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Abstract: The Ti2AlC/TiAl composite with a homogenous architecture was fabricated via spark
plasma sintering (SPS) using Ti/Al/GNSs composite powders, after ultrasonic mechanical stirring,
as raw materials. The phases, microstructure, compressive properties and Vickers hardness of the
composite were methodically characterized. We observed the transformation of graphene nanosheets
from multi-layer to few-layer by the ultrasonic dispersion and the uniform distribution of few-layer
graphene nanosheets in composite powders by ultrasonic mechanical stirring. The composite is
mainly composed of rod-shaped Ti2AlC particles and a TiAl matrix, and the formation of rod-shaped
morphology with the long axis along the (0001) plane is due to the fact that the growth rate of
Ti2AlC parallel to the (0001) plane is much higher than the growth rate along the [0001] direction.
The compressive stress and strain of the as-prepared Ti2AlC/TiAl composite reach 1451.2 MPa and
19.7%, respectively, which are better than some Ti2AlC/TiAl composites using graphite as the carbon
source, and the Vickers hardness remains between 400~500 HV. The fracture morphologies show the
deformation and fracture features of Ti2AlC particles, i.e., lamellae kinking and laminated tearing,
which could increase the toughness of TiAl alloys.

Keywords: Ti2AlC/TiAl composite; homogenous architecture; microstructure; mechanical properties

1. Introduction

In recent decades, the extreme service environment has adopted increasingly stringent
requirements for the performance of aerospace structural components due to the rapid
development of aerospace and modern industries. TiAl alloys, as a new generation of
high-temperature structural materials, have attracted much attention due to their remark-
able physical and mechanical properties such as low density (3.7~4.1 g/cm3), high melting
point, high specific strength and good creep resistance [1–4]. However, TiAl alloys exhibit
poor ductility and formability at room temperature due to poor interfacial adhesion and
compositional segregation, and these shortcomings greatly limit their wider practical appli-
cations [5,6]. To overcome the above problem, quite a few investigators have developed
various methods to enhance the ductility of TiAl alloys at room temperature in recent years
such as heat treatment [7–9], alloying [10–12], thermal–mechanical [13–15] and compos-
ite technology [16–20]. In the above-mentioned methods, the composite technology has
engaged much attention because of its ability to compensate for the shortcomings of a
single material and to take advantage of the “synergy” between the reinforcement and
the matrix. Among the TiAl-based composites currently studied, TiB2, Al2O3, Ti5Si3 and
Ti2AlC have been considered as suitable reinforcement for TiAl alloys. Notably, Ti2AlC is a
ternary-layered compound that combines extraordinary properties of metal and ceramic
due to the moderately strong Ti–C covalent bonds and weak Ti–Al metallic bonds such
as high fracture resistance, excellent damage resistance, high stiffness and low thermal
expansion. Moreover, the coefficients of thermal expansion of Ti2AlC (8.8 × 10−6 K−1) and
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TiAl (12 × 10−6 K−1) are also extremely close to each other; thus, it has been identified as
the most outstanding reinforcement for TiAl alloys [21–23].

Compared with ex situ processes, the preparation of Ti2AlC/TiAl composites via in
situ processes has become the dominating method for researchers because of its prominent
advantages, such as small-size Ti2AlC particles, stable thermodynamic properties and
clean interface [24–27]. At present, the reactive synthetic Ti2AlC/TiAl composites with
a homogenous architecture are mostly based on the Ti-Al-C system with graphite as the
carbon source. Both Song et al. [28] and Fang et al. [29] have prepared relatively uniform
Ti2AlC/TiAl composites using graphite as the carbon source by vacuum arc melting, and
found that the mechanical properties of composites were improved. Wei et al. [30] also
synthesized relatively uniform Ti2AlC/TiAl composites by vacuum hot pressing using
graphite as carbon source, and the results showed that the yield stress and hardness
of composites were improved. Currently, carbon nanotubes (CNTs) and graphene with
one-dimensional and two-dimensional structural features have attracted the widespread
interest of researchers compared to graphite, a zero-dimensional carbon nanomaterial. The
research results of Ti2AlC/TiAl composites with carbon nanotubes instead of graphite as
the carbon source prepared by Zhu et al. [31] and Shrinivas et al. [32] show that carbon
nanotubes could ensure the formation of fine grain structure and affect the reaction kinetics
through promoting the formation of carbides. Graphene nanosheets (GNSs), as a typical
representative among two-dimensional materials, possess more excellent properties than
carbon nanotubes such as strength, thermal conductivity, electrical conductivity, toughness
and stiffness. Therefore, the preparation of Ti2AlC/TiAl composites with a homogenous
architecture using graphene nanosheets with scale advantage as the carbon source is
expected to further improve mechanical properties [33–35]. Notably, the main prerequisite
for achieving a uniform distribution of Ti2AlC-reinforcing particles is to ensure a uniform
distribution of graphene nanosheets in the composite powders. However, to the authors’
knowledge, the preparation of Ti2AlC/TiAl composites with a homogenous architecture
using Ti, Al and graphene nanosheets as a reaction system has not been reported so far.

In this paper, we prepared the Ti2AlC/TiAl composite with a homogenous architecture
via spark plasma sintering (SPS) using the Ti/Al/GNSs composite powders, after ultrasonic
mechanical stirring, as raw materials, and the microstructure and compressive properties
of the composite were further characterized. In addition, the growth mechanism of the
rod-shaped Ti2AlC particles and the strengthening and toughness mechanism of the as-
prepared Ti2AlC/TiAl composite were studied.

2. Experimental Methods

The schematic diagram of the fabrication process for Ti2AlC/TiAl composites with a
homogenous architecture is shown in Figure 1 and could be divided into three steps: First of
all, the original multi-layer graphene nanosheets were placed in anhydrous ethanol solution
and dispersed into few-layer graphene nanosheets through ultrasonic dispersion. Secondly,
based on the ingredient ratio of Ti-44Al-2.5C, the Ti/Al/GNSs composite powders are
obtained by ultrasonic mechanical stirring using the few-layer graphene nanosheets, Ti
powders (99.99% purity, <25 µm) and Al powders (99.99% purity, <25 µm). The operation
process is as follows: The few-layer graphene nanosheets were obtained in anhydrous
ethanol solution (0.5 g powders, 500 mL solution) by ultrasonic dispersion at a power of
840 W for 100 min, then we slowly added the Ti powders and Al powders, and introduced
the mechanical stirring to continue sonication for 120 min with a stirring speed of 90 r/min.
Afterwards, the composite powders were dried for 10 h at 70 ◦C in a vacuum oven. Thirdly,
the composite powders were filled into the graphite mold with two graphite punches
pressed at both ends, and then remained at 1623 K for 10 min by spark plasma sintering,
with a heating rate of 100 ◦C/min and the press of 45 MPa to generate the Ti2AlC/TiAl
composite. Eventually, the sample was machined for microstructure and mechanical
properties testing.
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Figure 1. The schematic diagram of fabrication process for Ti2AlC/TiAl composite with a homoge-
nous architecture.

The equipment used for GNSs dispersion was the ultrasonic cleaner (JP-060S), and
the equipment used for stirring the composite powders was the constant-speed electric
stirrer (JJ-1B). The phase composition of the as-prepared composite was detected by X-ray
diffraction (XRD, Bruker D8 advanced) with Cu Ka radiation in a 2θ range of 25–85◦.
The polished sample surface was chemically etched in an etchant solution with volume
fraction of 5% HNO3 + 5% HF + 90% H2O for about 20 s. The microstructure and element
distribution were characterized by scanning electron microscopy (SEM, JSM-2100) and
transmission electron microscopy (TEM, Talos F200X) with energy dispersive spectroscopy
(EDS). The electronic universal testing machine (ZUAG-I250 KN) was used to carry out
the compression test. The specimen size for the compression test was Φ5 mm × 10 mm
and the constant loading rate was 0.5 mm/min. The Vickers hardness measurements were
performed on the FV-810 tester (FUTURE-TECH, Qiutian, Japan) with a diamond indenter,
loaded at 100 gf, 200 gf and 500 gf for 10 s. The sample for TEM observation was processed
to 80 µm by mechanical thinning and then further machined to thin zones using the precise
ion polishing system (PIPS, Gatan 691).

3. Experimental Results and Analysis
3.1. Morphology of Powders

Figure 2a,b shows the morphologies of the initial Ti powders and Al powders with a
spherical structure. As indicated in the inset in Figure 2(c-1), the initial graphene nanosheets
possess a multi-layer structure, and they show slight agglomeration due to the larger
specific surface area. The morphology of graphene nanosheets after ultrasonic dispersion
is shown in Figure 2c, and it can be seen that they transform into a dispersed and few-layer
structure with the average particle size of 5–10 µm and thickness of 3–10 nm. It can be
observed from Figure 2d that the few-layer graphene nanosheets uniformly distribute in the
composite powders, which is very beneficial to the fabrication of Ti2AlC/TiAl composites
with a homogenous architecture. The reason is that the high energy generated during the
ultrasonic mechanical stirring process leads to the destruction of graphene nanosheets,
and then most of powders will decrease in size and thickness, and a small portion may be
transformed into separate graphene nanosheets.



Materials 2022, 15, 5766 4 of 12Materials 2022, 15, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. The SEM image of powders used for the fabrication of Ti2AlC/TiAl composite: (a) initial 
Ti powders; (b) initial Al powders; (c) few-layer graphene nanosheets; (c-1) initial graphene 
nanosheets; (d) Ti/Al/GNSs composite powders. 

3.2. Phase and Microstructure Characterization of the As-Prepared Ti2AlC/TiAl Composite 
Figure 3 demonstrates the XRD pattern of the as-prepared composite, and it can be 

seen that the XRD pattern possess diffraction peaks of three phases, i.e., TiAl, Ti3Al and 
Ti2AlC. Furthermore, to observe the peak positions of three phases more clearly, the local 
enlarged images of 35°–45° and 70°–80° are shown in Figure 3(3-1) and Figure 3(3-2). The 
above illustration shows the typical crystal planes with high diffraction peak intensities 
in three phases: TiAl(111), Ti3Al(222) and Ti2AlC(0006). The result indicated that the chem-
ical reaction designed in the experiment is relatively complete, and the Ti2AlC/TiAl com-
posite is fabricated by using the reaction.  
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(d) Ti/Al/GNSs composite powders.

3.2. Phase and Microstructure Characterization of the As-Prepared Ti2AlC/TiAl Composite

Figure 3 demonstrates the XRD pattern of the as-prepared composite, and it can be
seen that the XRD pattern possess diffraction peaks of three phases, i.e., TiAl, Ti3Al and
Ti2AlC. Furthermore, to observe the peak positions of three phases more clearly, the local
enlarged images of 35–45◦ and 70–80◦ are shown in Figure 3(3-1) and Figure 3(3-2). The
above illustration shows the typical crystal planes with high diffraction peak intensities in
three phases: TiAl(111), Ti3Al(222) and Ti2AlC(0006). The result indicated that the chemical
reaction designed in the experiment is relatively complete, and the Ti2AlC/TiAl composite
is fabricated by using the reaction.

To determine the distribution of above phases, Figure 4 shows the SEM image and
corresponding EDS analysis of the as-prepared Ti2AlC/TiAl composite. It can be clearly
observed from Figure 4a that the white rod-shaped particles are uniformly distributed
in the matrix, and the length and thickness are about 15 µm and 5 µm, respectively. The
element distribution maps in Figure 4b indicated that these white rod-shaped particles
are C-rich and Al-poor regions. In addition, the element distribution line in Figure 4c
also shows that the intensity of Al and C element displays an obviously opposite trend
when passing through the white rod-shaped particles, i.e., Al element decreases and C
element increases. The point analysis result of the marked regions in Figure 4a is shown in
Figure 4d. The atomic ratio of Ti: Al: C in the white rod-shaped particles is approximately
equal to 2:1:1 and the atomic ratio of Ti: Al: C in the matrix area is close to 1:1:0. According
to the XRD analysis results in Figure 3, we could conclude that these white rod-shaped
particles are Ti2AlC and the matrix is TiAl, which indicates that the Ti2AlC/TiAl composite
with a homogenous architecture had been fabricated with graphene nanosheets as the
carbon source. In addition, the uniformity of the Ti2AlC particles in our composite was
slightly better than that of the Ti2AlC/TiAl composites synthesized by Shu et al. [36] and
Chen et al. [37] using graphite as carbon source, and their experimental results showed that
Ti2AlC particles distribute in the grain boundaries with a cluster form.
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Apart from the micro-scale rod-shaped Ti2AlC particles under SEM, we also observed
nano-scale rod-shaped Ti2AlC particles by transmission electron microscopy (TEM), as
indicated in Figure 5. Figure 5a shows the TEM morphology of the rod-shaped Ti2AlC
and TiAl matrix, and Figure 5b shows the EDS analysis result of marked area in Figure 5a,
indicating that the atomic ratio of Ti and Al elements is close to 1:1. Figure 5c is the selected-
area electron diffraction (SAED) pattern from the TiAl matrix. It could be determined from
the calibration result that Figure 5c is the electronic diffraction pattern corresponding to

the [
−
101] zone axis of TiAl. Figure 5d,e shows the high-resolution transmission electron

microscopy (HRTEM) image and fast Fourier transform (FFT) pattern of the square area in
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Figure 5a, respectively. Figure 5e is the FFT pattern of Ti2AlC along the [11
−
2 0] zone axis.

The inverse fast Fourier transform (IFFT) of the square area in Figure 5d is exhibited in
Figure 5f. As demonstrated in Figure 5f, the atomic stacking sequence of Ti2AlC can be
regarded as the sequence of BABABAB along the [0001] direction, where the underlined
letters correspond to Al layers and the non-underlined letters correspond to Ti layers, and
the result is consistent with the Ti2AlC of the layered structure described previously [21–23].
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marked in (a); (d) HRTEM image of Ti2AlC; (e) FFT pattern of Ti2AlC; (f) IFFT image of the square
area in (d).

Based on the location and morphology of the nano-scale rod-shaped Ti2AlC particles,
we consider that they formed in the solid phase transition stage during the cooling process,
and it has been discussed in our and others’ previous work [38,39]. A large amount of C
will solid-dissolve in the TiAl matrix during the heating process, and then, when the tem-
perature is lower than the α→ α + γ temperature during the cooling process, the C whose
solid solubility decreases with the decrease of the temperature will precipitate from the TiAl
matrix in the form of Ti2AlC. Furthermore, we consider that the formation mechanism of
the morphology of rod-shaped Ti2AlC can be explained by its crystal structure. The Ti2AlC
possess a hexagonal layered structure: two Ti6C octahedra and an Al layer are alternately
arranged along the [0001] direction. The Ti2AlC(0001) plane consists of the same kinds of
atoms, while the Ti2AlC along the [0001] direction consists of different kinds of atoms. Due
to the layered atomic arrangement, the growth rate of Ti2AlC parallel to the (0001) plane is
higher than that along the [0001] direction. Therefore, Ti2AlC grew quickly and parallel
to the (0001) plane when it precipitated from TiAl, resulting in a rod-shaped morphology
with the long axis along Ti2AlC(0001) plane. In addition, due to the uniform dissolution
of C atoms in the TiAl matrix, we consider that most of the nano-scale rod-shaped Ti2AlC
particles may be uniformly distributed in the Ti2AlC/TiAl composite.

There is also a small amount of Ti3Al phase in the matrix besides the main phase of
TiAl, and the reason for the formation of the Ti3Al phase is that the sintering temperature
is higher than the eutectoid transformation temperature of the (TiAl + Ti3Al) two-phase.
Figure 6a shows the TEM morphology of the Ti2AlC/Ti3Al interface, and the interface is



Materials 2022, 15, 5766 7 of 12

clean and there are no other reactants. The EDS analysis result of marked area in Figure 6a
is shown in Figure 6b, indicating that the contents of Ti and Al elements are quite different.
Figure 6c shows the HRTEM image of the Ti2AlC/Ti3Al interface, and the corresponding
FFT pattern of Ti2AlC and Ti3Al is inserted. Figure 6d shows the FFT pattern of the square
area in Figure 6b, and Figure 6e is the indexed pattern of Figure 6c. The calibration result

shows that the Ti2AlC is along the [11
−
20] zone axis and the Ti3Al is along the [

−
1103] Ti3Al

zone axis, and the (1
−
10
−
1) plane of Ti2AlC and the (11

−
20) plane of Ti3Al are parallel to each

other. Therefore, the following orientation relationship between Ti2AlC and Ti3Al results:[
11
−
20

]
Ti2AlC//

[−
1103

]
Ti3Al,

(
1
−
10
−
1
)

Ti2AlC//
(

11
−
20

)
Ti3Al
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Figure 6. The TEM analysis of the Ti2AlC/Ti3Al interface: (a) TEM image; (b) EDS analysis of the
area marked in (a); (c) HRTEM image of Ti2AlC/Ti3Al interface; (d) FFT pattern of Ti2AlC/Ti3Al
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The IFFT image of the Ti2AlC/Ti3Al interface in Figure 6c is demonstrated in Figure 6f.
As indicated in the Figure 6f, the blue circles and red circles represent the Ti2AlC atoms
and Ti3Al atoms, respectively. It can be observed that the Ti2AlC(0001) plane is not parallel

to the Ti3Al(2
−
1
−
11) plane, which indicates that the interface between Ti2AlC and Ti3Al is an

incoherent interphase boundary.

3.3. Mechanical Properties of the As-Prepared Ti2AlC/TiAl Composite

Figure 7a exhibits the compression stress–strain curve of the as-prepared Ti2AlC/TiAl
composite. It can be seen that the composite shows apparent features of plastic yield-
ing during the compression process, and the compressive stress and compressive strain
reach 1451.2 MPa and 19.7%, respectively. Figure 7b shows that the Vickers hardness of
the as-prepared composite basically remains between 400~500 HV under different loads
(100 gf, 200 gf and 500 gf). Figure 7c shows the comparison diagram of the compression
properties between the Ti2AlC/TiAl composite in our work and other TiAl matrix com-
posites [24,27,30,39–42]. It can be seen that the mechanical properties of the Ti2AlC/TiAl
composite using graphene nanosheets as the carbon source is better than those with graphite
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as the carbon source. In addition, it also shows a certain improvement in plasticity com-
pared with our previous composite with a laminated architecture [39], which is mainly
due to the effect of uniformly distributed micro-scale and nano-scale Ti2AlC particles. The
results indicate that the Ti2AlC/TiAl composites with a homogenous architecture prepared
in this experiment have a relatively good strength, ductility and Vickers hardness.
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Figure 8a shows the fracture morphologies of the as-prepared Ti2AlC/TiAl composite,
and it can be seen that the surface exhibits complex fracture modes. Figure 8b shows the
crack deflection and particle pulling-out of the TiAl matrix in the composite. According
to the zigzag propagation of cracks, it can be understood that the propagation path is
prolonged due to the obstruction of surrounding Ti2AlC particles. In addition, Ti2AlC
particles also exhibit certain deformation and fracture features under load, as shown
in Figure 8b–d, i.e., lamellae kinking and laminated tearing. The lamellae kinking and
laminated tearing of Ti2AlC particles have the effect of crack arrest, thereby improving the
fracture toughness of the TiAl matrix.
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Figure 8. SEM images of fracture morphologies in as-prepared Ti2AlC/TiAl composite: (a) fracture
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4. Strengthening and Toughening Mechanism

The as-prepared Ti2AlC/TiAl composite with a homogenous architecture exhibited
good strength and plasticity at a certain strain rate, which is inseparable from the presence of
micro-scale and nano-scale rod-shaped Ti2AlC particles. The strengthening and toughening
mechanism could be seen more intuitively through the schematic diagram of the model,
as shown in Figure 9. As shown in Figure 9a, the load transfer effect between the TiAl
matrix and the Ti2AlC particles under the external force allows the load to be transferred
from the soft TiAl phase to the hard Ti2AlC phase, thereby increasing the strength of the
material. Moreover, it can be observed from Figure 9b that the rod-shaped Ti2AlC particles
could be pinned at the TiAl matrix grain boundaries to limit the growth of grains. It is
generally considered that the finer the TiAl matrix grains, the greater the hindrance to
dislocation, and the greater the contribution to the strength of the material. Figure 9c
shows that the fine nano-scale Ti2AlC particles could hinder the sliding of dislocation
lines, thereby forming dislocation loops around the Ti2AlC particles due to the bypassing
mechanism. Furthermore, a large number of high-density dislocations are also formed
around the Ti2AlC particles due to the hindering effect on the movement of dislocations.
Both dislocation loops and high-density dislocations enhance the strength of the material.
Figure 9d shows the ductile deformation behavior of Ti2AlC particles, i.e., lamellae kinking
and laminated tearing, which could consume the energy of crack propagation without
failure, thus improving the toughness of the material.
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Figure 9. The schematic diagram for the strengthening and toughening mechanism of Ti2AlC/TiAl
composite: (a) load transfer strengthening; (b) refinement strengthening; (c) Orowan strengthening;
(d) toughening of Ti2AlC.

5. Conclusions

In summary, the Ti2AlC/TiAl composite with a homogenous architecture has been
fabricated by spark plasma sintering using Ti/Al/GNSs composite powders as raw materi-
als after ultrasonic mechanical stirring. The following conclusions could be drawn from the
characterization results of the phase composition, microstructure, compressive properties
and Vickers hardness of the as-prepared composite:

(1) The ultrasonic dispersion achieves the transformation of graphene nanosheets from
multi-layer to few-layer, and the ultrasonic mechanical stirring ensured the uniform
distribution of few-layer graphene nanosheets in composite powders;

(2) The as-prepared composite is mainly composed of rod-shaped Ti2AlC particles with
the lengths of about 15 µm and thicknesses of about 5 µm, as well as a TiAl matrix,
and the formation of rod-shaped morphology with the long axis along the (0001)
plane is due to the fact that the growth rate of Ti2AlC parallel to the (0001) plane is
much higher than the growth rate along the [0001] direction;

(3) The compressive stress and strain of the as-prepared Ti2AlC/TiAl composite reach
1451.2 MPa and 19.7%, respectively, and the Vickers hardness is about 400~500 HV,
which maintain relatively good mechanical properties compared with some Ti2AlC/TiAl
composites using graphite as carbon source;

(4) The strengthening mechanism of the as-prepared Ti2AlC/TiAl composites is primar-
ily due to the load transfer strengthening, refinement strengthening and Orowan
strengthening, and the toughness mechanism is mainly attributed to the deformation
and fracture of Ti2AlC particles, i.e., lamellae kinking and laminated tearing.
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