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Abstract: The study presents the terrestrial laser scanning (TLS) diagnostic of the clay brick masonry
arched staircase in a historic building. Based on the measurements of the existing arched stair flights,
1:1 scale experimental models with and without stair treads were made. Strength tests of the models
were carried out for different concentrated force locations in relation to the supporting structure.
Force, deflections and reaction in the upper support of the run were measured during the tests. The
influence of the masonry steps on the curved vault on the load capacity and stiffness of the run
structure was analyzed. The conducted experimental investigations showed that the key element
responsible for the actual load-bearing capacity and stiffness of this type of stair flights were the
treads above the masonry arch.

Keywords: stairs; masonry; clay brick; arch; vault; management; quality; light detection and ranging
(LiDAR); TLS

1. Introduction

In the authors’ countries, in historical buildings from the 19th century, masonry arch
stairs were commonly used to connect floors [1]. The arches were shaped between steel
beams as a load-bearing span for the staircase landings and flights. At that time, the
technology of reinforced concrete was not yet known, so steel and masonry construction
was the most popular, especially in residential buildings. The construction of staircases
was mostly in the form of segmental or cross vaults. The structure of the flights was made
as a stair arch with the thickness of half a brick (12 cm) and elevation f = 1/12–1/14 L [1]
(Figures 1 and 2).

A flight of arch stairs is characterized by a slender, long structure with a slope of
approximately 35◦–40◦. One of the main permanent loads on the flight of stairs are the
bricks along the entire flight. The steps have the least bricks in the middle of the stairs’ arch
and the most at the ends. The steps are not connected with a typical masonry bond. The
bricks must be cut to fit the actual geometry of the arches.

The flights and landings were supported by steel beams. The construction of flights
had a good fire resistance (except for the steel beams), stiffness and durability. The construc-
tions of brick stairs are still in use despite many years of service. Additionally, they are a
testament of old times and often protected by the conservator as a part of cultural heritage.
Their condition often raises concern because of the damages, mainly cracks or erosion of
joints. The typical damages of brick staircase construction are: degradation of mortar and
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bricks, flattening of vaults and cracking. The damages arise as a result of overloading,
wrongly executed repair works and dynamic loads. Sometimes, one can find constructional
errors such as improper fixing of gear plates on I-beam flanges.
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Information on calculation methods or principles of construction is often difficult to 
find. This type of construction was created mainly on the basis of experience with brick 
vaults. The steel beams supporting the vaults were calculated by the methods available at 
that time [1]. The operation of landing vaults is similar to balcony or roof vaults. On the 
other hand, staircase slabs are at an angle depending on their length and height. The dis-
tribution of stresses and internal forces is different from other staircase structures. A cal-
culation scheme of an example of an arched masonry stairs with vaulted landings sup-
ported on steel beams is shown in Figure 3. 
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Figure 2. Brick stairs with column supports based on [1]. Scheme (a) and partial photo (b): 1—arched
masonry stair sides; 2—arched masonry bolt; 3—barrel staircase with support on sides; 4—groin
vault in stair flight; 5—groin or barrel vaults in stair landing.

Information on calculation methods or principles of construction is often difficult to
find. This type of construction was created mainly on the basis of experience with brick
vaults. The steel beams supporting the vaults were calculated by the methods available
at that time [1]. The operation of landing vaults is similar to balcony or roof vaults. On
the other hand, staircase slabs are at an angle depending on their length and height. The
distribution of stresses and internal forces is different from other staircase structures. A
calculation scheme of an example of an arched masonry stairs with vaulted landings
supported on steel beams is shown in Figure 3.
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of their technical condition in order to confirm their durability and functional use. The 
chosen methods used in the diagnostics of masonry structures in the authors’ countries 
are shown in Figure 4. 
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The diagnosis of masonry structures primarily focuses on a visual assessment in or-
der to detect cracks and damages [2–5]. The early diagnostics usually uses non-destructive 
measuring equipment, which allows the preliminary characteristics of existing materials 
or the degree of their degradation to be evaluated [6–10]. Those methods most often in-
clude sclerometric measurements (Schmidt hammer) or ultrasonic measurements. At that 
stage of diagnosis, infrared thermography is a novel and useful method for historic plaster 
and painted vaults. The management of the data derived from the application of infrared 
thermography, integrated with the information from visual inspections, the architectural 

Figure 3. Calculation scheme of masonry stairs with segmental vault and arched staircase slab:
1—arched staircase slab; 2—landings.

One of the most prevalent issues in this type of stairs is the necessity of diagnostics of
their technical condition in order to confirm their durability and functional use. The chosen
methods used in the diagnostics of masonry structures in the authors’ countries are shown
in Figure 4.
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Figure 4. Flowchart for clay brick masonry structure diagnostics.

The diagnosis of masonry structures primarily focuses on a visual assessment in order
to detect cracks and damages [2–5]. The early diagnostics usually uses non-destructive
measuring equipment, which allows the preliminary characteristics of existing materials or
the degree of their degradation to be evaluated [6–10]. Those methods most often include
sclerometric measurements (Schmidt hammer) or ultrasonic measurements. At that stage
of diagnosis, infrared thermography is a novel and useful method for historic plaster and
painted vaults. The management of the data derived from the application of infrared
thermography, integrated with the information from visual inspections, the architectural
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survey and the historic analysis, allows a complete characterization of the historic plasters
and painted masonry vaults to be obtained [11].

A more accurate determination of material properties in masonry structures involves
sampling. In the case of brick alone, this process is feasible; however, sampling of mortar
is significantly more difficult. Therefore, in many diagnostic operations, core samples are
taken, also containing a fragment of mortar and masonry elements adjacent on both sides.
The core samples, after certain correlations, are used to determine the load-bearing capacity
of the whole masonry structure [12–17]. Even more accurate results may be obtained by
test-loading a masonry section with actuators [18]. However, this method requires making
cuts in the masonry in order to locate the beams to place the actuators. The method is
mostly used as a validation is structural elements that are to undergo alteration, repair,
or reconstruction.

A similar effect can be obtained if a section of the masonry is cut out and transported
to the laboratory for experimental testing [14,18]. A less destructive solution is the flat-jack
method [18,19]. It requires appropriate calibration procedures and precise preparation of
the measurement base. Additionally, it may be imprecise in low buildings and lead to per-
manent damage when testing masonry with weak lime mortar [18]. The best measurement
method is to perform a loading test with appropriate measurement [20–24], which does
not lead to the destruction of the structure but allows the correlation between stresses and
strains to be obtained, in order to assess the actual load-bearing capacity and stiffness. Final
results on the load-bearing capacity of the structure can only be obtained from experimental
destructive testing.

The finite element method (FEM) is a fundamental analysis for the assessment of
masonry in seismic zones [25–28]. Nonlinear static calculation methods are commonly
adopted for the evaluation of seismic performance [26–32]. Laurenco et al. [28] presented
a research study on that subject with a yield criterion that included different strengths
along each material axis. Baraldi et al. [31] presented the rigid beam model for studying
the dynamic behavior of cantilever unreinforced masonry walls, considered along their
thickness and subjected to out-of-plane loading. Celano et al. [32] presented research on
the in-plane resistance of masonry walls with the use of two modeling approaches, a finite
element model and a discrete macro-element model, with the use of non-linear analyses.

The TLS (terrestrial laser scanning) measurements using 3D scanners are starting to
be used for structural diagnosis. Three-dimensional LiDAR (light detection and ranging)
scanners have revolutionized the capability and accuracy of geometry measurements in
construction, shipbuilding and other areas of science and technology [33–49]. TLS can be
used to measure damage to the surface layers of materials, including bricks and mortar, as
well as to track moisture in structures [33,41–49]. TLS in structural analysis is primarily used
to measure strain and deflections, as well as deformations, of structural elements [25,42–50].
This technique can also be used for control measurements at the stage of constructing [51].
Some researchers use TLS technology to monitor the condition of construction to prevent
possible damage [52,53]. Additionally, detailed geometry studies using TLS are useful in
post-disaster analyses of structures, including earthquakes [53].

The assessment of the technical condition of brick stairs is not an easy task. The first
step usually consists of initial observations of the geometry and of looking for visible signs
of damage. Usually, the construction is protected by plaster, so some defects may be hidden.
Modern TLS measuring methods can also be helpful in preliminary surveys. Only by
uncovering, it is possible to fully assess the quality of brick and mortar and their degree of
degradation. The evaluation of the material properties of the structure is possible by taking
representative samples and performing laboratory tests [2,10,54–59]. A deeper analysis of
the performance of the structure and the causes of its damage is possible using FEM-based
3D models [57–64]. On this basis, it is possible to precisely select the reinforcement methods.
The analysis in the elastic range is rather easy to perform, but the analysis in the plastic
range, after cracking has occurred, requires time-consuming and expensive studies [60].
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Studies of masonry arches and vaults can be found in the works [61–105]. In these
studies, masonry vaults are characterized by significant arch rise and placement of the
masonry stairs. A small number of researchers has taken up the problem of load-bearing
capacity of masonry stairs. Research has mostly focused on establishing the principles
and methods for structural calculations [92–99]. There is a visible lack of research on
masonry staircases. The design of staircases is similar to masonry arch work; however, the
arrangement of loads is different. In addition, the influence of the steps above the vault on
the operation of the system is also significant.

The article presents a novel approach, in which experimental tests for staircases were
made in a 1:1 scale resembling a real-life construction. Together with laboratory tests,
the TLS diagnosis of an arched staircase in a real-life historic building is presented. The
history of the TLS LiDAR measurement method dates back only 20 years [41,42,106]. The
authors’ research study indicates that it can be used in the diagnosis of some types of
building structures [41,42]. It is important to assess the applicability of the TLS method in
the diagnosis of masonry stair structures, including arched staircases. The possibilities of
its use in this area are presented in this article.

2. Real-Life Structure
2.1. Case Study Description

The building had four residential floors and an attic. The ceilings on the upper floors
were made of wooden beams, while, on the first floor, they were made as arched segmental
vaults on steel beams. The floors were 3.2 m high. The staircase was 2.5 m wide and 5.3 m
long. The length of the landings was 1.6–1.7 m and the length of the flights was 2.6 m, with
a width of 1.2 m. The analyzed stair flights were at an angle of 38◦. The stairs were made
of steel and masonry, with arched spans between the landings. The rise of the stair arch
had a value of f = 1/19 L. Figure 5 shows the general view of the arched stair structure
under consideration.
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The measured dimensions of the bricks were 25 × 12 × 6.5 cm3. The brick and
mortar compressive strength was estimated with use of the non-destructive, ultrasonic
measurements according to the dependencies described in [107]. The dependency of bricks
is shown in Equation (1).

fc,brick = 1.4949·e0.002 ·UPV (MPa), (1)
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where fc,brick (MPa) is the compressive strength of the brick element and UPV (m/s) is the
measured ultrasonic pulse velocity. The dependency of lime–cement mortar is presented in
Equation (2).

fc,mortar = −5.5 + 0.007671·UPV (MPa), (2)

where fc,mortar (MPa) is the compressive strength of lime–cement mortar. The results of the
tests are presented in Table 1.

Table 1. Ultrasonic pulse velocity and calculated compressive strength of tested bricks and mortar.

Ordinal No

Bricks Mortar

Ultrasonic
Pulse Velocity

(m/s)

Compressive
Strength (MPa)

Ultrasonic
Pulse Velocity

(m/s)

Compressive
Strength (MPa)

1 1130 14.3 1192 3.6

2 971 10.4 1227 3.9

3 1472 28.4 1317 4.6

4 1172 15.6 1414 5.3

5 1071 12.7 1276 4.3

6 1327 21.2 994 2.1

7 1191 16.2 1321 4.6

8 1432 26.2 1417 5.4

9 1101 13.5 1276 4.3

Mean value 1207.4 17.6 1270.4 4.2

The compressive strength of the bricks varied in a wide range, from 10.4 to 28.4 MPa
with a mean value of 17.6 MPa. The compressive strength of lime–cement mortar varied
from 2.1 to 5.4 MPa with a mean value of 4.1 MPa. Due to the large discrepancy found
between the strength values of the masonry units and mortar, it was decided to carry out
laboratory tests using materials with standard properties. In this respect, a brick class of
25 MPa and a mortar class of 5 MPa were assumed.

2.2. TLS Diagnostic on a Real-Life Structure

Stair geometry measurements and diagnostics were performed using TLS technology,
using a stationary scanner Focus M70 (Faro, Lake Mary, FL, USA) with a single measure-
ment accuracy of 0.2 mm. From the measurements, a point cloud in Autodesk Recap (RCP)
format was obtained, which was then verified in CAD software (Version2021, San Rafael,
Autodesk, CA, USA). RCP format files store spatially indexed point cloud data that can be
processed in applications to view, edit and analyze object geometry. The purpose of the
measurements was to analyze the geometry of the masonry arch. The aim of the study was
to indicate the geometric irregularities, whose technical condition was visually inspected.
After removing the plaster in the selected irregularity areas, the condition of masonry and
mortar was evaluated.

The TLS measurements allowed us to determine the exact geometry of the stair flight.
Figure 6 shows a general view of the obtained TLS measurement map along with a picture
of the geometry of the curved staircase of the building.
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Figure 6. TLS data acquired from existing building: section view of building (a) and geometry
measurements for analysis (b). The dashed line marks the stair flight which was subjected to further
laboratory testing.

Alongside TLS measurements, a visual evaluation of the mortar joints in the stair
flights as well as of the treads was performed. Numerous damages and cracks were found.
The most important was a crack in the joint on the masonry arch presented in Figure 7.
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Figure 7. Section of the staircase with visible crack of the arch caused by improper renovation and
deterioration of masonry joints.

Incorrectly made support changed the distribution of internal forces in the masonry
arch, which was the reason for the whole structural diagnosis. Support should have been
put in place for the entire surface of the arch in the form of a centering with an appropriate
shape to match the actual geometry of each stair flight arch. Figure 8 shows the output of
TLS diagnostics for the run fault of the stair flight.
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Figure 8. TLS data output for the point damage of the stair flight: section view of the stair flight
(a) and point of damage (b).

The weakest points of the analyzed masonry arch structure were the joints between
bricks and mortar. On the basis of the research work carried out, it was decided to reinforce
the whole structure of flights and landings with a steel structure fixed from the bottom.

3. Laboratory Tests
3.1. Materials

The tested samples and elements presented in this research study were built using
clay brick, class 25. The dimensions of the bricks were 25 × 12 × 6.5 cm3 (the same as in the
real-life stair flight construction). For the preparation of joints, lime–cement mortar, class
M5, was used. For the preparation of masonry mortar, a factory-made, dry, lime–cement
mortar class M5 mixture was used (Quick-mix TWM-M5; Sievert, Strzelin, Poland). The
mixture consisted of a cement binder, slaked lime, quartz fillers and refining additives. The
thickness of the joint was about 1 cm. To determine the properties of the materials used,
initial tests in accordance with current standards [108–111] were conducted. The results of
the tests are presented in Table 2.

3.2. Laboratory Models of Stair Flights

Laboratory tests were conducted on two models of the stair flights—without stair
treads (M1) and with stair treads (M2). The models were made in a 1:1 scale based on the
measurements of the analyzed construction, with a width of a single 25 cm brick (Figure 9).
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Table 2. Properties of used materials.

Load
Diagram Test Material No. of

Samples Result Coefficient
of Variation
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The dimensions of the flight were taken from the real-life structure and were noted
as follows:

• Height 162 cm;
• Length 210 cm;
• Slope 38◦;
• Arch rise f = 14 cm.

The stair flight construction was supported on a self-made test bench frame. During
the masonry works, a wooden structure with expanded polystyrene was used as a centering
for the arch. The support was removed while the arch structure was drying, so that the
structure could be pressed down naturally. Due to indoor conditions, the bricks were
soaked in water before construction, then wetted with water daily during the mortar curing
processes. In order to take measurements, a force gauge was placed in the upper corner of
the flight to transfer the vertical force.

Measurements were conducted with inductive sensors (for vertical displacements)
and two force gauges connected to an MGC Plus HBM Hottinger Bridge. In addition,
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the bridge was connected to the ARAMIS optical three-dimensional displacement and
strain measurement system. The model was painted on the back side with a white–black
pattern to enable image correlation. First, the model was tested in the elastic range with a
concentrated force applied at three different locations, P1, P2 and P3. At the force application
locations, horizontal surfaces were prepared with quick-setting mortar with a strength,
after 24 h, of at least 25 MPa. The assumed limit loads at points P1 and P3 were up to
1.5 kN, while the limit for point P2 was noted when the first crack was registered, after
which the test was stopped. The loads at P1, P2 and P3 were applied separately to the tested
specimen. Then, on the basis of the M1 model, the M2 model was created by adding treads
over the staircase (Figure 3). In order to create the geometry of the steps, it was necessary
to precisely cut the bricks at the angles correlating with the arch.

The model with treads (M2) was tested similarly to the model without treads (M1).
Points P1, P2 and P3 were determined at the same locations as in the case of the M1 model.
Assumed force limits for points P1 and P3 were up to 6 kN. At the middle point, P2, the
structure was loaded up to failure. The loads were applied separately to the specimen.

3.3. Results of Laboratory Tests

The model without treads (M1) was loaded with concentrated forces P1 = P3 = 1.5 kN.
The value of the force at point P2 was increased until the first crack occurred at the load
value of 4.5 kN. This moment was considered to be the end of elastic work of the struc-
ture. Failure was caused by the opening of the crack within the joint located under the
concentrated force at point P2.

The model with masonry treads (M2) was loaded at the same locations as model M1
by applying concentrated forces on the masonry treads. At points P1 and P3, a structural
load of P1 = P3 = 6 kN was applied. At the middle point, P2, the value of the load was
increased until failure due to cracking, which occurred at a force of P = 59.8 kN. The results
of the measurements of the displacement and support reactions of the researched models
are presented in Figure 10.

By including the treads in the stair flight curve analysis, the load capacity was con-
siderably higher than previously assumed. The load-bearing capacity for the model with
treads was 13.3 times higher than in the model without treads. The deflection for the
same load level P = 4 kN at point P2 for model M1 was u = 1.9 mm and, for model M2,
u = 0.2 mm. The deflection value of model M2 was 9.5 times smaller than the deflection of
model M1. The steps masoned above the staircase significantly increased the load-bearing
capacity of the structure, as well as its stiffness. Figure 11 shows the failure mode of the
tested models of stair arches and the results of the measurement of the deformations for
M2 made with the ARAMIS system at the moment of destruction.

The model of structural failure changed, which, in the case of model M2, occurred as
a result of cracking along the arch, at the interface of the arch with the brick treads. First
of all, the masonry above the arch detached from the rest of the structure (masoned brick
treads). This proved the significant importance of the stair treads above the arch in its
load-bearing capacity. Once the crack formed between the arch and the treads, the rest of
the structure exhibited rapid failure.

For model M1 (without treads), the deflection measured vertically in the load range
up to 0.9 kN developed similarly for points P1 and P2. The deflection curve for P3 was
significantly different from that for P1 and P2. Comparing the curves for a load level
P = 1 kN, it was found that the smallest deflection of the structure was recorded for the load
at point P1 (48.2 cm from the lower support), for which a vertical deflection of the structure
u = 0.3 mm was measured. At point P2 (100.7 cm from the lower support), the vertical
deflection u = 0.4 mm was obtained. At point P3 (153.2 cm from the lower support and
57.4 cm from the upper support), the highest vertical deflection of the structure u = 0.8 mm
was achieved. At point P2, the deflection was 1.3 times higher in relation to point P1, while,
at point P3, it was 2.7 times higher than at P1. That is, the lower the location of force along
the staircase was, the lower the influence on the deformation of the structure.
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Figure 10. Experimental results of masonry staircases: relation P–u (vertical displacement in the
middle of an arch in point P2) for model M1 (a); force P–reaction R for model M1 (b); force P–
displacement u (vertical displacement in the middle of an arch in point P2) for model M2 (c); force
P–reaction R for model M2 (d).

Changing the location of the force had also a significant effect on the recorded reaction
R in the upper part of the staircase. For model M1, in the case of force applied to the
middle and lower parts of the staircase (P1 and P2), the reaction was positive, which means
that it was directed vertically downwards and balanced the horizontal forces in the arch.
However, for the force at point P3, the situation was completely different. Due to the
different geometry of the arch compared to typical vaults, the reaction had the opposite
direction. The arch in this place did not generate compressive force on the upper support,
but, rather, a tension. Comparing the values of the reaction R between different force points
at the force level P = 1 kN, it should be noted that the reaction for points P1 and P2 was
similar and was about R = 0.8 kN. For point P3, the reaction was R = −0.1 kN, which was
eight times lower. The reactions for points P1 and P2 had different values until the inflection
point on the P2 curve, at force P = 0.9 kN.
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Different results were obtained for model M2 (with treads). The differences in deflec-
tion u were less visible between P1 and P3. For the load level P = 5 kN at points P1 and P3,
the deflection had a value of u = 0.2 mm. In the investigated load range, the addition of
stair treads increased the stiffness of the structure regardless of force location.

For model M2, the reaction forces in the support differed from each other. Negative
values for the support were registered again for point P3 but also partially for point P2.
The reaction in the case of the force at the center (P2) operated in a tension range, up to
P = 9 kN, after which it started to work in compression. At the force level P = 5 kN, the
reaction at point P1 was R = 0.4 kN; at point P2, it was R = −0.2 kN; and, at point P3, it was
R = −1.4 kN. The spreading force for the force P = 5 kN was recorded only for the force at
point P1. In the case of force at points P2 and P3, tension was observed. The value of the
reaction for P3 was seven times higher than for P2.

The results measured using the ARAMIS system allowed us to analyze the displace-
ment with higher precision. For the reference load level P = 6 kN, there were visible
differences in the operation of the structure depending on the load application point. Ana-
lyzing the displacement maps (Figure 12), it is visible that there were local deformations.
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Those were caused by the movement of the bricks toward each other due to the changes in
the joints.

For model M2, regardless of the load application point, the values of arch displacement
were of the same sign. This is different from a typical operation of a masonry arch. The
biggest displacement of the staircase was achieved when the force was applied at point P2.
The results for points P1 (value for E4, virtual point, in the middle, d = 0.186 mm) and P3
(also value for E4, virtual point, in the middle, d = 0.189 mm) were similar. The values of
deflections at the points directly under the applied forces differed for P1 (virtual point E2,
d = 0.217 mm) and P3 (virtual point E6, d = 0.144 mm), even though the total deflection at
point E2 was similar. For the load level P = 6 kN, the highest resultant deflection for point
P2 was d = 0.274 mm. This is a value that can be hardly seen with a naked eye. The failure
of the structure was also at a small resultant displacement of d = 6.714 mm. These results
confirm a significant influence of masonry treads on the rigidity of the whole structure.
The treads are responsible for increased stiffness of a lean masonry arch. Due to the low
values of the displacement of treads, the diagnostic of the structure should be performed
with precise measurement equipment, such as 3D scanners (TLS).
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load P = 6 kN at point P1 (bottom) (a), load P = 6 kN at point P2 (middle) (b), load P = 6 kN at point 
P3 (top) (c) and load at failure P = 59.8 kN in point P2 (d). d - resultant displacement; dX - horizontal 
displacement; dY - vertical displacement. 
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the existing arched stair structure. 

 The TLS measurements allowed us to detect geometric irregularities, which, comple-
mented by visual diagnostic tests, allowed us to detect damage to their structure.  
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 The conducted experimental investigations showed that the key element responsible 
for the actual load-bearing capacity and stiffness of the stair flight were the treads 
above the masonry arch.  

Figure 12. Results of experimental test of masonry staircases—displacement measured by ARAMIS:
load P = 6 kN at point P1 (bottom) (a), load P = 6 kN at point P2 (middle) (b), load P = 6 kN at point
P3 (top) (c) and load at failure P = 59.8 kN in point P2 (d). d—resultant displacement; dX—horizontal
displacement; dY—vertical displacement.

4. Conclusions

Based on the research study presented, the following conclusions were drawn:

• The TLS method allowed us to perform the geometric analysis and dimensioning of
the existing arched stair structure.

• The TLS measurements allowed us to detect geometric irregularities, which, comple-
mented by visual diagnostic tests, allowed us to detect damage to their structure.

• The damage to the flight was caused by improperly performed repair works—improper
temporary support of the flight.

• The conducted experimental investigations showed that the key element responsible
for the actual load-bearing capacity and stiffness of the stair flight were the treads
above the masonry arch.

• The load-bearing capacity of the model with treads was 13.3 times higher than that of
the model without treads.

• The deflection value of model M2 was 9.5 times smaller than the deflection of model M1.
• A different working mechanism was found for the stair arch model with brick threads

(M2) compared to the arch without threads (M1).
• The failure of model M1 was caused by the opening of the crack within the joint

located under the concentrated force at point P2.
• In the case of model M2, failure occurred as a result of cracking along the arch, at the

interface of the arch with the brick treads.
• In the case of arched stair renovation, it is crucial to properly connect the arches of the

stair flights with the treads above. If there is no proper connection between the vaults
and the treads, the increase in the load-bearing capacity shown in the research study
should be excluded from the calculations.
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in measurements of technical conditions of architectural structures. Metrol. Meas. Syst. 2018, 25, 779–792. [CrossRef]
35. Suchocki, C.; Katzer, J. TLS Technology in Brick Walls Inspection. In Proceedings of the Conference: 2018 Baltic Geodetic Congress

(BGC Geomatics), Olsztyn, Poland, 21–23 June 2018; pp. 359–363.
36. Suchocki, C.; Katzer, J.; Serrat, C.; Jagoda, M. Application of TLS Intensity Data for Detection of Brick Walls Defects. IOP Conf. Ser.

Mater. Sci. Eng. 2019, 603, 022100. [CrossRef]
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45. Suchocki, C.; Błaszczak-Bąk, W. Down-Sampling of Point Clouds for the Technical Diagnostics of Buildings and Structures.
Geosciences 2019, 9, 70. [CrossRef]

46. Dias, I.S.; Flores-Colen, I.; Silva, A. Critical Analysis about Emerging Technologies for Building’s Façade Inspection. Buildings
2021, 11, 53. [CrossRef]

47. Mosalam, K.; Takhirov, S.; Park, S. Applications of laser scanning to structures in laboratory tests and field surveys. Struct. Control
Health Monit. 2014, 21, 115–134. [CrossRef]

48. Liu, J.; Zhang, Q.; Wu, J.; Zhao, Y. Dimensional accuracy and structural performance assessment of spatial structure components
using 3D laser scanning. Autom. Constr. 2018, 96, 324–336. [CrossRef]

49. Leonov, A.V.; Anikushkin, M.N.; Ivanov, A.V.; Ovcharov, S.V.; Bobkov, A.E.; Baturin, Y.M. Laser scanning and 3D modeling of the
Shukhov hyperboloid tower in Moscow. J. Cult. Herit. 2015, 16, 551–559. [CrossRef]

50. Feng, P.; Zou, Y.; Hu, L.; Liu, T. Use of 3D laser scanning on evaluating reduction of initial geometric imperfection of steel column
with pre-stressed CFRP. Eng. Struct. 2019, 198, 109527. [CrossRef]

51. Mora, R.; Martín-Jiménez, J.A.; Lagüela, S.; González-Aguilera, D. Automatic Point-Cloud Registration for Quality Control in
Building Works. Appl. Sci. 2021, 11, 1465. [CrossRef]

52. Erdélyi, J.; Kopáčik, A.; Kyrinovič, P. Spatial Data Analysis for Deformation Monitoring of Bridge Structures. Appl. Sci. 2020, 10,
8731. [CrossRef]

53. Singhroy, V.; Fobert, M.-A.; Li, J.; Blais-Stevens, A.; Charbonneau, F.; Das, M. Advanced Radar Images for Monitoring Transportation,
Energy, Mining and Coastal Infrastructure; Singhroy, V., Ed.; Springer: Cham, Switzerland, 2021; pp. 3–40. [CrossRef]

54. Drobiec, Ł.; Piekarczyk, A.; Kubica, J. AAC bocks masonry compressed perpendicular and parallel to the bed joints. In Proceedings
of the 12th International Brick/Block Masonry Conference, Madrid, Spain, 25–28 June 2000.
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