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Abstract: Conventional neural networks tend to fall into local extremum on large datasets, while the
research on the strength of rubber concrete using intelligent algorithms to optimize artificial neural
networks is limited. Therefore, to improve the prediction accuracy of rubber concrete strength, an
artificial neural network model with hybrid algorithm optimization was developed in this study. The
main strategy is to mix the simulated annealing (SA) algorithm with the particle swarm optimization
(PSO) algorithm, using the SA algorithm to compensate for the weak global search capability of
the PSO algorithm at a later stage while changing the inertia factor of the PSO algorithm to an
adaptive state. For this purpose, data were first collected from the published literature to create a
database. Next, ANN and PSO-ANN models are also built for comparison while four evaluation
metrics, MSE, RMSE, MAE, and R2, were used to assess the model performance. Finally, compared
with empirical formulations and other neural network models, the result shows that the proposed
optimized artificial neural network model successfully improves the accuracy of predicting the
strength of rubber concrete. This provides a new option for predicting the strength of rubber concrete.

Keywords: compressive strength; ANN; concrete; prediction; algorithm

1. Introduction

Concrete is one of the most widely used building materials in the construction
industry [1]. The global construction industry is challenged by the high cost and envi-
ronmental pollution caused by concrete; meanwhile, there are increasing demands on
the strength and durability of concrete. Thus, the traditional concrete is being replaced
by concrete with better performance. Meanwhile, the rubber tires have vast output from
other waste materials due to their excellent strength, low cost, and easy availability. In
addition, adding rubber scraps to the cementitious composites can reduce carbon dioxide
emissions which is environmentally friendly [2,3]. Therefore, the addition of rubber to
concrete (rubberized concrete) becomes a feasible plan [4–10]. However, the compressive
strength of rubberized concrete is lower than that of plain concrete [11]. This decrease is
caused by variables including the ratio of aggregate (reduced 85% and 65% of compres-
sive strength, when the coarse aggregate and fine aggregate are fully replaced by rubber,
respectively) [8,11,12], size, and shape of rubber [12,13].

Machine learning, which can learn from given data and make accurate predictions
through complex systems, includes the support vector machine model (SVM), random
forest model (RF), fuzzy logic (FL), artificial neural network (ANN) model, etc. [14]. Ma-
chine learning techniques have been used extensively in the study of concrete, for example,
Nasrollahzadeh. K and Nouhi. E [15] developed a fuzzy inference system (FIS) model that
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was used to investigate the compressive strength and strain capacity of axially loaded fiber-
reinforced polymer concrete columns, and it was successfully demonstrated to be superior
to existing models. Mahmood Ahmad et al. [16]. used three machine learning models,
AdaBoost, RF, and decision tree (DT), to predict the compressive strength of concrete at
high temperatures and demonstrated the applicability of supervised learning methods
to study the compressive strength of concrete at high temperatures. Artificial neural net-
work models are the most widely used of the many machine learning models due to their
powerful nonlinear ability to learn from numerous complex situations. Current research
on the strength of rubber concrete using artificial neural networks is proving successful,
for example, Abdollahzadeh et al. [17] used 20 data to build a neural network model to
predict the strength of rubber concrete, with the structure of the network set to 3–1–1, and
the final accuracy of the model was calculated to be 96%. El-Khoja A. et al. [9] built a
neural network model using 287 data with input variables set to five. The accuracy of the
model was calculated to be 91%, while the optimal structure was determined to be 5–10–1.
Nyarko et al. [7] used rubber concrete data to build a deep neural network model with
the structure 9–3–2, and demonstrated that deep neural networks could be an alternative
option for predicting the strength of rubber concrete. From the literature, it is known that
there are fewer studies using intelligent algorithms for optimization. Intelligent algorithms
achieve optimal results when solving complex nonlinear problems. Conventional ANN
models tend to fall into local extremum with large datasets, while the strength of rubber
concrete is influenced by a variety of nonlinear factors, so the use of intelligent algorithms
is appropriate. Particle swarm optimization (PSO) algorithms were widely used in model
optimization due to their fast convergence of iterations and simplicity of operation [18–20].
However, due to the fixed value of the inertia factor of the PSO algorithm, this makes the
search space of the particles small and causes the algorithm to easily fall into local extremes
late in the iteration. The simulated annealing (SA) algorithm was a global search algorithm
with a good ability to search globally and accept poorer values, so it could jump out of
local extremum to obtain the global best value [21]. Hybrid algorithms have not been used
in current research on the strength of rubber concrete using neural networks. Therefore,
an adaptive simulated annealing particle swarm optimization (ASAPSO) algorithm is
developed in this study.

In summary, this study developed an ANN model based on ASAPSO algorithm opti-
mized to predict the strength of rubber concrete. This model could achieve higher accuracy
than conventional ANN model and ANN model optimized by a single algorithm under a
large dataset. Thus, a database was first created and analyzed to filter out 11 variables that
sensitivity factor analysis was performed on. Then, three different models, ANN models,
ANN models optimized by PSO (PSO-ANN) algorithm, and the ANN models optimized
by ASAPSO (ASAPSO-ANN) algorithm, were built. The database data were fed into the
three models for training and testing. Finally, the performances of the three models were
evaluated statistically, and their computational results were compared and analyzed.

2. Database Description and Analysis of Variables

A reliable database is essential for the successful training of machine learning models.
Without reliable data, the training results do not reflect the actual situation and eventually
lead to model training failure. This study, therefore, proposes the following treatments in
the process of building a database of rubber concrete:

Firstly, an adequate database does not only require a large amount of data, but also a
comprehensive range of input and output variables. Therefore, data need to be collected
from previously published literature to build the database.

Secondly, concrete is a composite material. As the material has a significant impact
on strength, different materials need to be distinguished during data collection to make
the network more capable of learning. For example, the compressive strength values
and mechanisms of action of concrete mixtures formed with ordinary silicate cement are
different from those of concrete mixtures formed with cement replacement materials. It is
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also necessary to divide the dimensions of the rubber material; this is because the rubber
material replaces different objects.

Thirdly, the size and shape of the concrete may vary. Therefore, the specimen size
and shape are considered in database creation. There is a need to standardize the units in
which the data are collected. Therefore, except for the specimen dimensions in mm and the
compressive strength in MP, the units for all data in this study are kg/m3. In addition, the
rubber concrete samples in this study were all on a 28-day curing cycle.

In summary, a database of 307 sets of experimental data has been developed in this
paper, where the data were derived from the published literature [6,8,10,22–52]. The
database was divided into two parts, of which 277 groups were used for training and the
remaining 30 groups were used for testing. Eleven input variables were used in this paper;
these include cement content, water content, water–cement ratio, cement replacement
material content, coarse aggregate content, fine aggregate content, crumb rubber content,
flake rubber content, admixture addition, and specimen shape. The output variable was the
compressive strength of the rubber concrete at 28 days. The statistical analysis of the input
and output variables of the database is shown in Table 1. It is important to note that the
interdependency of the model is an important parameter as it can lead to poor performance
of the model [53]. The various parameters used as inputs can be interdependent, and
such problems are known as “multicollinearity problems” [54]. It has been suggested in
the literature that to develop an accurate model, the correlation between the two input
parameters should be less than 0.8 [55]. A heat map of the correlation coefficients of the
input and output variables in this study is shown in Figure 1. Table 2 shows that the
correlation coefficients between the parameters are all less than 0.8, thus reducing the effect
of multiple collinearities.

Table 1. Statistical analysis of input and output variables.

Max Min Average Median Standard
Deviation Skewness

Cement (kg/m3) 629.27 18.80 406.81 400.00 75.22 −0.26
Cement replacement (kg/m3) 180.00 0.00 12.19 0.00 31.84 3.38
Superplasticizer (kg/m3) 13.50 0.00 3.23 2.08 3.96 1.45
Water (kg/m3) 312.00 9.20 192.83 180.00 38.43 −0.24
Water/cement (kg/m3) 0.83 0.27 0.48 0.45 0.11 0.67
Fine aggregate (kg/m3) 1364.00 0.00 610.11 631.37 219.09 −0.63
Coarse aggregate (kg/m3) 1434.60 0.00 911.54 949.00 230.99 −0.44
Crumb rubber [0–5) (kg/m3) 1160.00 0.00 59.06 36.00 102.16 6.56
Chipped rubber [5–10) (kg/m3) 227.30 0.00 14.46 0.00 40.29 3.55
Chipped rubber [10–30) (kg/m3) 630.00 0.00 16.40 0.00 59.47 6.52
fc specimen type 3.00 0.00 0.89 1.00 0.73 0.63
fc (MP) 78.30 2.50 29.41 27.05 15.24 0.65

Table 2. Parameter setting of ANN model.

Parameter Setting

Input layer node 11
Output layer node 1
Hidden layer node 6
Activation function Tansig, purelin
Training function trainlm

Epochs 50
Learning rate 0.01

Performance goal 1.00 × 10−5

Epochs between display 25
Momentum factor 0.01

Minimum performance gradient 1.00 × 10−6

Maximum validation failure 6
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Figure 1. Heat map of the correlation for each variable. 
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3. Sensitivity Factor Analysis of Input Variables

Sensitivity factor analysis (SA) is an effective method for measuring the influence of
model input parameters on output parameters. The sensitivity factor analysis allows the
input parameters to be filtered, thus reducing the complexity of the model, and saving
time in model calculations. To achieve this, the cosine amplitude method (CAM) can be
adopted [56]. The expression for this method is as follows:

Rij =
∑n

k=1 xikxjk√
∑n

k=1 x2
ik ∑n

k=1 x2
jk

(1)

where xi denotes the input parameter; xj denotes the output parameter; n indicates the
number of data; Rij means the strength of the relationship. The values of Rij between the
strength of the rubber concrete and the input parameters are shown in Figure 2. As can be
seen from the graph, the most significant influence on the strength of the rubber concrete is
the fine aggregate, followed by the coarse aggregate, while the smallest impact is on the
largest particle size of the rubber sheet.
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4. Methods

Artificial neural networks are used in various fields because of their powerful nonlinear
capabilities. The simulated annealing (SA) algorithm is the same as the particle swarm
optimization (PSO) algorithm—both are intelligent algorithms, but the SA algorithm is
physically inspired and has better global search capabilities. The particle swarm algorithm
is a swarm heuristic algorithm which is computationally simple and easy to operate but
prone to local extremum. The ASAPSO algorithm and ANN model used are described in
detail in this section.

4.1. Artificial Neural Network

The ANN is one of the most used machine learning techniques for predicting the
compressive strength of concrete. ANN can be thought of as a data processing operation
or as a black box that produces the appropriate output based on the input data [57]. A
backpropagation network is the most commonly used network structure and it adjusts
weights and biases by backpropagation of errors, eventually reducing the errors to an
acceptable state [58]. A backpropagation neural network is composed of an input layer, a
hidden layer, and an output layer. In addition to the input layer, the neurons of the hidden
layer and output layer are composed of weights, biases, and activation functions. The
structure of the backpropagation neural network is shown in Figure 3.
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In Figure 3, xi represents input variables, wij represents the connection weight. The
expressions of s and neural network output y are shown in Equations (2) and (3) [59].

d =
n

∑
i=1

wijxi + b (2)

Y = F(d) (3)

where b is the bias, and d is the sum of weights and biases. The role of the bias is to increase
or decrease the influence of the activation function. F denotes the activation function, which
allows the neural network to approximate any nonlinear function and thus can be applied
to a wide range of nonlinear models. There are various activation functions for neural
networks, among which the commonly used transfer functions are sigmoid, softplus, tanh,
and ReLU. An image of a commonly used activation function is shown in Figure 4.
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Since the backpropagation network can constantly adjust the weights and biases based
on the results, the weights and biases are updated by the following formula [59]:

w(i + 1) = w(i)− α
∂E(i)
∂w(i)

(4)

b(i + 1) = b(i)− α
∂E(i)
∂b(i)

(5)

where α indicates the learning rate; w(i) and b(i) denote the vector of connection weights
and bias vectors between the layers of the ith iteration, respectively; ∂E(i)

∂w(i) and ∂E(i)
∂b(i)

denote the error gradient of the output error of the ith iteration for each weight and bias,
respectively; E(i) is the error in the output of the ith iteration of the network, with the
following functional expression [59]:

E(k) =

√
1
n ∑n

i=1|ei|2 (6)

where ei indicates the error between the actual value and the predicted value; n indicates
the total amount of data.

The number of neurons contained in the hidden layer (h) is an important parameter of
artificial neural networks. However, there is no specific calculation method for the number
of neurons contained in the hidden layer. Usually, the approximate range is determined by
an empirical formula, and then the optimal number of neurons is determined according to
the trial-and-error method. The expression is given in Equation (7).

h =
√

m + n + a (7)
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where m is the number of nodes in the input layer; n is the number of nodes in the output
layer, a ∈ (1, 10).

To reduce the prediction error and improve the training efficiency, it is necessary
to normalize the training data and the verification data. The specific expression for the
normalization function is as follows:

y =
(ymax − ymin)(x− xmin)

xmax − xmin
+ ymin (8)

where y is the normalized value; ymax and ymin are the maximum and minimum values of
the normalized range, respectively, usually taking the values [0,1]; x is the value of the input
variable; xmax and xmin are the maximum and minimum values of the variables, respectively.

There are several classic algorithms in the training phase of ANN, namely, adaptive
learning rate gradient descent algorithm, gradient descent algorithm, momentum gra-
dient descent algorithm, conjugate gradient algorithm, and Levenberg–Marquardt (LM)
algorithm [60]. The choice of the algorithm needs to depend on the situation. The LM
algorithm is a classic backpropagation algorithm with fast convergence speed and high
precision. The LM algorithm was chosen for this study.

4.2. Particle Swarm Optimization Algorithm

Similar to the genetic algorithm (GA), the PSO algorithm is also a new type of iterative
algorithm based on the swarm evolution algorithm [61]. The PSO algorithm was proposed
by Kennedy and Eberhar in 1995 [62]. Particles can be used to simulate individual birds, and
the optimal path to find food is the search process of each particle, so each particle may be a
candidate solution to a problem. Particles have only two properties: velocity and position,
which are constantly updated through information interactions within the population.
When any particle in the population finds the global optimum position, the other particles
in the population update their velocity and position according to the optimum position
and move closer to the optimum position [63]. The particle swarm optimization algorithm
is widely used in various fields due to its simple operation and fast convergence [64]. The
particle swarm algorithm first initializes a group of random particles. Assuming that the
total number of particles is n, the position and velocity of the ith particle in d-dimensional
space are expressed as follows:

vd
i (t) = ωvd

i (t− 1) + c1r1

(
pd

best − xd
i (t)

)
+ c2r2

(
Gd

best − xd
i (t)

)
(9)

xd
i (t) = xd

i (t− 1) + vd
i (t) (10)

where vd
i (t) is the speed of the particle at time t; vd

i (t− 1) represents the velocity of the
particle at time t − 1; xd

i (t) is the position of the particle at time t; xd
i (t− 1) is the position

of the particle at time t − 1; pd
best denotes the local optimum and Gd

best denotes the global
optimum; ω means inertia factor. The more significant the inertia factor, the better the
global search, and the smaller the inertia factor, the better the local search [65]. r1 and r2 are
random numbers between 0 and 1. c1 is the individual learning factor, which represents the
ability of the individual to search for the optimal solution, while c2 is the social learning
factor, which means the ability of the group to search for the optimal solution. Learning
factors c1 and c2 are usually set as 2. If c1 = 0, then the particle is considered to have only
social learning ability; at this time, the particle has the ability of extended search and faster
convergence speed but lacks the ability of local search and is prone to fall into the problem
of local optimal solution on complex problems. If c2 = 0, then the particle is considered
to have the only cognitive ability; at this point, the particle behaves similar to a blind
random search and converges slowly, which makes it less likely to eventually obtain the
optimal solution.
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4.3. Adaptive Particle Swarm Optimization

The inertia factor is an essential parameter in the PSO algorithm, which represents the
effect of the velocity of the previous generation of particles on the speed of this generation of
particles. For ordinary PSO algorithms, the inertia factor is static, but the static inertia factor
is often not well adapted to the current environment and balances local search and global
search. To improve the optimization ability of the PSO algorithm and reduce the probability
of falling into the local extremum value, this study adopts a nonlinear decreasing method
to optimize the inertia factor, and the specific expression is as follows [66]:

ω = (ωmax −ωmin − d1)e
1

1+
d2∗t

T (11)

where ωmax and ωmin are the maximum and minimum values of the initial inertia factor,
respectively. When ωmax = 0.95 and ωmin = 0.4, the algorithm’s performance will be
significantly improved [67]. The control factors are d1 and d2, and the primary function is
to control the inertia factor ω between ωmax and ωmin; t is the current number of iterations,
and T is the maximum number of iterations.

The improved algorithm allows the particles to have a larger inertia factor at the
beginning of the iteration. This enhances the global search ability of the particle and
reduces the probability of falling into a local optimum solution. As the number of iterations
increases, the inertia factor gradually decreases. At the end of the iteration, the particle has
a small inertia factor, which allows the particle to converge quickly to the global optimal
solution, increasing the probability of obtaining the global optimal solution.

4.4. Adaptive Simulated Annealing Particle Swarm Optimization

The SA algorithm is a global optimization algorithm inspired by the metal annealing
mechanism [56]. The SA algorithm consists of two processes, the Metropolis algorithm,
and the annealing. The Metropolis algorithm is the basis for simulated annealing, where
the objective function is allowed to degenerate over a range of values in the search for
the optimum, allowing it to jump out of the local extremes and find the globally optimal
solution. The primary process of the SA algorithm is as follows:

(1) Initialize the annealing temperature T, generate the initial solution x0, and calculate
the corresponding objective function value F(x0).

(2) Set T = KT, where K is the temperature drop rate, K ∈ (0, 1).
(3) Apply random perturbation to the current solution x0 to generate a new solution x1

and calculate the corresponding objective function value F(x1), then the difference
between the two objective functions is ∆F = F(x1) − F(x0).

(4) If ∆F < 0, then accept the new solution as the current solution, otherwise, obtain the
new solution as the current solution according to probability exp (−∆F/KT).

(5) After the solution is obtained, whether the number of iterations is reached is judged.
If the number of iterations is not reached, go back to steps 3 and 4. If it is reached, it
is judged whether the termination condition (∆F < 0) is met. If the condition is met,
output the result; otherwise, go back to step 2.

The SA algorithm was introduced into the adaptive particle swarm optimization
algorithm because the PSO algorithm is prone to local extremes late in the iteration, while
the global search capability of the SA algorithm is stronger and can effectively compensate
for the shortcomings of the PSO algorithm. The workflow of the ASAPSO-ANN model
developed in this study is shown in Figure 5.
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5. Evaluation of the Model

In the present work, four statistical criteria are used to evaluate the accuracy of neural
network models, namely, mean square error (MSE), root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2). The coefficient of determination
(R2) is widely used in regression problems [68]. Its main function is to evaluate the
correlation between the actual target and the output target [69]. RMSE and MAE are
used to evaluate the average error between the real target and the output target [70–72].
The accuracy of the model gradually improves as R2 approaches 1, while MSE and MAE
approach 0. The expressions of these four evaluation indicators are as follows [73,74]:

R2 =
∑N

k=1(q0,k − q0)(qt,k − qt)√
∑N

k=1(q0,k − q0)
2 ∑N

k=1(qt,k − qt)
2

(12)

MAE =
∑N

k=1
∣∣q0,k − qt,k

∣∣
N

(13)

MSE =
1
N ∑N

k=1(q0,k − qt,k)
2 (14)

RMSE =

√
1
N ∑N

k=1(q0,k − qt,k)
2 (15)

where N is the number of samples; q0 is the actual target value; q0 is the real target average
value; qt represents the output target value; and qt represents the output target average
value, k = 1:N.

6. Results of the Three Models

The objective of the computational analysis is to build three neural network models
(ANN, PSO-ANN, ASAPSO-ANN) to predict the compressive strength of rubber concrete
at 28 days using a database containing 307 sample data. The model constructed and the
results of the calculations are described in detail in the following subsections. Since each
calculation of the artificial neural network is an approximate solution, the results for each
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model are averaged to avoid chance in the results. The best results from each model are
selected for graphical analysis.

6.1. ANN Model

A three-layer feedforward neural network model was built, and the number of neurons
in the hidden layer was obtained between 4 and 13 by Equation (7), and then the trial-and-
error method was used to obtain the optimal number of neurons as 6. Thus, the neural
network structure was 11–6–1 (Figure 6). The parameters of the neural network model in
this study are shown in Table 2.
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The ANN model performance evaluation results are presented in Table 4. The average
value of the training set R2 of the ordinary ANN model was 0.8990, and the average value
of the testing set R2 was 0.8385. From these data, the R2 for both the training and testing
sets of the standard ANN model were relatively good (published literature suggests that
models were high-precision when R > 0.8 and RMSE, MAE are low [75]). The mean value
of the RMSE for the training set of the ordinary ANN model was 5.0237, and the testing set
was 4.9673. The mean value of the MAE was 3.7363 for the training set and 4.2117 for the
testing set. From these data, it could be seen that the common ANN model has a high error,
but the RMSE and MAE values are closer. It could be concluded that the ordinary ANN
model has some generalization ability and could predict the unknown data to some extent,
but the prediction accuracy of the model was not high.

6.2. PSO-ANN Model

Weights and biases have a significant impact on the prediction results of the ordinary
ANN model. Therefore, PSO algorithms were needed to find the optimal weight and biases
to achieve the prediction of the target. For the PSO-ANN model, in addition to the usual
parameters, the population size, number of iterations, social learning factor, individual
learning factor, particle position constraint, particle velocity constraint, and inertia factor
also needed to be set. The number of neurons in the hidden layer of the PSO-ANN model is
also set to six. The parameter settings for the PSO-ANN in this study are shown in Table 3.

Table 3. Parameter settings for the PS0-ANN model.

Parameter Setting

Popsize 15
Maxgen 500

c1 2
c2 2
ω 0.95

Position constraint [−3,3]
Velocity constraint [−3,3]
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The performance evaluation results of the PSO-ANN model are shown in Table 4. The
mean value of the R2 for the training set of the PSO-ANN model was 0.9516, and the mean
value of R2 for the testing set was 0.8732. The mean value of the RMSE for the training set
of the PSO-ANN model was 3.4573, and the testing set was 3.6340. The mean value of the
MAE for the training set was 2.5493, and the testing set was 2.7260. From these data, the R2

of both the training and testing sets of the PSO-ANN model improved compared to the
normal ANN model (R2 was 0.8990 for the training set and 0.8385 for the testing set of the
ANN model). The RMSE for both the training and testing sets of the PSO-ANN model was
reduced to varying degrees compared to the standard ANN model (RMSE was 5.0237 for
the training set and 4.9673 for the testing set of the ANN model). The MAE of the training
and testing sets was also lower than the ANN model (MAE was 3.7363 for the training set
and 4.2117 for the testing set for the ANN model). Thus, the PSO algorithm improved the
predictive ability of the ANN model.

Table 4. Results of the performance evaluation of the three models.

ANN PSO-ANN ASAPSO-ANN

R2 Train 0.8990 0.9516 0.9554
Test 0.8385 0.8732 0.9240

MSE
Train 26.8847 12.0370 11.0969
Test 25.1023 13.3453 7.4011

RMSE
Train 5.0237 3.4573 3.3238
Test 4.9673 3.6340 2.7805

MAE
Train 3.7363 2.5493 2.4016
Test 4.2117 2.7260 2.1088

6.3. ASAPSO-ANN Model

Introduction of the SA algorithm into the PSO algorithm improved the global search
capability of the algorithm and the probability of jumping out of the local extremum. The
inertia factor was optimized by Equation (11). For ASAPSO-ANN, the initial temperature
and the temperature decay coefficient needed to be set. The initial temperature used in this
study was 200 degrees, while the temperature decay coefficient was 0.95.

The results of the performance evaluation of the ASAPSO-ANN model are presented
in Table 4. The mean value of R2 for the training set of the ASAPSO-ANN model was 0.9554,
and the testing set was 0.9240. The mean value of the RMSE for the training set was 3.3238,
and the testing set was 2.7805. The mean value of the training MAE was 2.4016, and the
mean of the testing set was 2.1088. From these data, the performance of the neural network
model was further improved by adding the SA algorithm. Compared to the PSO-ANN
model, the ASAPSO-ANN model has a higher R2 on both the training and testing sets
(R2 was 0.9516 for the PSO-ANN model training set and 0.8732 for the PSO-ANN testing
set), and a lower RMSE (RMSE was 3.4573 for the training set and 3.6340 for the testing
set of the PSO-ANN model). The mean value of MAE decreased from 2.5493 to 2.4016 for
the training set and from 2.7260 to 2.1088 for the testing. The R2 of the testing set of the
ASAPSO-ANN model was significantly higher than that of the PSO-ANN model, while
other error metrics were also lower than that of the PSO-ANN model. This demonstrated
that the ASAPSO algorithm further improved the predictive ability of the ANN model.

6.4. Weights and Biases of Neural Networks for the Three Models

This section gives the weight matrices for the three neural network models so that
the neural network models can be applied. The weight matrices for the ANN model, the
PSO-ANN model, and the ASAPSO-ANN model are shown in Appendix A.

7. Discussion

This study focused on the prediction of the compressive strength of rubber concrete
using a neural network optimized by the ASAPSO algorithm. Since a single optimization
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algorithm has its shortcomings, it was necessary to mix the algorithms to compensate for
their shortcomings between them. In the previous section, the results of the three models
ANN, PSO-ANN, and ASAPSO-ANN are presented in Table 4, but it was necessary to
discuss the results from a more intuitive point of view.

The regression analysis for the three models are presented in Figure 7. Panels a, c, and
e denote training set results, and b, d, and f denote testing set results. The figure shows that
most of the data points in the training set of the three models were distributed on both sides
of the fitted line and the R2 were good. This indicates that all three neural network models
had a good fitting ability. Among these, the ASAPSO-ANN model had the highest R2,
which is the indication of a stronger fitting ability. The results from Figure 7b,d,f showed a
significant increase in R2 in the testing set compared to the training set, which increased
from 0.8564 for the ANN model to 0.9396 for the ASAPSO-ANN model. Meanwhile, the
ASAPSO-ANN model had the lowest error in each. Since the testing set did not participate
in the training of the model, it could be shown that the ANN model with the introduction of
the ASAP SO algorithm had a substantial improvement in predictive ability. This conclusion
could also be drawn from Figures 8 and 9. As can be seen in Figures 8f and 9, the predicted
value of the ASAPSO-ANN model was closer to the actual value compared to the ANN
and PSO-ANN models. The error analysis for the three models is shown in Figure 10.
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In summary, the introduction of the algorithm proved to be successful and effective.
The PSO algorithm optimized the weights and biases of the ANN model using its optimiza-
tion capabilities, resulting in improved model performance and reduced prediction errors.
The introduction of the SA algorithm in the PSO algorithm successfully compensated for
the shortcomings of the PSO algorithm in terms of fast convergence at the end of iteration
and the tendency to fall into local extremum, so that the probability of obtaining the globally
best model was greatly increased. It can also be seen that the adaptive treatment of inertia
factor successfully helped the PSO algorithm to perform sufficient optimization search in
the early stage and converge to the global best quickly in the later stage. This shows that
the hybrid algorithm improved the prediction accuracy of the model more than the single
optimization algorithm. It also shows that the hybrid algorithm could be used to study the
strength of rubber concrete.

To further validate the reliability of the proposed model, the traditional multiple linear
regression model was introduced here [17]. The multiple linear regression (MLR) model was
similar to the neural network model in that both studied the effects of multiple variables;
therefore, the two models could be used for comparison. The results of the regression
analysis of the two models are shown in Figure 11. A comparison of the indicators is
shown in Table 5. As can be seen from Figure 11 and Table 5, the ASAPSO-ANN model
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outperforms the MLR model. Comparison with empirical formulae was also necessary.
M. Reda Taha modeled the empirical formula using polynomials [26]. Since the empirical
formula only used the percentage of rubber content as an input variable, the input variable
for the ASAPSO-ANN model was also changed to the percentage of rubber content. To
avoid complex calculations, a randomly selected cited study [39] was used for calculations
using both models. Figure 12 shows the results of the regression analysis for both models.
A comparison of the indicators is shown in Table 6. From Figure 12a, it can be seen that
the empirical equation model had a high R2, but its horizontal and vertical values were
very different. This indicates that there was a large error between the predicted and actual
values. This is also reflected in the other indicator values in Table 6. This indicates the
poor predictive ability of the empirical formula model. In contrast, the ASAPSO-ANN
model represented in Figure 12b did not suffer from such problems and could predict the
strength values of the concrete with accuracy. For these types of empirical formulas, the
influence of multiple factors on strength was usually not taken into account, and therefore
the ASAPSO-ANN model had a wider application capability than the empirical formulas.
Comparison of other neural network models were also necessary. The comparison results
are shown in Table 7. As can be seen from Table 6, ASAPSO-ANN performed better than
the conventional ANN model when faced with large datasets. Therefore, the proposed
model is feasible for strength studies of rubber concrete.

Materials 2022, 15, 3934 16 of 21 
 

 

indicates the poor predictive ability of the empirical formula model. In contrast, the 
ASAPSO-ANN model represented in Figure 12b did not suffer from such problems and 
could predict the strength values of the concrete with accuracy. For these types of empir-
ical formulas, the influence of multiple factors on strength was usually not taken into ac-
count, and therefore the ASAPSO-ANN model had a wider application capability than 
the empirical formulas. Comparison of other neural network models were also necessary. 
The comparison results are shown in Table 7. As can be seen from Table 6, ASAPSO-ANN 
performed better than the conventional ANN model when faced with large datasets. 
Therefore, the proposed model is feasible for strength studies of rubber concrete. 

Table 5. Metrics for MLR and ASAPSO-ANN models. 

 𝑹𝟐 MSE RMSE MAE 
ASAPSO-ANN 0.951 11.4323 3.3812 2.4606 

MLR 0.6486 81.6069 9.0337 6.9968 
 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60  Data
 Fit

Pr
ed

ic
t/M

P

Ture/MP
a

MLR
y=0.6486x+10.336
RMSE=9.0337
MAE=6.9968
R2=0.6486

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80  Data
 Fit

Pr
ed

ic
t/M

P

Ture/MP
b

ASAPSO-ANN
y=1.0141x-0.4028
RMSE=3.3812
MAE=2.4606
R2=0.951

 
Figure 11. Results of regression analysis of two models: (a) for MRL and (b) for ASAPSO-ANN. 

Table 6. Metrics for empirical formula and ASAPSO-ANN models. 

 𝑹𝟐 MSE RMSE MAE 
ASAPSO-ANN 0.9863 5.4414 2.3327 2.1783 

M. Reda Taha [26] 0.9845 126.0657 11.2279 8.979 
 

15 20 25 30 35 40 45
38

39

40

41

42

43

44

45
 Data
 Fit

Pr
ed

ic
t/M

P

Ture/MP
a

Computational model
y=8.623x-322.89
RMSE=11.2279
MAE=8.979
R2=0.9845

20 25 30 35 40 45
20

25

30

35

40  Data
 Fit

Pr
ed

ic
t/M

P

Ture/MP
b

ASAPSO-ANN
y=1.3304x-9.2263
RMSE=2.3327
MAE=2.1783
R2=0.9863

 
Figure 12. Results of regression analysis of two models: (a) for empirical formula and (b) for 
ASAPSO-ANN.  

Figure 11. Results of regression analysis of two models: (a) for MRL and (b) for ASAPSO-ANN.

Table 5. Metrics for MLR and ASAPSO-ANN models.

R2 MSE RMSE MAE

ASAPSO-ANN 0.951 11.4323 3.3812 2.4606
MLR 0.6486 81.6069 9.0337 6.9968

Materials 2022, 15, 3934 16 of 21 
 

 

indicates the poor predictive ability of the empirical formula model. In contrast, the 
ASAPSO-ANN model represented in Figure 12b did not suffer from such problems and 
could predict the strength values of the concrete with accuracy. For these types of empir-
ical formulas, the influence of multiple factors on strength was usually not taken into ac-
count, and therefore the ASAPSO-ANN model had a wider application capability than 
the empirical formulas. Comparison of other neural network models were also necessary. 
The comparison results are shown in Table 7. As can be seen from Table 6, ASAPSO-ANN 
performed better than the conventional ANN model when faced with large datasets. 
Therefore, the proposed model is feasible for strength studies of rubber concrete. 

Table 5. Metrics for MLR and ASAPSO-ANN models. 

 𝑹𝟐 MSE RMSE MAE 
ASAPSO-ANN 0.951 11.4323 3.3812 2.4606 

MLR 0.6486 81.6069 9.0337 6.9968 
 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60  Data
 Fit

Pr
ed

ic
t/M

P

Ture/MP
a

MLR
y=0.6486x+10.336
RMSE=9.0337
MAE=6.9968
R2=0.6486

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80  Data
 Fit

Pr
ed

ic
t/M

P

Ture/MP
b

ASAPSO-ANN
y=1.0141x-0.4028
RMSE=3.3812
MAE=2.4606
R2=0.951

 
Figure 11. Results of regression analysis of two models: (a) for MRL and (b) for ASAPSO-ANN. 

Table 6. Metrics for empirical formula and ASAPSO-ANN models. 

 𝑹𝟐 MSE RMSE MAE 
ASAPSO-ANN 0.9863 5.4414 2.3327 2.1783 

M. Reda Taha [26] 0.9845 126.0657 11.2279 8.979 
 

15 20 25 30 35 40 45
38

39

40

41

42

43

44

45
 Data
 Fit

Pr
ed

ic
t/M

P

Ture/MP
a

Computational model
y=8.623x-322.89
RMSE=11.2279
MAE=8.979
R2=0.9845

20 25 30 35 40 45
20

25

30

35

40  Data
 Fit

Pr
ed

ic
t/M

P

Ture/MP
b

ASAPSO-ANN
y=1.3304x-9.2263
RMSE=2.3327
MAE=2.1783
R2=0.9863

 
Figure 12. Results of regression analysis of two models: (a) for empirical formula and (b) for 
ASAPSO-ANN.  

Figure 12. Results of regression analysis of two models: (a) for empirical formula and (b) for
ASAPSO-ANN.



Materials 2022, 15, 3934 16 of 20

Table 6. Metrics for empirical formula and ASAPSO-ANN models.

R2 MSE RMSE MAE

ASAPSO-ANN 0.9863 5.4414 2.3327 2.1783
M. Reda Taha [26] 0.9845 126.0657 11.2279 8.979

Table 7. Comparison with models in the literature.

ML Algorithm Structure Dataset Performance

This study ASAPSO algorithm
with ANN

11–6–1 307
R = 0.9774(train)
R = 0.9612(test)
R = 0.9752(all)

Khoja [9] ANN with Levenberg
–Marquardt algorithm 5–10–1 287 R = 0.954(all)

Abdollahzadeh [17]
ANN multi-layered

perceptron (BP) 3–1–1 20
R = 0.9885(train)
R = 0.9824test)

8. Conclusions and Future Prospect

In this study, an ASAPSO-ANN model was developed for predicting the compressive
strength of rubber concrete. The data were obtained from the published literature. Both
ANN and PSO-ANN artificial neural network models were developed for comparative
analysis. RMS, R2, MSE, and MAE were used to evaluate the model performance. Accord-
ing to the results of the testing phase, all three artificial neural networks established in this
study have predictive capabilities, but the proposed ASAPSO-ANN model has the highest
prediction accuracy compared to the ANN model and the PSO-ANN model (R2 = 0.9240,
RMS = 2.7805, MSE = 7.8028, and MAE = 2.1088). By comparing the prediction curves of
the testing set of the three models, it can also be obtained that the prediction curves of the
ASAPSO-ANN model are closer to the actual curves. This led to the conclusion that the SA
algorithm successfully compensates for the shortcomings of the PSO algorithm, proving
the validity of the proposed model.

In summary, this study successfully demonstrated that the proposed ASAPSO algo-
rithm improved the performance and accuracy of the network. It also showed that hybrid
algorithm could be used to optimize neural networks for predicting the strength of rubber
concrete. This provided a new option for predicting the strength of rubber concrete using
neural network models. However, observation of the results revealed that the proposed
method could be further optimized in the future to obtain better results, which included
making the dataset more comprehensive, considering the issue of outliers in the model,
and comparing it with other machine learning models.
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Appendix A

ANN:

w1 =



0.130 −0.636 −0.410 0.336 −0.860 −0.00 0.439 −0.130 −0.700 −0.096 −0.751
−0.102 0.470 0.171 0.605 0.757 −0.362 0.373 0.725 0.673 −0.466 −0.220
0.421 0.603 −0.459 −0.307 −0.613 −0.540 0.411 0.298 −0.704 0.571 0.350
−0.231 −0.037 −0.460 0.668 −0.428 0.637 −0.545 −0.640 −0.581 0.588 −0.155
−0.835 −0.370 0.098 0.018 0.328 0.153 −0.630 −0.874 −0.022 0.660 −0.378
−0.042 0.474 −0.618 0.360 0.467 −0.439 0.198 −0.601 −0.621 −0.612 −0.636


w2 = [−0.235− 0.249− 0.768− 0.799 0.014− 0.885]

b1 =
[
−1.648 0.989 −0.330 −0.330 −0.986 −1.648

]T

b2 = [−0.227]T

PSO-ANN:

w3 =



−2.428 −0.857 −0.303 2.257 −1.039 0.364 −0.159 5.346 0.870 2.751 −0.311
3.711 1.442 4.023 2.092 0.645 3.596 −1.585 −0.736 0.133 2.603 2.975
2.762 1.015 −0.196 −1.843 0.933 −1.459 −0.184 −4.372 −5.070 −2.021 0.706
0.970 1.115 1.016 5.295 −0.281 3.921 7.953 −2.226 −0.617 1.082 9.331
0.871 3.674 3.767 3.616 −1.162 −2.082 4.125 −3.288 −2.313 −3.038 0.561
7.484 0.425 6.608 13.598 −3.780 5.058 −3.747 1.662 −2.279 −2.991 −0.761


w4 = [−1.380− 2.93− 1.557 0.209− 0.040 0.064]

b3 =
[
8.195 −1.706 −12.078 6.403 2.066 −2.192

]T

b4 = [−3.921]T

ASAPSO-ANN:

w5 =



−5.804 −2.772 −1.222 0.163 −0.356 −2.316 1.700 3.703 0.884 3.381 3.198
−4.767 −0.563 −0.436 −0.586 2.726 2.958 6.314 −6.992 3.005 6.417 −0.152
−2.509 1.148 −1.844 −3.255 1.088 1.858 −0.074 −1.452 1.547 1.895 2.816
1.370 1.195 −2.008 −4.159 1.528 −4.568 −2.848 −2.623 −1.290 1.446 −0.018
0.445 0.224 0.339 −0.882 0.135 0.082 0.316 −3.514 −0.743 −2.287 0.008
3.672 0.538 −1.742 −2.114 0.364 −4.714 2.701 0.646 −0.439 2.871 6.128

.

w6 = [−0.250 0.290− 0.091− 0.283 1.944 0.288]

b5 =
[
7.154 −1.294 −3.143 −2.614 −7.033 4.742

]T

b6 = [1.240]T
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23. Güneyisi, E.; Gesoğlu, M.; Özturan, T. Properties of rubberized concretes containing silica fume. Cem. Concr. Res. 2004, 34,

2309–2317. [CrossRef]
24. Albano, C.; Camacho, N.; Reyes, J.; Feliu, J.; Hernández, M. Influence of scrap rubber addition to Portland I concrete composites:

Destructive and non-destructive testing. Compos. Struct. 2005, 71, 439–446. [CrossRef]
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