBRACON Estrut. Mater. 2022, 15, e15406. [CrossRef]

55. Kolesnikov, G.; Meltser, R. A Damage Model to Trabecular Bone and Similar Materials: Residual Resource, Effective Elasticity
Modulus, and Effective Stress under Uniaxial Compression. Symmetry 2021, 13, 1051. [CrossRef]

56. Chen, J.; Wang, L.; Yao, Z. Physical and mechanical performance of frozen rocks and soil in different regions. Adv. Civ. Eng. 2020,
2020, 8867414. [CrossRef]

57. Kolesnikov, G.; Zaitseva, M.; Petrov, A. Analytical Model with Independent Control of Load–Displacement Curve Branches for
Brittle Material Strength Prediction Using Pre-Peak Test Loads. Symmetry 2022, 14, 2089. [CrossRef]

58. Cai, M.; Hou, P.Y. Post-peak stress–strain curves of brittle hard rocks under different loading environment system stiffness. Rock
Mech. Rock Eng. 2022, 55, 3837–3857. [CrossRef]

59. Yin, Y.; Zheng, W.; Tang, X.; Xing, M.; Zhang, Y.; Zhu, Y. Test study on failure and energy supply characteristics of rock under
different loading stiffness. Eng. Fail. Anal. 2022, 142, 106796. [CrossRef]

60. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box
models. ACM Comput. Surv. (CSUR) 2018, 51, 1–42. [CrossRef]

61. Lu, G.; He, X.; Wang, Q.; Shao, F.; Wang, J.; Jiang, Q. Bridge crack detection based on improved single shot multi-box detector.
PLoS ONE 2022, 17, e0275538. [CrossRef] [PubMed]

62. Ziying, M.; Shaolin, H.; Xiaomin, H.; Ye, K. Fine Crack Detection Algorithm Based on Improved SSD. Sci. Technol. 2022, 8, 43–47.
63. Noii, N.; Khodadadian, A.; Wick, T. Bayesian Inversion Using Global-Local Forward Models Applied to Fracture Propagation in

Porous Media. Int. J. Multiscale Comput. Eng. 2022, 20, 57–79. [CrossRef]
64. Noii, N.; Khodadadian, A.; Wick, T. Bayesian inversion for anisotropic hydraulic phase-field fracture. Comput. Methods Appl.

Mech. Eng. 2021, 386, 114118. [CrossRef]
65. Noii, N.; Khodadadian, A.; Ulloa, J.; Aldakheel, F.; Wick, T.; François, S.; Wriggers, P. Bayesian Inversion with Open-Source Codes

for Various One-Dimensional Model Problems in Computational Mechanics. Arch. Comput. Methods Eng. 2022, 29, 4285–4318.
[CrossRef]

http://doi.org/10.3390/f13101538
https://hrcak.srce.hr/clanak/96329
http://doi.org/10.1590/s1983-41952022000400006
http://doi.org/10.3390/sym13061051
http://doi.org/10.1155/2020/8867414
http://doi.org/10.3390/sym14102089
http://doi.org/10.1007/s00603-022-02839-2
http://doi.org/10.1016/j.engfailanal.2022.106796
http://doi.org/10.1145/3236009
http://doi.org/10.1371/journal.pone.0275538
http://www.ncbi.nlm.nih.gov/pubmed/36194591
http://doi.org/10.1615/IntJMultCompEng.2022041735
http://doi.org/10.1016/j.cma.2021.114118
http://doi.org/10.1007/s11831-022-09751-6

	Introduction 
	The Research Problem 
	Two Classes of Fracture Criteria for Brittle Materials 
	Micro- and Meso-Level Models 
	Macro-Level Models 

	Working Hypothesis and Purpose of the Study 

	Methodology 
	Complete Stress–Strain Curve of a Brittle Material 
	Justification of the Energy Differential Fracture Criterion for Brittle Materials 

	Examples and Comparison with Experiments Known in the Literature 
	Example 1. Sandstone 
	Example 2. Medium Coarse Sand (-10 C) 

	Discussion 
	Conclusions 
	References

