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Abstract: This paper is dedicated to the calculation of the radiative properties of 82%argon-18%CO2

thermal plasmas with the addition of metallic vapors (iron, in the present case, due to workpiece and
wire erosion), this mixture being representative of metal active gas (MAG) arc welding processes.
These radiative properties are obtained in the frame of the net emission coefficient (NEC) theory, using
the recent and accurate “line by line” method. All significant radiative contribution mechanisms are
taken into account in the calculation: atomic lines, atomic continuum (radiative attachment, radiative
recombination, and bremsstrahlung), molecular bands for diatomic and polyatomic molecules, and
molecular continuum. Broadening phenomena (Doppler and pressure effects) are also carefully
treated for bound-bound transitions (atomic lines and molecular bands). Regarding 82%Ar-18%CO2

plasma, the results obtained demonstrate the key role of molecular bands at low temperatures
(T < 4 kK), whereas the atomic line and continuum prevailed at intermediate and high temperatures.
With the addition of a few percentages of iron vapor, it was shown that the total NEC is significantly
increased (especially at low temperatures) and that the atomic and ionic lines become dominant in
all the studied temperature ranges (3–30 kK). This theoretical study will constitute a groundwork to
build a diagnostic method (based on the calculation of partial NECs for accurately chosen spectral
intervals) for the determination of plasma temperature and iron vapor concentration in welding arcs.

Keywords: radiative properties; Ar-CO2-Fe plasmas; metal active arc welding; molecular emission;
metal vapor

1. Introduction

Gas metal arc welding (GMAW) is an efficient tool for joining metals in many industrial
fields, e.g., in the construction of buildings, vehicles, ships, pipelines, and pressure vessels.
GMAW is also referred to as metal inert gas (MIG) welding or metal active gas (MAG)
welding, depending on whether the shielding gases are inert (e.g., Ar or He) or active
(containing CO2 or O2). An Ar-CO2 mixture is the most popular shielding gas used in
MAG welding for joining unalloyed steels, due to its low cost and good performance in
arc stability and wetting power [1]. In the GMAW process, an arc is utilized to melt the
workpiece to form the weld pool and melt the wire into droplets; metal vapor is inevitably
produced on the molten metals due to the large thermal fluxes from the arc.

According to Murphy’s review [2], the presence of metal vapor has a major influence
on arc welding. It can markedly increase the radiative emission [3] and the electrical con-
ductivity [4] at low temperatures with small proportions (<1% by mole). It also can change
other plasma properties, such as the viscosity or thermal conductivity, with proportions
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more than 20% by mole [4,5]. All of these effects result in changes in the a we current and
energy transfer to the workpiece and thus, the profile of the weld pool [6–8]. Hence, it is
essential to determine the metal vapor concentration for understanding the arc welding
process. In addition to metal vapor concentration, temperature is another key parameter for
plasmas. The plasma properties in GMAW arcs, such as transport and radiative properties,
can be expressed as a function of these two parameters (e.g., [3,4]).

Although there exist numerous experimental methods, such as Thomson scatter-
ing [9–11] or Langmuir probe [12,13] to determine arc properties, optical emission spec-
troscopy (OES) has been by far the most commonly used method for diagnosing welding
arcs. It has been widely used to measure some steady arcs, e.g., the arc of gas tungsten arc
welding [14–17]. However, there are still many difficulties for GMAW arcs, because their
arcs are highly dynamic due to metallic transfer and because the radiative properties used
for plasma diagnosis are not always available. Therefore, few researchers have addressed
the measurement of temperature and metal vapor concentration for GMAW arcs [18–25].

There is a consensus on the temperature measured: the temperature drops in the
center of arcs in argon dominant shielding gases [18–25], but the variation in metal vapor
concentration seems to be surprisingly large despite different welding conditions used.
Goecke et al. [25] found a maximum concentration of 30%, Rouffet et al. [18] up to 60%,
while Valensi et al. [19] measured less than 1% iron concentration. Moreover, the previous
methods, which are based on the principle of line emission and the instruments of spec-
troscopy or intensified charge-coupled device (ICCD), can only instantaneously record the
data for one spatial position or one layer of the arc. Hence, it is hard to diagnose the entire
arc. In addition, most previous works are focused on MIG arcs [18,19,24,25], but few works
are devoted to MAG arcs in an Ar-CO2 mixture [20,22]. As a consequence, there remains a
need for an alternative approach that can precisely and quickly determine the temperature
and the metal vapor concentration for GMAW arcs, especially for the MAG arc.

A method using a high-speed camera coupled with narrow bandpass filters may be
an alternative to answer these requirements. A camera with many imaging units serves
as multiple spectroscopies and quickly collects the integrated radiation within a spectral
interval for the entire arc. The parameter, e.g., temperature, can be deduced by comparing
the measured absolute or relative local emission with the theoretical emission. This method
has been tested and validated in measuring the temperature for some plasmas with fixed
components, e.g., pure Ar [26,27], Ar-H2, and Ar-He-H2 [28] in the case of a stabilized
torch or air [29], in steady or unsteady conditions. However, it is difficult to find the
determination of both the temperature and the component concentration for plasmas with
an unfixed component.

This study is part of research concerning the development of the high-speed camera
method that allows the determination of the temperature and the metal vapor concentration
in MAG arcs with a solid steel wire (Ar-CO2-Fe plasmas). The most critical challenge of
this method is to select the appropriate diagnostic spectral intervals, which requires the
prerequisite knowledge of the radiative properties of plasmas [29]. Hence, this paper is
devoted to the theoretical study of the radiative properties of Ar-CO2-Fe plasmas. Based on
the results, it will be easy to diagnose MAG arcs by selecting suitable spectral intervals. In
this study, the radiation spectra of [82%Ar-18%CO2]-Fe plasmas with various iron content
were calculated, and their integrated radiation was analyzed by the net emission coefficient
method (NEC) to facilitate the selection of spectral intervals. The shielding gas of 82%
Ar-18% CO2, typically, e.g., Linde Industrial Gases CORGO 18, is adopted due to its wide
use in MAG welding [1]. Considering the boiling point of iron (3032 K) and the operating
pressure of GMAW (at atmosphere pressure), we chose the lowest calculation temperature
as 3 kK and the pressure as 0.1 MPa.

It should be noted that the radiative properties have already been reported for pure
gases, binary gas mixtures, or more complex mixtures containing argon, carbon dioxide, or
iron: Ar [3], CO2 [30], Fe [31], Ar-Fe [3], CO2-Cu [32], Ar-H2-Fe [33], and CO2-N2-Cu [34]
but to the best of our knowledge, there are no available data for Ar-CO2 or Ar-CO2-Fe
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plasmas. In addition, to obtain fine spectra, two special treatments were involved in
the calculation: the “line by line” method and the consideration of molecular radiation.
Indeed, the emission of atomic lines is usually considered through the escape factor [35] by
neglecting the overlapping of lines which spares calculation time but tends to overestimate
the NEC [5]. Due to numerous iron lines (94,920 lines) in plasmas, we considered line
overlapping by using the “line by line method” [36,37]. In addition, when the temperature
is lower than 10 kK, the contribution of molecular species should not be neglected in
presence of oxygen [38] and carbon [39]. Because the large area of GMAW arcs is below
10 kK [18–25], we considered the emission of the molecular systems of O2, CO, CO+, C2,
CO2, and O3.

2. Plasma Composition

Because the radiative properties of plasmas depend strongly on the chemical species
in the mixture, we first calculated the equilibrium composition for the Ar-CO2-Fe plasmas
with different iron content in the temperature range of 3 kK–30 kK and at atmospheric
pressure. The molar ratio between Ar and CO2 is constant at 82%/18% due to the use of an
82% Ar-18% CO2 mixture. In this study, the calculation of plasma composition was realized
by solving the coupled equations that describe the mass action law and the conservation
of atomic nucleus, electrical neutrality, and particle density (pressure conservation). To
achieve a fast solution, we adopted the method proposed by Godin and Trepanier [40]
which is based on the chemical base concept. In addition, the pressure corrections were also
taken into account: Virial correction at low temperature [41] and Debye–Hückel correction
at high temperature [42]. For detailed calculations, please refer to our previous paper [43].
Table 1 lists the 39 chemical species considered in this work.

Table 1. Chemical species at equilibrium state for the [82%Ar-18%CO2]-Fe plasmas.

Atoms, Atomic Ions,
and Electron

Diatomic Molecules
and Ions

Polyatomic Molecules
and Ions

Ar, Ar+, Ar2+, Ar3+, C, C−,
C+, C2+, C3+, O, O−, O+, O2+,
O3+, Fe, Fe−, Fe+, Fe2+, Fe3+,

and e−

C2, C2
+, C2

−, O2, O2
+, O2

−,
CO, CO+, FeO, and Fe2

C3, C3
−, CO2, CO2

−, C2O, O3,
C4, C3O2, and FeC5O5

Internal partition functions (IPF) are essential data for the calculation of plasma com-
position. IPFs of atoms and their positive ions were calculated with the degeneracies
and electronic level energies taken from the NIST database [44]; these IPFs were system-
atically compared with Drawin and Felenbok’s IPF complication [45]. For the negative
ions, IFP was assumed to be equal to the degeneracy of the ground state. According to
Herzberg [46], we adopted the Morse potential minimization method [47] to calculate the
IPF of the diatomic molecules. For polyatomic molecules, IPF was calculated according
to Herzberg [48] in the frame of the harmonic oscillator and the rigid rotator assumptions.
The required spectroscopic data (Dunham coefficients, moments of inertia, degeneracies,
vibrational frequencies, and symmetry number) were taken from Huber and Herzberg [49]
and Chase et al. [50].

Figure 1 shows the compositions of some [Ar-CO2]-Fe mixtures at 0.1 MPa, using the
90%[82%Ar-18%CO2]-10%Fe mixture, as an example. At low temperatures (T < 4 kK), the
plasma is dominated by the neutral atoms (Ar, Fe, O) and the molecules (CO2, CO, O2,
and FeO). Above 4 kK, the Fe+ ions gradually increase, and above 8 kK, the ions C+, Ar+,
and O+ successively appear and increase together with the electrons; this rise of the ion
population is due to the lower ionization energy of iron (7.902 eV) compared with those of
others (11.260 eV, 13.618 eV, and 15.760 eV for C, O, and Ar, respectively). Above 15 kK,
plasma is mainly composed of charged particles.
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Figure 1. Equilibrium composition of some [82%Ar-18%CO2]-Fe mixtures (molar proportion) at
0.1 MPa: (a) 82%Ar-18%CO2; (b) 90%[82%Ar-18%CO2]-10%Fe; (c) 50%[82%Ar-18%CO2]-50%Fe; and
(d) Pure Fe.

3. Radiative Properties
3.1. Radiative Mechanisms
3.1.1. Radiation from the Atomic Lines

The line emission results from the spontaneous transition of an excited electron from a
high energy level Ei to a lower energy Ej. In the calculation, 117,213 atomic lines (6672 lines
for atomic carbon species, 6217 lines for atomic oxygen species, 9404 lines for atomic argon
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species, and 94,920 lines for atomic iron species) are taken into account. The monochromatic
emission coefficient is expressed as [3]:

εlines
λ (T) =

hc
4πλij

·Aij·Ni(T)·P
Voigt
ij (λ) (1)

where λ is the wavelength, h and c are the Planck constant and the speed of light, re-
spectively, λij is the transition wavelength, Aij is the spontaneous emission probability
issued from the table of Moore [51], NIST table [44], and Kurucz and Peytremann [52], Ni
is the population number density of the particles in their excited states, and Pij(λ) is the
normalized Voigt profile of the line.

Usually, in order to simplify the treatment of the spectra, the line overlapping is
neglected, each line is treated separately through the escape factor proposed by Drawin
and Emard [35]. This factor is defined for a line as the ratio of the radiative flux escaping
from isothermal plasma with thickness Rp to the radiative flux escaping from optically
thin plasma. Unfortunately, this treatment tends to overestimate the NEC. The final
objective of this global work is the determination of the plasma temperature based on
a fine description of the spectrum, we chose to calculate the monochromatic emission
coefficient of a line according to the “line by line” method [36,37] since the escape factor
does not allow a fine spectral description of the lines. Assuming this approach, the main
difficulty of the calculation is the determination of the line’s profiles. In this work, we
took into account the broadening phenomena resulting from Doppler and pressure effects
(Van der Waals broadenings, resonance broadenings, and Stark broadenings). The line
shape of Doppler broadening is assimilated to a Gaussian profile, and the full width at
half maximum (FWHM) is given by [53,54]. The pressure broadenings, whose line shape is
described according to a Lorentzian profile, are caused by the interaction of an emitting
atom with surrounding particles. The FWHMs of resonance broadenings and Van de
Waals broadenings are given by [55,56], and Stark broadenings are given by [54,57]. The
convolution of the Gaussian and the Lorenzian functions results in a Voigt profile, whose
analytical form is given by Whiting [58], as follows:

PVoigt
ij (λ) =

2 ln 2
δλ2

D
· δλL

π3/2

∫ +∞

−∞

exp
(
−x2)(√

ln 2 δλL
δλD

)2
+ (x − y)2

·dx (2)

with y =
2 ln 2
δλ2

D
·
(
λ − λij

)
with δλD and δλL being the Doppler and the Lorentz broadenings, respectively.

3.1.2. Radiation from the Atomic Continuum

The radiation coming from the atomic continuum is produced by three mechanisms [3]:

• Radiative attachment: even if the radiative attachment is often negligible, we never-
theless considered this mechanism due to the presence of negatively charged particles
(C−, O−, Fe−) in the plasma mixtures. Knowing the electronic affinity for the different
species (C = 121.9 kJ/mol, O = 141 kJ/mol, and Fe = 15 kJ/mol), the monochromatic
emission coefficient was calculated according to [3]:

εatt
λ (T) =

(
2hc
λ3

)
·
( c

λ2

)
· exp

(
− hc
λkBT

)
·nA − (T)·σdet(λ) (3)

where kB is the Boltzmann constant, nA − (T) is the population number density of the
negatively charged particles, and σdet(λ) is the photo-detachment cross-section taken
from Yachkov for carbon [59], and Robinson and Geltman for oxygen [60]. We did not
find data to take into account the attachment of iron.
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• Radiative recombination: radiative recombination occurs when an electron and an
atomic ion can recombine. This mechanism is often important in the continuum
radiation of thermal plasmas. Its calculation requires the knowledge of the Biberman–
Schluter factors, which are performed by summing the photoionization cross sections
for all the considered energy levels, assuming a Thomas–Fermi shielded potential [61].
For carbon, oxygen, and argon species, this factor has been calculated and tabulated
by Hofsaess [62]. The corresponding monochromatic emission coefficient is defined
by [3,63]:

εrec
λ (T)= C1·

( c
λ2

)
·ne(T)·nz+(T)

Qint
z+(T)

·
Z2

z+√
T
·
[

1 − exp
(
− hc

λkBT

)]
·gz+

1 ·ξ
(z−1)
λ (T) (4)

This is example 1 of an equation:

With C1 =
16π

(
e2/4πε0

)3

3c3
√

6kBπm3
e

= 5.44436 × 10−52 J m3 K1/2 sr−1

where ne(T) and nz+(T) are the population number densities of electron and ions,
respectively, and Zz+ is the charge of the ion Az+. Qint

z+(T) and gz+
1 are the internal

partition function and the ground level degeneracy of the ion Az+, respectively, me
and e are the mass and the charge of the electron, respectively, ε0 is the permittivity
of vacuum, and ξ

(z−1)
λ is the Biberman–Schluter factor issued from Hofsaess [62,64]

for argon (Ar and Ar+), carbon (C and C+), and oxygen (O, O+, and O2+). As the
Biberman–Schluter factor was not available for iron species and multi-charged species
(Ar2+, Ar3+, C2+, C3+, and O3+), we used the hydrogen-like atoms approximation
developed by Okuda et al. [65].

• Bremsstrahlung: the bremsstrahlung radiation is produced by the deceleration of
an electron due to the deflection by an electric field. The monochromatic emission
coefficients for electron-ion and electron-atom interactions are given, respectively, by

εei,z+
λ (T)= C1·

( c
λ2

)
·Z2

z+
ne(T)·nz+(T)√

T
· exp

(
− hc

λkBT

)
·Gz+

ei, λ(T) (5)

εea
λ (T)= C2·

( c
λ2

)
·na(T)·ne(T)·T 3/2· exp

(
− hc

λkBT

)
·Gea, λ(T) (6)

With C2 =
32
3c3 ·

(
e2

4πε0

)
·
(

kB
2πme

)3/2
= 3.4218 × 10−43 J m K−3/2sr−1

na(T) is the neutral atom number density. For electron-ions interactions, the Gaunt
factor Gz+

ei, λ(T) is introduced to correct non-classical behavior using hydrogen-like
approximation and is issued from the table calculated by Grant [66,67]. For electron-
atoms interactions, the factor Gea, λ(T) is homogeneous to a surface and depends on
the elastic cross-section which is taken from Neynaber et al. [68] and Robinson and
Geltman [60] for carbon and oxygen, and from Tanaka and Lowke [69] for argon.

3.1.3. Radiation from the Atomic Continuum

The molecular continuum can have an important impact on the surrounding regions
where the radiation coming from the hottest regions can be strongly absorbed, especially the
UV radiations. Consequently, we included this phenomenon in the calculation assuming its
importance for temperatures lower than 10 kK. To take into account this radiative process,
we have to consider the photodissociation corresponding to the dissociation of a molecule
by photon absorption (AB + hν � A + B ), the simple photoionization corresponding
to an electron loss by photon absorption

(
AB + hν � AB++e−

)
, and the dissociative

photoionization corresponding to the dissociation of a molecule (AB + hν � A + B++e− ).
As it is very difficult to calculate the cross-sections for all the rotational, vibrational, or
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electronic levels, we preferred to use experimental data from the literature. Nevertheless,
these data are often obtained in the Standard Temperature Conditions at atmospheric
pressure. Based on this report, we applied two assumptions: (1) we only considered the
fundamental energy levels, which is a good approximation for the low temperatures where
the population number densities of the molecules are significant; (2) the cross-sections
of the various involved radiative mechanisms were supposed to be independent of the
temperature and only dependent on the wavelength:

εMC
λ (T)= Bλ(T)·NA2(T)·∑i σA2(λ, 300 K)·

(
1 − exp

(
− hc

λkBT

))
(7)

where εMC
λ (T) is the corresponding spectral emission, Bλ(T) is the Planck function, NA2(T)

the total number density of the molecule A2 at the temperature T (in m−3), and σA2 is
the total photoabsorption cross-section of the same molecule (in m2). In this work, we
considered the molecules C2, O2, CO, CO2, and O3 already studied in the works of Jan
et al. [70] and Billoux et al. [30]. All the references used for the photoabsorption cross-
sections are reported in Table 2.

Table 2. References used for photoabsorption cross-sections of major molecular species.

Molecule References

C2 [71,72]
CO [73–75]
O3 [76–79]
O2 [80]

CO2 [74,81,82]

3.1.4. Radiation of the Molecular Bands

The consideration of the molecular bands in the radiative spectra is an important task
of this work since it was rarely included in our previous works [5], except in the last works
of Billoux et al. [30,32]. Here, we took into consideration the diatomic molecular systems of
O2, CO, CO+, and C2 and the polyatomic molecular systems of CO2 and O3, even if some of
them have a low contribution rate in the plasma composition such as CO+ or O3, as listed
in Table 3. They have been validated in Air and CO2 by Babou et al. (for CO, CO+, C2, O2,
and CO2) [83], Chauveau et al. (for O2, CO, and C2) [84], Lino Da Silva and Dudeck (for
CO) [85], and Laux (for O2) [53].

Table 3. Molecular band systems taken into account in the present work.

Molecule Electronic
System

Electronic
Transition (v

′
max; v

′ ′
max) σ0,0

(
cm−1)

O2
Schumann–

Runge B3Σ−u → X3Σ−g (19; 21) 49,358

CO

Infrared X1Σ+ → X1Σ+ (49; 40) -
Fourth Positive A1Π → X1Σ+ (22; 35) 64,748
Hopfield–Birge B1Σ+ → X1Σ+ (2; 50) 86,916

Angström B1Σ+ → A1Π (2; 20) 22,171
Third Positive b3Σ+ → a3Π (2; 18) 35,358

CO+
Comet-tail A2Π → X2Σ+ (30; 26) 20,408

First negative B2Σ+ → X2Σ+ (30; 35) 45,633
Baldet–Johnson B2Σ+ → A2Π (30; 26) 25,226

C2

Phillips A1Πu → X1Σ+
g (35; 21) 8268

Mulliken D1Σ+
u → X1Σ+

g (22; 21) 43,668
Deslandres–

D’az. C1Πg → A1Πu (9; 32) 25,969
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• Diatomic molecular systems: the emission coefficient of each molecular line between two
rotational levels J′ and J′ ′ is given by [33]:

εMB
λ (T) =

hcσ
4π
·NA2

(
n′, ν′, K′, J′, P′

)
·An′ , ν′ , K′ , J′

n′′ , ν
′′ , K′′ , J′′

(8)

where σ is the wavenumber, NA2(n
′, ν′, K′, J′, P′) is the population number density

of the emitting level, and An′ , ν′ , K′ , J′
n′′ , ν′′ , K′′ , J′′ is the transition probability.

Assuming a Boltzmann distribution, the population number density of the emitting
level is defined by:

NA2

(
n′, ν′, K′, J′, P′

)
=

(
NA2(T)
Qint

A2
(T)

)
φ
(
2J′+1

)
exp

(
− E′

kBT

)
(9)

with E′= hc
(
T′e + G′

(
ν′
)
+ F′ν

(
K′
))

(10)

where NA2(T) is the number density of the molecule A2, Qint
A2
(T) is the internal partition

function of the molecule A2 depending on the parity of the level and the spin quantum
number, n′ is the electronic level, and ν′, K′, J′, and P′ are the vibrational, rotational, sub-
rotational, and symmetry quantum numbers, respectively; E′ is the energy of the level
in the Born-Oppenheimer approximation, and T′e , G′(ν′), and F′ν(K′) are the electronic,
vibrational, and rotational energies, respectively.

The transition probability of a radiative transfer is obtained by the expressions:

An′ , ν′ , K′ , J′

n′′ , ν
′′ , K′′ , J′′

= An′ , ν′

n′′ , ν
′′ · AK′ , J′

K′′ , J′′
(11)

with AK′ , J′

K′′ , J′′
=

SK′ , J′

K′′ , J′′

2J′ + 1
(12)

where An′ , ν′

n′′ , ν
′′ is the Einstein coefficient, AK′ , J′

K′′ , J′′
is the rotational transition probability, and

SK′ , J′

K′′ , J′′
is the Hönl-London factor calculated by Whiting et al. [86]:

∑ SK′ , J′

K′′ , J′′
=
(

2− δ
0, Λ

′ δ0, Λ′′
)(

2S′ + 1
)(

2J′ + 1
)

(13)

where δ0, Λ is the Kronecker symbol, whose value is 1 if Λ = 0 and 0 otherwise, 2S′ + 1 is
the spin multiplicity of the upper electronic state. Λ = |ML| is the quantum number, with
a value between 0 and L (state Σ(Λ = 0), Π(Λ = 1), ∆(Λ = 2)).

Concerning the broadening phenomena of the diatomic lines, we took into consid-
eration Doppler and collisional broadenings. For the Doppler effects, and in the case of
molecules, we used the same formula as an atomic case. For collisional broadenings, it is dif-
ferent since we did not have enough information for all the temperature ranges. Therefore,
we systematically used a semi-empirical approximation law to determine the molecular
collisional broadenings with an HWHM (Half widths at Half Maximum) γL as a function
of the pressure, P. Depending on the wavelength region, we used the recommendation of
Breene [87]:

γL

(
cm−1

)
= γ0(Tref)·P·

(
Tref
T

)n
(14)

The relation (14) has been validated by Sick et al. [88], Lewis et al. [89], and Chau-
veau [84] for O2 molecules. The work of Chauveau in air plasmas also indicated the low
influence of this approximation on the radiative flux. The relation (14) can be applied
because of the large broadenings of the molecular bands due to their high population
number densities (leading to a less important role for the wings), because of the weak self-
absorption of these molecular lines and because of the strong importance of the Doppler
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effect in most cases (excepted in the Infrared). Due to these last remarks, we decided to
apply it to all the diatomic molecules. We can find that for visible and near IR (for O2 SR,
for example), the values of γ0, Tref, and n are 0.105, 273, and 0.7, respectively [88,89]; in UV
and molecules in Hitran, their values are 0.265, 295, and 0.66, respectively [90]; in IR, they
are 0.053, 296, and 0.75, respectively [91].

• Polyatomic molecular systems: the radiation of the polyatomic species can be very
important in the Infrared region. The radiation coming from CO2 was calculated
using the database CDSD-4000 of Tachkun and Perevelov [92] which seems to be
the most complete in the literature with wavenumbers between 8310 and 226 cm−1,
and temperatures up to 4000 K. Similar to Billoux et al. [33], we did not consider the
radiation of CO2 for higher temperatures due to a lower contribution to the radiative
spectrum. For the O3 molecule, we used the HITRAN 2012 database [93], even if
these molecules are in small concentrations in the plasma. The broadenings were
described with a Voigt profile and collisional effects were defined by the relation (14).
This last database gave us two kinds of broadenings: the broadenings parameters
due to the perturbation of the species existing in air and the broadenings parameters
corresponding to the perturbation of the molecular energy levels by species of the same
type (self-broadenings). As this work is not focused on air plasmas, we considered all
the broadening phenomena of a molecular line due to molecules of the same type with
a total self-broadening. Under this consideration, we made two strong assumptions
that we suppose not to be far from reality: (1) the molecular species is important in the
plasma’s composition and the perturbation due to the other species can be neglected;
(2) if the previous condition is not respected, all the perturbations caused by the other
molecular species can be considered identically even if they are similar (or not) to
the perturbed species. The second assumption can be debated but we supposed that
low temperatures tend to increase the molecular species and reduce the impact on the
broadening coefficients.

3.1.5. Discretization and Integration of the Monochromatic Emission Coefficient
(Equation (1))

The most rigorous method to describe the spectra is the “line by line” method in order
to take into account the broadenings of the atomic and molecular lines. According to previ-
ous works using this method [31,39,70], we needed to find a compromise between a very
fine description and a reduced computing time. Consequently, in this work, we calculated
high-resolution spectra with a variable wavelength step, from 106 to 7 × 106 wavelengths,
depending on the temperature (more wavelengths are needed at low temperatures to
take into account the molecular bands). The lines were integrated over ±50 nm from the
line center which is sufficient at atmospheric pressure [39,70] and led to 0.5% accuracy in
this study compared to an integration on the total wavelength range. The algorithm of
Drayson [94] was used to calculate the Voigt profile in order to reduce the computing time.

3.2. Net Emission Coefficient

There are many methods to represent the spectral radiation from a given geometrical
plasma, such as the NEC method [95], the Partial Characteristics method [96], the Discrete
Ordinates Method [97], the k-distribution [98], the PN approximation [99], or the Monte
Carlo method [100]. Some of these methods are detailed in the works of Siegel and
Howell [101] and Modest [102]. However, the most popular method used in modeling and
spectral diagnostics is the NEC method. The NEC method is defined as the divergence of
the radiative flux at the center of a spherical, homogeneous, and isothermal plasma [95].
The NEC can be interesting for plasma diagnostics using a camera [29,30] since we can
estimate the radiation of specific spectral intervals (we speak about “partial NEC”) and
compare the results with measurements. Moreover, the NEC calculated over the total
spectrum is widely accepted in modeling the hot zones of plasma [43,103,104]. However,
the NEC is not useful for high-temperature gradients and in cold regions, more particularly,
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the edges of the plasma where absorption can be significant. The NEC is defined as
follows [3]:

εN
(
T, Rp

)
=
∫ ∞

0
Bλ(T)·K

′
(λ, T)· exp

(
−K

′
(λ, T)·Rp

)
·dλ (15)

where Rp is the plasma radius based upon the assumption of a plasma being spherical,
homogeneous, and isothermal, Bλ(T) is the Planck function, and K′(λ, T) is the total
monochromatic absorption coefficient which is correlated with the local emission coefficient
by Kirchhoff’s law: ελ(T)= Bλ(T)K′(λ, T). The total monochromatic absorption coefficient
K′(λ, T) corrected by the induced emission is expressed as:

K′(λ, T)= K(λ, T)·
(

1 − exp
(
− hc

λkBT

))
(16)

where K(λ, T) is the total monochromatic absorption coefficient at the wavelength λ and
the temperature T (without correction). The NECs are quoted for a given plasma radius Rp.
This radius is chosen to be the radius of the high-temperature region of the arc where the
absorption is mainly realized and it is about 1 mm for a welding arc [2].

4. Results
4.1. Spectra of [82%Ar-18%CO2]-Fe Plasmas

In order to obtain the NEC (or “partial NEC”) for [82%Ar-18%CO2]-Fe plasmas, it
is necessary to obtain their spectra prior to integrating them according to Equation (15).
Figure 2a,b present the total absorption coefficient obtained at 10,000 K and 0.1 MPa for
82%Ar-18%CO2 and 90%[82%Ar-18%CO2]-10%Fe plasmas (molar proportions), respec-
tively, as examples. For the 82%Ar-18%CO2 plasma, we can observe the presence of the
molecular bands and molecular continuum at a low wavenumber, the contribution of
a few lines at an intermediate wavenumber, and the role of the atomic continuum at a
higher wavenumber. When 10%Fe is added to the plasma, more atomic lines appear in the
spectrum due to the presence of numerous and emissive lines of iron, especially for low
wavelengths.
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4.2. Influence of Temperature and Rp on the NEC

Figure 3a,b presents NEC values for 82%Ar-18%CO2 and 90%[82%Ar-18%CO2]-10%Fe
plasmas, respectively, at 0.1 MPa as a function of temperature and plasma radius Rp. The
case Rp = 0 mm corresponds to an optically thin plasma (without absorption). For 82%Ar-
18%CO2 plasma, the NEC decreases with the temperature below 4 kK because the CO2
molecule is the main contributor to the radiation and its number density decreases rapidly
due to dissociation. Above 4 kK, the NEC increases with the temperature because the
radiation of CO begins to take effect at low temperatures, and the radiation of the atomic
lines begins to take effect at higher temperatures. For 90%[82%Ar-18%CO2]-10%Fe plasma,
since the stronger radiation of line emission is at low temperatures, the contribution of CO2
and CO radiation becomes secondary.

The NEC decreases with Rp due to the absorption phenomena and, more particularly,
the absorption of the resonance lines of the atomic species (this phenomenon is more
pronounced in presence of iron). The absorption is very important in the first millimeter.
For the 82%Ar-18%CO2 plasma with a radius of Rp = 1 mm, 91.5% of the total absorption
is achieved at 10 kK. Nevertheless, the absorption phenomenon is weak at very low
temperatures because the plasma is dominated by the molecular species and their radiation
is weakly absorbed. These conclusions are the same for other mixtures with and without
metallic vapors.
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(a) 82%Ar-18%CO2 mixture; (b) 90%[82%Ar-18%CO2]-10%Fe (molar proportions).

4.3. Influence of Vapor Concentration on the NEC

Figure 4 highlights the influence of vapor concentration on the NEC for Rp = 5 mm
and [82%Ar-18%CO2]-Fe plasmas. As it can be seen, it is evident that the strong influence
of iron on the NEC occurs with a very low concentration, especially at low temperatures.
This is caused by two phenomena: the increase in the electron number density because of
the low ionization potential of neutral iron compared to Ar, C, and O (7.902 eV, 15.760 eV,
11.260 eV, 13.618 eV for Fe, Ar, C, and O, respectively) and the rich spectrum of the atomic
lines of neutral iron (more specifically, the resonance lines which are strongly emissive but
also strongly absorbed). Similar behavior has also been observed for other plasmas with
iron vapor, for example, an Ar-Fe mixture [3].
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at atmospheric pressure and Rp = 5 mm.

4.4. Influence of the Different Contributions to the Total Radiation

For a better understanding of the influence of various radiative mechanisms, the
contributions of atomic lines, continuum (atomic continuum and molecular continuum),
and molecular bands to the NEC are presented in Figure 5a,b for [82%Ar-18%CO2]-Fe



Materials 2022, 15, 6415 14 of 19

plasmas without iron vapors and with an iron fraction of 10% (Rp = 5 mm, P = 0.1 MPa). In
previous works of the Laplace laboratory (see [28]), we defined the spectral intervals for
experiments by dividing the emission of the lines by the emission of the continuum in a
specific spectral interval where the emission of the continuum did not vary significantly.
Hence, it is important to know the variation of the different contributions to see the most
important contributions as a function of the temperature range. It is also the occasion
to validate our assumptions: the radiation of the molecules cannot be neglected at low
temperatures for Ar-CO2 plasmas.
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Figure 5. Contribution of the different radiative processes to the NEC for the plasmas at atmospheric
pressure: (a) 82%Ar-18%CO2 mixture; (b) 90%[82%Ar-18%CO2]-10%Fe (molar proportions).

For the 82%Ar-18%CO2 plasma, we see that the radiation of molecular bands is the
dominant contributor (>97%) to the NEC below 6 kK, and it shares the NEC with lines and
continuum until 10 kK, with more than 50% at 7.5 kK. The radiation of the molecular bands
is mainly produced by the CO2 system for temperatures below 4 kK, CO IR for temperatures
between 3.5 kK and 5 kK, and 4th CO for higher temperatures. When temperatures exceed
10 kK, the radiation of the molecular bands becomes negligible, and the radiation of lines
plays a leading role in the NEC while the continuum radiation also takes a considerable
proportion, especially between 14 KK and 18 kK, accounting for above 30%.
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When the plasma contains a low concentration of iron (e.g., 10% Fe in this case), it
can be observed that the radiation of the atomic lines is the most important part (>90%) of
the temperature range, and the other radiative mechanisms are of no significance. This is
because the intense radiation of iron lines drastically minimizes the influence of molecular
bands and continuum.

4.5. NECs for Certain Spectral Intervals

Because the NEC depends on the temperature T and the concentration of vapors
YFe for a given plasma size, it is possible to diagnose the T and YFe in MAG arcs (with
[82%Ar-18%CO2]-Fe plasmas) based on the NEC. Since the experimental instruments (CCD
cameras) can only detect the radiation within certain spectral intervals (e.g., visible light),
we actually need to find the NEC of spectral intervals (or “partial NEC”). By comparing
the measured values with the theoretical ones, we can determine the T and YFe in the arc.

Let us consider the spectral intervals 570–590 nm and 607–627 nm as examples.
Figure 6 shows their NECs and the ratio of these two partial NECs for a 50%[82%Ar-
18%CO2]-50%Fe mixture at 0.1 MPa and Rp = 5 mm. For one position of the MAG arc, if
the NEC (570–590 nm) and NEC (607–627 nm) measured are 1.00 × 106 Wm−3sr−1 and
1.20 × 106 Wm−3sr−1 (these values corresponding to the plasma with 50% Fe), respectively,
we can observe in the figure that the ratio 0.836 corresponds to a temperature of 8 kK.
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This method depends on the NECs of certain spectral intervals, and thus, the choice of
the spectral intervals is a key issue. Since two parameters (T and YFe) are expected to be
solved, at least two spectral intervals are needed. The NECs of ideal intervals should be sen-
sitive to the variation of the temperature and iron concentration. In addition, the radiation
in these spectral intervals must be weakly absorbed. This paper focuses on the calculation
of the radiative properties of the [Ar-CO2]-Fe plasmas and demonstrates their radiative
characteristics, while our companion paper will be devoted to finding two ideal spectral
intervals (∆λ1 and ∆λ2) and to diagnosing pulsed MAG arcs according to ε∆λ1(T, Y Fe

)
and ε∆λ1(T, Y Fe

)
/ε∆λ2(T, Y Fe

)
, in which the accuracy of our calculated spectra will be

indirectly confirmed by comparison with the spectral measurement results [105].

5. Conclusions

This work is devoted to the determination of the radiative properties in the range
3–30 kK at 0.1 MPa for [82%Ar-18%CO2]-Fe plasmas representative of MAG arcs. The
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spectra and the NEC were obtained by considering all radiative mechanisms. It has been
demonstrated that for the 82%Ar-18%CO2 plasma, the radiation of molecular bands is
important at low temperature (T < 10 kK) and it is not self-absorbed in the plasma. At
higher temperatures, atomic lines contribute the most to the radiation in spite of strong
absorption, while the continuum radiation also assumes a considerable proportion. When
a low iron concentration (e.g., 5%) exists in the plasma, the NEC is dramatically increased,
especially at low temperatures. Atomic lines become the dominant contribution, thus
making continuum and molecular bands insignificant.

This study mainly presents the entire spectra and corresponding NEC for [82%Ar-
18%CO2]-Fe plasmas. It builds a foundation for the diagnostics of temperature and iron
concentration in MAG arcs, which is based on the relation of the NEC of some particular
spectral intervals and temperature and iron concentration, by using a high-speed CCD
camera with narrow-band filters.
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