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Abstract: The digitalization of manufacturing processes offers great potential in quality control,
traceability, and the planning and setup of production. In this regard, process simulation is a well-
known technology and a key step in the design of manufacturing processes. However, process
simulations are computationally and time-expensive, typically beyond the manufacturing-cycle time,
severely limiting their usefulness in real-time process control. Machine Learning-based surrogate
models can overcome these drawbacks, and offer the possibility to achieve a soft real-time response,
which can be potentially developed into full close-loop manufacturing systems, at a computational
cost that can be realistically implemented in an industrial setting. This paper explores the novel
concept of using a surrogate model to analyze the case of the press hardening of a steel sheet of
22MnB5. This hot sheet metal forming process involves a crucial heat treatment step, directly related
to the final part quality. Given its common use in high-responsibility automobile parts, this process is
an interesting candidate for digitalization in order to ensure production quality and traceability. A
comparison of different data and model training strategies is presented. Finite element simulations
for a transient heat transfer analysis are performed with ABAQUS software and they are used
for the training data generation to effectively implement a ML-based surrogate model capable of
predicting key process outputs for entire batch productions. The resulting final surrogate predicts
the behavior and evolution of the most important temperature variables of the process in a wide
range of scenarios, with a mean absolute error around 3 ◦C, but reducing the time four orders of
magnitude with respect to the simulations. Moreover, the methodology presented is not only relevant
for manufacturing purposes, but can be a technology enabler for advanced systems, such as digital
twins and autonomous process control.

Keywords: surrogate modeling; intelligent manufacturing; machine learning; press hardening;
simulations; sheet metal forming; Industry 4.0

1. Introduction

The press hardening of a steel sheet, also known as hot stamping, is a thermome-
chanical forming process in which sheet steel in austenitized conditions (typically in
a 890–950 ◦C range) is transferred to a set of cooled dies to be formed and quenched
in a single step, resulting in a fully martensitic structure with up to 1500 MPa tensile
strength [1,2]. This technology offers interesting compromises, allowing to obtain compo-
nents with very high mechanical properties and great shape complexity, in a cost-effective
manner, and all but bypassing the issues of spring-back and the lack of formability typical
in high-performance materials.

In the last two decades, press hardening has become the reference technology in
lightweight safety cage body-in-white applications, with ultra-high-strength steels (UHSS)
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being extensively used in safety-related components, such as A- and B-pillars or frame
dash panels. The most common UHSS for these purposes are 22MnB5 and, more recently,
37MnB5 [3]. Moreover, by its very definition, press hardening involves a heat treatment,
meaning that both geometry and mechanical properties are generated on the press floor.
This has led to consistent interest in ensuring part quality and traceability, with the constant
need to improve experimental testing methods [4]. Additionally, this interest has brought
press hardening to be a prime objective for Industry 4.0 concepts.

The Fourth Industrial Revolution has transformed the manufacturing industry, lead-
ing to a digitalization process that has driven the establishment of a complete connection
between manufacturing elements and has enabled the effective exploitation of manufac-
turing processes data [5]. Thereby, the Industry 4.0 paradigm includes the integration
of sensors, computing platforms, communication technologies, data-intensive modeling,
control systems, and simulation and predictive tools to manage processes in real-time [6].

Industry 4.0 has also been the driver for new promising technologies. The most
popular being the digital twin [7], which consists of a mirror version of the real system in a
digital environment. The key characteristic of the digital twin is the connection between the
real and the digital version of the system, which allows the data exchange in real time [8].

In addition, these concepts can be further reinforced by the application of artificial in-
telligence (AI) and machine learning (ML) in manufacturing [9,10]. For instance, supervised
learning has been shown to be an effective tool to handle the production data, providing
additional information from the human expertise and the quality control protocols [11,12].
Moreover, it is used for quality [13] and process monitoring [14]. On the other hand, unsu-
pervised learning has the relevant characteristic of being capable of identifying patterns
to handle the important quantity of unlabeled data that is generated in manufacturing.
Unsupervised learning has achieved great results in anomaly detection [15], fault and
quality prediction [16], and predictive maintenance [17], among others. Furthermore, more
sophisticated approaches have been explored in the literature, such as generative adversar-
ial networks (GANs) or the hybrid combination between different ML techniques. Some
of the applications of GANs have been the anomaly detection [18] and the augmentation
of small experimental datasets with artificial data to feed ML algorithms in prognostics
and health management [19]. Meanwhile, the combination of decision trees and artificial
neural networks (ANNs) has been used in lifetime prediction [20]. Nevertheless, the most
novel approach is reinforcement learning, which, despite being at an early stage, has shown
great potential in industrial manufacturing applications [21]. The reason is that it is able
to provide goal-directed learning oriented to decision making. Its applications are still
limited, mainly focused on planning, scheduling optimization, production maintenance,
and quality control [22].

However, as previously discussed for digital twins, the generation and accessibility
of process data and its posterior treatment are crucial for the mentioned ML techniques
to work properly [23]. The possibility of performing real experiments of the processes to
acquire data is often unfeasible, since they are costly and imply the waste of raw materials.
In this context, manufacturing simulations, mainly finite element modeling, are the main
source of data and knowledge without perturbing the real manufacturing system [24].
Simulations enable the exploration of new scenarios and configurations, as well as the
modification of the experimental conditions.

Finite element modeling is a mature technology, commonly used in the manufac-
turing industry. In the particular case of press hardening, finite element modeling has
been in widespread use since the early 2000s [25], and has steadily evolved to capture
complex aspects such as thermal and mechanical interactions [25], plastic flows at different
temperatures [26], and eventually phase transformations and the behavior of different mi-
croconstituents [27]. Currently, the simulation of press hardening can be readily performed
with commercial software [28] with industrially relevant results. However, despite their
obvious advantage in front of real-world experiments, simulations are still a complex and
time-intensive tool that cannot be realistically run in real time or used to generate very large
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libraries of data. This supposes a limitation in the design of technologies such as digital
twins, which require a huge amount of simulations for the training of the data analysis
tools. Besides, the simulations in the digital environment must provide a rapid response in
order to predict the optimal operational configuration of the system [29]. In the same way,
in fields such as autonomous process control, the development of reinforcement learning
agents is starting to be relevant [30], which demands a high volume of data that is hardly
workable in terms of time and resources with the simulation methods.

To overcome the mentioned limitations of the manufacturing simulations, it is possible
to combine simulations and ML in a hybrid approach to build a highly efficient model
which acts as a surrogate of the simulations [31]. These surrogate models, or advanced
response surfaces, are meta-models that aim to describe a system or a process in a simpler
but representative way. The aim of surrogate models is to give an approximation of a
function that relates input variables with output target variables to offer a faster response
than the one that a complete simulation model provides. The surrogate models can be
generated using real-world data or simulation data [32–34]. Despite the simplicity of the
model, the response is helpful for the understanding and the optimization of the process.
Usually, in manufacturing, with a few relevant variables, it is possible to evaluate the
performance of the manufacturing system through the key performance indicators (KPIs).

KPIs are metrics that quantify the performance of a manufacturing process over time in
manufacturing [35]. Some of the most important KPIs are overall equipment effectiveness
(OEE) [36], scrap rate [37], and cycle time [38], among others. OEE identifies the percentage
of truly productive times, speeds, and qualities. It is an indicator used to determine how
well equipment is used in batch production and it is related to losses that can impede
the equipment efficiency. Differently, scrap rate measures the defective products that are
useless and cannot be restored with respect to the total of the batch production. Finally,
cycle time is the amount of time that a process lasts in fabricating a product.

The possibility of implementing ML to process control in press hardening has been
proposed in the literature and specialized fora, with different approaches being consid-
ered [39–41]. The basic common ground tends to heavily lean into monitoring process
temperature at different points, thus ensuring that the heat treatment and final part proper-
ties are controlled. Differently, this work presents a novel approach to built a data-driven
surrogate model of the press hardening process of the UHSS 22MnB5. The aim is to demon-
strate the model validity to predict the performance of a simplified press hardening process
reproduced in a finite element modeling environment, offering a much faster response than
in the simulations. The model analyses a problem where an austenitized piece of sheet steel
is quenched using water-cooled steel dies, reproducing the experimental setup of a real
industrial plant described in reference [42]. The surrogate model focuses on the prediction
of the most relevant target variables for the process, which determine the quality of the
obtained sheet and the state of the press hardening die.

The model consists of a supervised ML algorithm, which establishes relationships
between the input variables of the process and the target variables. The training of the
model is performed with a series of finite element simulations performed inside a pre-
defined parameter space. Concretely, two training methodologies are proposed: one
built with simulations inside the typical operation framework and the other covering
non-standard cases. Another purpose of the work is to propose an efficient method to
train the surrogate model in order to achieve the maximum generalization capability in the
validation process. The validation scenarios are defined by adjusting the parameters to the
facilities of the real industrial plants, but also explore new operation possibilities towards
dynamic process optimization. The results show that the surrogate model trained with
non-standard cases is more suitable for the prediction in all the evaluated scenarios and it
can be optimized with the objective to reduce the number of FE simulations required in
the training phase. The key advantages of the surrogate modeling of the press hardening
process is that it provides a soft real-time response of the target variables of the process
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and enables the creation of time- and cost-efficient virtual environments for knowledge
collection, overcoming the time and computational limitations of traditional FE simulations.

2. Materials and Methods
2.1. Press Hardening Process

Press hardening, also known as hot stamping, is a hot sheet metal forming pro-
cess, which consists of the austenitization of a sheet steel at a temperature between
900 and 950 ◦C inside a furnace. Afterwards, the sheet is transferred into a set of cooled
dies where it is formed while its temperature is inside the 650–850 ◦C range. Then, the dies
are kept close and pressure is applied for a short period of time. During this step, the cooled
dies quench the formed component at a cooling rate between 50 and 100 ◦C/s to a tempera-
ture of 100–250 ◦C, ensuring full martensitic microstructure [1]. The finished component is
then extracted from the die. The total cycle time includes transfer, forming, and quench-
ing typically.

In this work, a simplified hot stamping process is analyzed by finite element modeling
(FEM) using the ABAQUS software [43], based on the experimental layout discussed
in reference [42]. The reproduced setup consists of a flat water-cooled die made out of
steel DIN 1.2344 (roughly corresponding to AISI H13) tempered at 48 ± 1 HRC, with water
channels 10 mm in diameter and located at 20 mm depth from the surface, with a separation
of 50 mm between centers. On these tools, an austenitized 22MnB5 sheet 1.7 mm in
thickness is introduced, and the dies are closed, resulting in the component being quenched.
The chemical composition of the two materials is presented in Table 1.

Table 1. Typical chemical composition in % of 22MnB5 sheet steel and 1.2344 tool steel.

Element C Si Mn Cr B Mo V
22MnB5 0.20–0.25 0.15–0.35 1.1–1.4 0.15–0.30 0.002–0.004
1.2344 0.39 1.00 5.40 1.35 1.00

Simulation 2D models have been created with a focus on economy of calculation, as the
main aim of the work is to generate a very large amount of simulations to demonstrate
the surrogate models. Transient heat transfer analysis is realized with a model meshed
with four-node linear quadrilateral elements and using a slightly higher mesh density
in contact boundary regions. Quadrilateral-shaped elements have been used instead of
triangular to reduce the number of nodes involved in the model, consequently reducing
the computational cost. A total of 783 elements and 995 nodes has been used to represent a
transversal cut of the sheet and the die during the process, using the system symmetry to
further simplify geometry, as shown in Figure 1. Plastic deformation and phase changes
are not considered, reducing the scenario to a heat transfer problem representative of a
local analysis of quenching of a press-hardened component. For the same reason, strategies
to increase precision of results such as local mesh refinement are not employed, instead
performing the whole batch of simulations using the basic-defined mesh.

For this model, the main material properties simulated have been density, estimated at
7800 kg/m3 for both steels and heat conductivity, where values of 23 W/m·K for 22MnB5
steel and 27 W/m·K for 1.2344 have been used in accordance to references [26,44]. Thermal
contact conductance between dies and sheet metal has been set at 3000 W/m2·K, as used in
reference [45]. A boundary film condition has been applied on inner surfaces of die cooling
channels. A 12,000 W/m2·K heat transfer coefficient and 25 ◦C of sink temperature were
used regarding the turbulent flow of a water-cooled system, created with drilled channels.

Using this model, a series of heat transfer transient simulations are run sequentially.
Then, the die temperature changes along the cycles. The initial die temperature is set to to
25 ◦C; from that point, each cycle uses the temperature distribution on the die resulting from
the previous simulation. In this manner, die heating is reproduced in the simulation model
as it is observed in the physical system. On each cycle, a new sheet is considered, with an
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initial temperature of 800 ◦C, a reasonable estimation of an industrial press hardening
process. A cycle simulation comprises two phases:

1. Forming phase: It represents the stage when the die is closed and there is a heat trans-
fer between the hot sheet and the cold die: this phase is governed by the forming time;

2. Cooling phase: The sheet has already been extracted. It includes the recovery of the
die after the forming phase and the transfer of the next metal sheet in the die. This
phase is governed by the cooling time.

(a) (b)

Figure 1. Representation of the mesh temperature profile in ABAQUS. (a) Initial state. The hot sheet
is displayed in red and the cold die in blue. (b) State after a forming phase. The temperature profile
is difficult to differentiate between the sheet and the die.

Despite Figure 1, where the distribution of all the node temperatures is displayed,
two nodes are taken as a reference for the sheet and die temperatures during the process.
In Figure 2a, the location of these nodes in the mesh is indicated and it corresponds to the
position of real sensors. As a result, the simulations allow to control the temperature of
the sheet and the die of the press hardening process from a similar point of view to the
industrial plant. The behavior of the reference nodes in an example simulation cycle is
shown in Figure 2b.

(a)
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Figure 2. (a) Location of the reference nodes in the mesh. The upper red point is the sheet reference
node (S) and the lower red point is the die reference node (D). (b) Evolution of the reference points’
temperatures during a complete press hardening simulation cycle.

The press hardening simulations demand some input values that are restricted to the
conditions of the real industrial plant. The most relevant input variables are the following:

• Initial distribution of the sheet temperature. We focus on the temperature at the
reference node TS

ini. It is the temperature of the sheet at the start of the forming phase.
It is assumed to be 800 ◦C in this study;

• Initial distribution of the die temperature. We focus on the temperature at the reference
node TD

ini. It is the temperature of the die at the start of the forming phase. It is
assumed to be 25 ◦C in the initial cycle, but it keeps changing when sequential cycles
are simulated. It represents the actual state of the press hardening system at the start
of the cycle;
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• Forming time t f orm. It refers to the duration of the forming phase. To ensure the
quality of the sheet, the forming time has a minimum value of t f orm = 10 s in the
industrial plant;

• Cooling time tcool . It refers to the duration of the cooling phase. The transfer cannot
be immediate and a cooling of the die is required. Then, tcool ranges from [10 to 20] s
in the current industrial plant;

• Cycle time tcycle. It is the total duration of a simulation cycle. tcycle = t f orm + tcool .
The real plant restricts this variable in the interval of [30, 40] s. In this plant, the sheets
go through the furnace in a belt and cycle time depends on the furnace providing
the next hot sheet. In more advanced industrial plants, the cycle time range is wider,
because they use several furnaces at the desired temperature, and the hot sheet is
available anytime.

At the end of a simulation cycle, there are three output variables which provide
crucial information about the realized press hardening cycle. These target variables de-
termine the state of the system, and the quality and the good performance of the press
hardening process:

• Final distribution of the die temperature. We focus on the temperature at the reference
node TD

f in. It is the temperature of the die at the end of the cycle after the forming
and cooling phases. In a sequential simulation of cycles it keeps evolving and it is the
value for the TD

ini of the next cycle. Therefore, it represents the actual state of the press
hardening system at the end of the cycle;

• Final distribution of the sheet temperature. We focus on the temperature at the
reference node TS

f in. It is the temperature of the sheet at the end of the forming phase
when the sheet is extracted. This variable controls the quality of the final product. If it
exceeds a threshold temperature, the sheet has not been able to acquire the martensitic
microstructure due to a slow cooling;

• Distribution of the maximum die temperature. We focus on the temperature at the
reference node TD

max. It is the maximum temperature achieved in a cycle. This variable
makes sure that die capacities are not exceeded and ensures that it is able to support
the process.

In general, in industrial plants, the execution of only a single cycle of press hardening is
not the usual way of operation. The demand requires the production of batches of more than
one product, which implies carrying out several cycles. In the current work, 50 sequential
cycles are equivalent to a batch. Therefore, to build the surrogate model, we generate batch
simulations of 50 press hardening cycles to mimic a possible real-demand case.

Although the industrial plant characteristics limit the cycle time to a range of values,
the surrogate model aims to generate an environment to look for the optimization of this
feature and the product quality in the batches. The modification of forming and cooling
times could lead to a change in the cycle time, but also could imply the manufacturing of a
defective sheet. Hence, there is a trade-off between the reduction of the total cycle time in
the batches and the final quality of the metal sheets. Since the transference of the sheet from
the furnace into the die is usually performed by an automated system, in the study we focus
on the creation of a surrogate model able to reproduce scenarios where the cooling time
is set constant, according to the possibilities of real industrial plants. Then, the forming
time is modified, affecting the total cycle time. The forming time can be changed in a
real plant, controlling the duration of the die closure. In Figure 2b, it is shown how a
change of the forming time influences in the TS

f in and the TD
f in. Summarizing, in this work,

the surrogate model opens the door to explore a possible real-operation scenario where
we try to optimize the time and the quality of the metal forming process, modifying the
forming time of the cycles while keeping the cooling time constant.
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2.2. Surrogate Modeling of the Process

This study proposes a methodology for the development of a data-driven surrogate
model, consisting of a supervised machine learning regression algorithm. The surro-
gate model is built using simulations from the high-fidelity FE simulations described in
Section 2.1. The simulations consist of different batches of 50 cycles. Ideally, the surrogate
model should be able to reproduce batches in the whole region of the parameter space.
To achieve this generalization capability, we have generated two candidate training sets
under different simulation conditions in order to evaluate which provides the most general
surrogate model.

• Training Set A: The parameters of the simulations agree with real-operation condi-
tions. Each cycle lasts randomly within tcycle = [30, 40] s, with a discretization of the
interval each 0.5 s. The cooling time is set constant along the batches according to the
scenario that we want to reproduce in this study. Therefore, the training set contains
90 batches of tcool = 10 s, 15 s, and 20 s, respectively. The forming time oscillates de-
pending on the random value of tcycle, fulfilling the restriction of tcycle = t f orm + tcool .
This training set A it is used to feed the Surrogate Model A (SModA). Figure 3a shows
the evolution of TD

ini of the simulations of the Training Set A;
• Training Set B: The simulations do not correspond to normal operation conditions.

In this case, the cycle time also has a random value within tcycle = [30, 40] s, discretized
each 0.5 s. Moreover, the cooling time has a random values for each cycle ranged in
the interval tcool = [0, 40] s, with a discretization of 0.5 s. The forming time is the result
of the condition tcycle = t f orm + tcool . This dataset is formed by 270 batches and it is
used to train the Surrogate Model B (SModB). Figure 3b shows the evolution of TD

ini of
the simulations of the Training Set B.
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(b)
Figure 3. Representation of the evolution of TD

ini for the simulated batches in the training sets (a) A
and (b) B.

Both surrogate models are based on supervised regression ML algorithms. In Section 2.1,
we have determined the most important input variables of the process and the most relevant
output variables. To mimic the simulation, the surrogate models have the same inputs and
outputs. The inputs are TS

ini, TD
ini, t f orm, and tcool and the target variables are TD

f in, TS
f in, and

TD
max. However, there exist a slight difference between the SModA and SModB. The SModA

also adds in its inputs a temporal window with the 3 previous values of the variables TD
ini,

because, in Figure 3a, the simulations are shown to have a temporal dependence. Several
supervised regression algorithms are implemented using the Scikit-learn [46] and the
XGBoost [47] Python libraries. Concretely, 4 candidate algorithm are explored: K-nearest
neighbors (KNN) [48], based on Euclidean distance as similarity metric; support vector
regressor (SVR) [49], which works with hyperplanes in the dimensional space defined by
the input data; and extreme gradient boosting (XGBoost) [47] and random forest (RF) [50],
which are ensemble techniques. These candidate algorithms cover some of the most-used
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types of supervised ML algorithms. A 5-fold cross-validation [51] is applied to check the
performance of the algorithms in both training sets in order to determine the best one.

As observed, there is a huge difference when comparing Figure 3a, whose simulations
are performed under standard operation conditions, with Figure 3b. In Training Set B,
the simulations do not cover standard cases, but they explore a wider region of possible
states of the system. The surrogate models are validated with simulations that are analogous
rather than the ones forming Training Set A, with distinct parameter values according to
the facilities of our industrial plant. The FE simulations act as our ground truth. Finally, we
identify which is the better option to built a surrogate model capable to generalize unseen
simulation data.

3. Results and Discussion

In this section, we evaluate the surrogate models created with the different method-
ologies proposed in previous sections, presenting the results of the accuracy of the models
in the prediction of the target variables. In addition, we try to optimize the simulations
that are required to feed the surrogate model, to achieve a reduction of the simulation time
without having a significant impact in the quality of the models.

As emphasized in Section 2.1, the state of the system after a press hardening process is
determined by the final die temperature, TD

f in. Consequently, the evolution of this variable
governs the evolution of the whole system. Since it is used as input for the surrogate
model, a poor prediction of this variable affects the next cycles prediction of the other target
variables, which establish the metal sheet quality and the smooth operation of the system.
For that reason, we give numerical results for all the target variables, but, as an insight,
we display figures only for the temperature of the die. The figures for the rest of target
variables are presented in the Appendix A.

3.1. Baseline Prediction Results

Both surrogate models are based on regression algorithms that predict the state of the
system and the most relevant process variables after a complete cycle of press hardening.
To choose an algorithm we implement the technique of five-fold cross-validation [51] to
check the performance of various candidate algorithms on both training sets. The metric
for algorithm evaluation used in this work is the mean absolute error [52]:

MAE =
∑N

i=1|xi − x̂i|
N

(1)

where xi are the actual values, x̂i are the predicted values, and N is the number of samples.
As shown in Table 2, the best algorithms are able to obtain very good results for

all the target variables. The values of MAE are less than 0.5 for Training Set A and less
than 2 for Training Set B, without a relevant SD. Therefore, the XGBoost algorithm acts
as the basis of the surrogate model during the rest of the work. The results of the five-
fold CV of this regression algorithm in both training sets represent a baseline for the
creation of a surrogate model. The next step is the evaluation of the surrogate model in
validation sets corresponding to the real-plant framework, with the objective of generating
a general surrogate model capable to predict the target variables in the all the regions of
the parameter space.
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Table 2. MAE and standard deviation (SD) results from the five-fold CV for the different target
variables and the four candidate regression algorithms: K-nearest neighbours (KNN), gradient
boosting (XGBoost), support vector machine (SVR), and random forest.

Surrogate Model Target Variable KNN XGBoost SVR RF
TD

f in 0.261 (0.009) 0.161 (0.006) 1.002 (0.010) 0.184 (0.006)

A TS
f in 0.797 (0.012) 0.157 (0.004) 2.287 (0.074) 0.203 (0.006)

TD
max 0.205 (0.005392) 0.045 (0.002) 0.127 (0.026) 0.055 (0.002)

TD
f in 2.075 (0.013) 1.674 (0.021) 2.615 (0.026) 1.853 (0.015)

B TS
f in 8.703 (0.421) 1.433 (0.035) 34.993 (1.148) 1.769 (0.022)

TD
max 1.796 (0.064) 0.768 (0.023) 5.141839 (0.202) 0.871 (0.029)

3.2. Exploration of Validation Scenarios

The validation of the surrogate models is performed according to different situations
that may be encountered in a real industrial plant. Then, we have several validation
scenarios to compare the performance of the two surrogate models and determine which
is the best model able to generalize in various regions within the range of the parameter
space. It must be noticed that some of the validation scenarios are built using the same
simulation conditions, rather than Training Set A or B. In these cases, it is unfair to compare
the SModA performing in a validation set with the conditions of Training Set A, and the
same happens for SModB and Training Set B conditions. However, this issue has been
introduced with the purpose of validating the SModA in the training conditions of the
SModB and vice versa. In this way, the generalization capability of a surrogate model in
the prediction of unseen scenarios compared with an unfair prediction is remarked upon.

3.2.1. Single-Cycle Prediction

The final metal sheet quality and the die state are the most significant features after
a press hardening process. The resulting temperatures of the sheet TS

f in and the die TD
f in

provide this information. Additionally, the control of the maximum temperature of the
die TD

max during the process ensures that the die has not exceeded its operational window.
The simulation of a single cycle of a forming process provides these target variables
as outputs. Hence, we expect the surrogate model to accurately predict the same target
variables after a process without the need of the simulation, under different input conditions.
Each of the three validation sets consists of 500 samples, which gives a total ratio of ∼1:8
with respect to the training sets.

Validation Scenario 1: tcool = 10 s, 15 s and 20 s.

The validation set is formed by 500 randomly input samples obtained from simulations
under the conditions of Training Set A. We do not include samples from the first three cycles
in the set, since the surrogate model fed with Training Set A requires information about the
three previous cycles to work. In this scenario, the initial die temperature varies between 80
and 150 ◦C, the cooling time have values of tcool = 10 s, 15 s, and 20 s, and the forming times
have a random value with the restriction of the cycle time tcycle = t f orm + tcool = [30, 40] s.

Figure 4 presents the surrogate models’ prediction values for the TD
f in versus the

simulated values obtained from the simulation using the same inputs. The axis of the
plot are divided into 50 bins to build a histogram of the distribution of TD

f in for both the
predicted and simulated values, which act as our ground truth. This divides the space in
the cells that are colored according the relative density of the samples compared to the
cell with the maximum number of samples. For instance, 100% of relative density in a
cell means that there are the same number of samples, rather than in the cell with the
maximum number of samples. The figure additionally shows the empirical distributions of
the simulated values (at the top of the figure) and the predicted ones (at the right side of
the figure). In the ideal case, both distributions should be the same.
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In Figure 4a, we appreciate a narrow line following the diagonal of the plot, implying
an almost perfect prediction from the SModA. Observing the empirical distributions, we
see that the zones with more density correspond to the values of the TD

f in in the stationary
regime for the cases tcool = 10 s, 15 s, and 20 s, as can be seen in Figure 3a. The high
prediction capability of the SModA in this validation scenario was expected, as training
and validation sets share the same tcool values. On the other hand, despite the randomness
in its training, the SModB is able to approach the diagonal line and also correctly captures
the zones with more density, as it is shown in Figure 4b. Nevertheless, the dispersion of the
points indicates that the predictive power is lower than in the other case.
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Figure 4. Validation Scenario 1: Predicted values as function of the simulated output values of the
TD

f in. The histograms and the color map represent the relative counts as function of the temperature.
(a) SModA and (b) SModB.

These features are repeated for the other target variables TS
f in and TD

max. The respective
figures of these variables are displayed in the Appendix A. The results are condensed in
Table 3, where it is evidenced how the SModA outperforms the SModB in this particular
validation case for all the target variables, although the SModB does not show very high
values of the MAE. An error of about 2 ◦C is not unfeasible in experimental conditions,
and can be often present due to systematic errors or calibration issues.

Table 3. MAE and SD results for the different target variables and the two surrogate models in the
next cycle prediction for Validation Scenario 1.

Target Variable SModA SModB

TD
f in 0.172 (0.200) 1.781 (1.475)

TS
f in 0.193 (0.246) 1.893 (1.417)

TD
max 0.054 (0.069) 1.055 (0.778)

Validation Scenario 2: tcool = Intermediate values.

In this case, the validation set contains 500 randomly selected input points from
simulations with intermediate values of tcool , rather than the ones in Training Set A. The
same as before, we do not add points from the first three cycles in the set, taking into
account the limitation of the surrogate model trained on Training Set A. Then, the initial die
temperature ranges between 85 and 145 ◦C, the forming times have values of tcool = 11 s,
12 s, 13 s, 14 s, 16 s, 17 s, 18 s, and 19 s, and the forming time has a random value with the
restriction of the cycle time tcycle = t f orm + tcool = [30, 40] s.

In the current validation scenario, the SModA does not perform as well as in the
previous case. The intermediate values of tcool force the model to make an interpolation.
In Figure 5a, the points are distributed around the diagonal, although they form a line with
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a significant width, meaning more prediction error and SD. The SModB presents a narrower
line around the diagonal, as it can be observed in Figure 5b. We notice that the intermediate
values of tcool cause a more uniform density distribution along the range of temperatures.

Table 4 shows the commented results of the SModB for the variable TD
f in. It must be

noted that for the rest of the target variables, SModA has a lower MAE. Nonetheless, also
taking into account Figure 5, we consider that SModB is better in the prediction of the TD

f in
of a next cycle than SModA in this parameter interpolation case, but observing the SD of
both models, we observe that the overlap in the results makes it difficult to establish a
clear option.
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Figure 5. Validation Scenario 2: Predicted values as function of the simulated output values of
the TD

f in under. The histograms and the color map represent the relative counts as function of the
temperature. (a) SModA and (b) SModB.

Table 4. MAE and SD results for the different target variables and the two surrogate models in the
single-cycle prediction for Validation Scenario 2.

Target Variable SModA SModB

TD
f in 3.190 (1.607) 1.939 (1.559)

TS
f in 1.179 (0.912) 2.308 (1.521)

TD
max 0.506 (0.376) 1.160 (0.728)

Validation Scenario 3: tcool = Random.

The validation set consists of 500 randomly sampled input points obtained from simu-
lations under the conditions of Training Set B. Again, for the same reason as before, the first
three cycles are not included in the set. In this case, the initial die temperature of the
samples ranges between 50 and 165 ◦C, while the forming and cooling times range between
t f orm and tcool = [0, 40] s, with the restriction of the cycle time tcycle = t f orm + tcool = [30, 40] s.

In Figure 6a, we see that in a random scenario the SModA performs poorly due to
its lack of information about some regions of the parameter space. We observe a high
dispersion of the points and the diagonal has nearly disappeared. Otherwise, as expected,
Figure 6b shows that the SModB maintains its good performance. With a few exceptions,
almost all the points are condensed around the diagonal, meaning that the predictions are
very close to the simulation values. The training under random conditions results in a
high adaptability to any value of the input variables. Checking the other target variables in
Table 5, we confirm that SModB outperforms SModA in this more general scenario.

Summarizing, we identify that the SModA is able to carry out good predictions of the
next cycle target variables in the exactly same training regimes, specifically, cases when
tcool = [10, 20] s. However, the SModB achieves reasonably good performances in all the
validation scenarios, showing a constant and controlled behavior.
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Figure 6. Validation Scenario 3: Predicted values as function of the simulated output values of the
TD

f in. The histograms and the color map represent the relative counts as function of the temperature.
(a) SModA and (b) SModB.

Table 5. MAE and SD results for the different target variables and the two surrogate models in the
single-cycle prediction for Validation Scenario 3.

Target Variable SModA SModB

TD
f in 12.536 (10.429) 2.153 (3.274)

TS
f in 60.157 (117.197) 2.665 (13.875)

TD
max 8.023 (17.931) 2.078 (9.802)

3.2.2. Batch Prediction

Usually, in industrial manufacturing, the demand requires several press hardening
processes to obtain a batch consisting of a specific number of parts. The simulation of this
sequence of cycles is even more time demanding. Therefore, we evaluate the surrogate mod-
els in the prediction of the target variables for all the cycles in a batch. Since the objective is
to effectively substitute the simulations, the surrogate model performs a sequence where
the prediction of the next cycle is performed by taking as input the previous predictions.

For the reasons explained in Section 2.1, the validation sets have tcool = ctant along
the whole batch, corresponding to real experimental cases where the transference of the
sheet into the die is automatized and the forming time can be changed within the range of
values given by the total cycle time. The validation sets consist of 14 batches for each one
of the values of tcool , which gives a total ratio of ∼1:2 with respect to the training sets.

Validation Scenario 4: Batches of tcool = 10 s, 15 s, and 20 s.

The validation set consists of batches of 50 cycles, where the cooling time is kept
constant within the entire batch and it has values of tcool = 10 s, 15 s, and 20 s, the same ones
as Training Set A. The forming time has a random value for each cycle, with the restriction
of the cycle time tcycle = t f orm + tcool = [30, 40] s. For each value of tcool , we have 14 batches
for validation.

In Figure 7, we compare how both surrogate models predict the target variables TD
f in,

which defines the state of our system. The diagonal line acts as a reference of the perfect
prediction. We can also observe the distribution of the simulated values and the predicted
values in the histograms. Moreover, since we are evaluating batches of 50 cycles, the colors
indicate the cycle of the prediction. Notice that the SModA is able to have a very good
performance in this scenario. The reason is that it has been trained and finely tuned to
those particular settings. The SModB predictions are shifted to higher values of TD

f in than
our ground truth simulations, although the histograms are similar. The deviation from the
diagonal becomes more evident in higher temperatures. In both Figure 7a and Figure 7b,
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the batches with different values of tcool can be identified, as higher values of tcool imply
lower values of TD

f in. Quantitatively, the MAE between the predictions and the simulated
values for all the data of this validation scenario is presented Table 6, where the rest of
target variables also have a very low value of MAE with the SModA.
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Figure 7. Validation Scenario 4: Predicted values as function of the simulated output values of the
TD

f in. The histograms represent the relative counts as function of the temperature and the color map
indicates the cycle. (a) SModA and (b) SModB.

Table 6. MAE and SD results for the different target variables and the two surrogate models in the
batch prediction for the Validation Scenario 4 data.

Target Variable SModA SModB

TD
f in 0.359 (0.492) 5.484 (3.886)

TS
f in 0.391 (0.518) 6.335 (4.470)

TD
max 0.293 (0.412) 5.362 (3.586)

Figure 8 represents the MAE and the cumulative MAE of the predictions of TD
f in for

each cycle within the batches in the validation set. We observe how the SModA has a
nearly perfect prediction for the previously commented reasons. Furthermore, the error
of SModB is accumulated in the first cycles and after that it remains constant or even
decreases. Additionally, we confirm that this model works better for higher values of tcool ,
i.e., for lower temperatures. The explanation can be found in the training sets. In Figure 3a
(where the parameters are the same as in the current validation set), the stationary region
of the curves of tcool = 10 s is not reached until cycle 15, in which the stationary region
achieves temperatures around 140 ◦C. Figure 8 shows the important accumulation of error
in the transient region for the SModB, and when tcool = 10 s, the transient region lasts more
cycles. Besides, looking at Training Set B, the interval of temperatures around 140 ◦C in
Figure 3b is not very populated. These are the main causes of the loss in the predictive
power of the SModB for low values of tcool . Summarizing, the transient region is the main
source of error for the SModB, since the mean absolute error increases in the first cycles,
while in the stationary region it is kept constant.
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Figure 8. Validation Scenario 4: Mean absolute error (MAE) of the model prediction of TD

f in evaluated
for batches with tcool = (a) 10 s, (b) 15 s, and (c) 20 s. The inner plot shows the evolution of the
cumulative mean absolute error.

Validation Scenario 5: Batches of tcool = Intermediate.

In this case, the validation set is formed by batches of 50 cycles that have interme-
diate values of tcool = 11 s, 12 s, 13 s, 14 s, 16 s, 17 s, 18 s, and 19 s, and that are kept
constant along the cycles. Therefore, the SModA is not trained with the same values of
cooling time. The forming time has a random value for each cycle, but it is restricted by
tcycle = t f orm + tcool = [30, 40] s. For each value of tcool , we have 14 batches.

In this scenario, Figure 9a evidences the lack of generalization of the SModA. We
notice that the distribution of the predictions displayed in the vertical histogram has peaks
in the same ranges of temperatures as the ones of Figure 7a. These ranges correspond to
the stationary region of when tcool = 10 s, 15 s, and 20 s, implying that the SModA is not
able to interpolate for intermediate values. In opposition, the predictions of the SModB
present a similar temperature distribution to the simulated values. Additionally, comparing
with Figure 7b of the previous validation scenario, we found an analogous behavior of the
SModB in this case, as shown in the distribution of the points of Figure 9b. Focusing on
Table 7, the comparison of the two surrogate models shows the lower values of MAE of the
SModB with respect to the SModA for all the target variables for the intermediate values of
tcool . We notice that the values of MAE for the SModB are close to the ones in Table 6, which
implies a comparable performance in both validation scenarios. Then, despite the small
shift with respect to the diagonal line and the dispersion observed in high temperatures,
the SModB is more convenient if we are seeking a model capable of generalizing within the
defined range of the operational parameters.
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Figure 9. Validation Scenario 5: Predicted values as functions of the simulated output values of the
TD

f in. The histograms and the color map represent the relative counts as functions of the temperature.
(a) SModA and (b) SModB.

Table 7. MAE and SD results for the different target variables and the two surrogate models in the
batch prediction for the Validation Scenario 5 data.

Target Variable SModA SModB

TD
f in 7.598 (3.515) 5.605 (4.760)

TS
f in 8.434 (2.961) 6.796 (5.051)

TD
max 7.044 (2.909) 5.554 (4.309)

The better performance of the SModB and its generalization potential are verified in
Figure 10. Although the error increases in the first cycles, coinciding with the transient
region, the SModB approaches the simulated values after that. On the contrary, the SModA
error in the transient zone remains during the rest of the batch. As discussed, notice
how the SModB works better for higher values of tcool . After the evaluation of the model
performance in the different scenarios, we choose the SModB over the SModA because it has
shown to be a more general model. In spite of the remarkable generalization capability of
the SModB, the model is far from being perfect, especially if we focus on Figure 10a. In the
next section, we try to optimize the model performance and to reduce the computational
time spent in the generation of the training set.
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Figure 10. Validation Scenario 5: Mean absolute error (MAE) of the model predictions of TD

f in
evaluated for the batches in the validation set with tcool = (a) 13 s and (b) 17 s. The inner plot shows
the evolution of the cumulative mean absolute error.
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3.3. Model Optimization

Taking the SModB as the current baseline, in this section we aim to optimize this model,
which has demonstrated a higher generalization capability than the SModA. However,
the model has not been accurate enough in the prediction at high temperatures, i.e., low
values of tcool . Moreover, the current model is fed with the simulation of 270 batches of
50 cycles, which implies a lot of computational time. Therefore, there is a need to tune
the model in order to reduce the computational time spent in the creation of the training
set without a significant impact on the model accuracy. The performance of the model
optimization criteria is evaluated in Validation Scenario 5, since it is the most adequate
scenario for evaluating generalization in the batch prediction case.

3.3.1. Number of Cycles in Training

A reduction of the number of cycles of the batches of Training Set B implies training
the surrogate model with less simulations. Table 8 shows that, in fact, this reduction not
only decreases the time needed to create the training set but also it results in a better MAE.
The surrogate model trained with only the first 10 cycles of the batches is the one that
achieves the best MAE for all the target variables. This is verified in Figure 11, where for
two arbitrary values of tcool , the curves of MAE and the cumulative MAE of the model
trained with batches of 10 cycles are displayed below the curves of the other models.

Looking at Figure 3b, we detect that once we reach the stationary region (around the
10th–15th cycle), the values of the temperatures are limited within an interval. Therefore,
we have a biased training set with a lot of data inside the interval of temperatures of the
stationary region. This bias leads to an overspecialization in the training phase, preventing
good results in the transient state. Because errors at the transient state weigh a lot and are
cumulative, the models trained with 10 or 15 cycles have better performances. In those
training regimes, the model is fed with a better balance of both transient- and steady-
state samples.

Table 8. MAE and SD results of the model predictions of TD
f in for the different target variables in the

batch prediction for the Validation Scenario 5 data as we decrease the number of cycles of the batches
of Training Set B.

Target Variable Surr. Model B (50 Cycles) 20 Cycles 15 Cycles 10 Cycles 5 Cycles
TD

f in 5.605 (4.760) 5.395 (5.377) 3.398 (2.983) 3.058 (2.291) 5.315770 (4.324)

TS
f in 6.796 (5.051) 6.045 (5.962) 4.360 (3.592) 3.402 (2.457) 4.686 (3.781)

TD
max 5.554 (4.309) 4.855 (5.084) 3.305 (2.894) 2.903 (2.013) 3.983 (3.207)
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Figure 11. Validation Scenario 5: Mean absolute error (MAE) of the SModB and the models trained
with less cycles. The predictions are evaluated for the batches in the validation set with tcool = (a)
13 s and (b) 17 s. The inner plot shows the evolution of the cumulative mean absolute error.



Materials 2022, 15, 3647 17 of 27

3.3.2. Number of Simulated Batches in Training

Once the use of the first 10 cycles to train the surrogate model is determined, we focus
on the number of simulated batches that form the training set. By reducing the number of
batches in the training set, less simulations are required, saving a lot of computational time
for the creation of the training set. In Figure 12, we explore how the number of batches
affects the model accuracy. Concretely, a threshold is found at around 220 batches in the
training. As we decrease the number of batches down to this threshold, the MAE keeps
increasing because the model does not have enough information to work properly.
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Figure 12. Evolution of the MAE for the three target variables evaluated in Validation Scenario 5 as
we reduce the number of batches in the training set.

In addition, an increase of the simulated batches in the training set does not imply
a better accuracy. The reason is that as we increase the number of data, the training set
becomes more biased in the range of temperatures of the stationary region and the model
is not able to capture the behavior well outside this range of temperatures. The effect of the
bias is shown in Figure 13, where models trained with different numbers of batches perform
a single-cycle prediction of different random cycles extracted from Validation Scenario 5.
We define three intervals that classify the samples depending on the input TD

ini: TD
ini < 80 ◦C,

TD
ini = [80, 130] ◦C, and TD

ini > 130 ◦C, and each interval has 20 samples. We notice how the
models with 220 and 270 batches have similar behaviors, although the MAE is lower for
the one trained with 220 batches. The model trained with more samples struggles in the
intervals of low and high temperatures and it has a lower MAE in the intermediate interval
than the other models. This verifies the existence of a bias in the training set that affects the
predictions when the number of batches is too large. Then, as it happens in Section 3.3.1,
the model suffers from overfitting, reducing its generalization capability.
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Figure 13. MAE for single predictions of TD
f in of samples of models trained with different numbers of

batches. The sample parameters have the conditions determined in Validation Scenario 5 and they
are classified depending on the input temperature of the die TD

ini.
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3.3.3. Final Surrogate Model

From the results of the previous Sections 3.3.1 and 3.3.2, we have obtained an optimized
surrogate model that is trained with less simulations and it has a better performance than
the baseline SModB. This final surrogate model is trained with 220 batches of 10 cycles
under the same conditions as Training Set B: the cooling time has a random value for each
cycle within the range tcool = [0, 40] and the cycle time also has a random value between
tcycle = [30, 40]. The forming time is restricted by the condition of tcycle = t f orm + tcool .
The randomness of the input variables is the main cause for the generalization power of
the final surrogate model.

In Figure 14, we have compared several curves of TD
f in from different simulated batches

against the predictions of the model. The batches correspond to the case where tcool = ctant,
identified as a very interesting case to explore new possibilities in real industrial scenarios,
as remarked in Section 2. We notice that the curves are very close and that the model is
able to reproduce the simulation inside the whole range of tcool = [10, 20].
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Figure 14. Comparison between the simulated curves and the predicted curves for the final surrogate
model of TD

f in evaluated for batches with tcool = (a) 11 s, (b) 13 s, (c) 15 s and (d) 17 s.

Furthermore, the optimization of the baseline surrogate model to this final surrogate
model has supposed a gain in the simulation time required to generate the training set.
As mentioned, the CPU simulation time for a cycle is about 40 s. Initially, our baseline
surrogate model was trained with 270 batches of 50 cycles, which are generated in ap-
proximately 150 h of CPU time. The training of the optimized model is performed with
270 of 10 cycles, decreasing the CPU time spent in simulation to ∼30 h. In addition, the
270 batches of 10 cycles have been reduced to 220 batches of 10 cycles for the training of the
final surrogate model. Hence, we need less simulations to feed the model. This implies a
reduction of almost∼6 h in simulations, resulting in∼24 h of CPU time spent in simulation.
We have achieved a total reduction of ∼84% of the CPU time.

Despite the time spent in the simulations for the training, the major benefit of the final
surrogate model is that it can generate a cycle or a batch four orders of magnitude faster
than the simulations, as it is displayed in Table 9. It must be noticed that the geometry
in this work is a metal sheet, and that a more complex geometry will enhance the need
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of surrogate modeling due to the increasing difficulty in FE simulations. Therefore, this
creates a powerful tool to explore new operation scenarios, with a low computational
and temporal cost. The aim of this exploration is to optimize the batch production with
a direct effect in the improvement of the KPIs of the process. For instance, OEE could be
improved by defining the optimal forming time for each cycle, reducing then the total
cycle time and preventing the defects in the products, which leads to a better scrap rate.
Moreover, this environment is very efficient to train promising data-driven technologies,
such as digital twins or reinforcement learning agents, because it allows to reproduce a lot
of batches under different parameter conditions. The remarkable soft real-time response
that the surrogate model provides could be used by digital twins to predict the optimal
operational configuration of the systems. In addition, reinforcement learning agents could
be trained inside this efficient environment that mimics the real manufacturing system,
and afterwards they could act in the real scenario, applying the learned policies and
optimizing the process in the industrial plant. To sum up, the surrogate model opens the
possibility to the introduction of self-autonomous systems in the press hardening process
in industrial plants.

Table 9. Comparison between the simulation times and the final surrogate model times in cycle and
batch generation.

Method Cycle Time Batch Time

Simulation ∼40 s ∼2000 s
Final Surrogate Model ∼3 × 10−3 s ∼1.5 × 10−1 s

4. Conclusions

The wide range of applications of the press hardening process in the automotive
industry and the extensive use of 22MnB5 in safety-related components highlight the
importance of the process and the interest in ensuring the quality of the final products
and a good manufacturing performance. In the actual paradigm of Industry 4.0, this work
proposes a novel ML-based surrogate model to predict the most relevant results of the
press hardening process of 22MnB5. The model has been validated in several scenarios and
it is capable to provide a much faster response than simulation models. This enables the
possibility to explore the parameter space and configurations in an efficient environment
without the time limitations of the simulations. The current approach is innovative, since
in previous works the applications of ML in the press hardening process have been based
on the process monitoring and control at different points.

The model is trained with FE simulations and it is based on the XGBoost regression
algorithm, which establishes relations between the input variables of the simulations
with the most relevant process variables. The validation is performed in various feasible
operational scenarios of a real plant, consisting in series of simulated batches of 50 cycles.
In terms of the generalization of the surrogate model, it has been demonstrated that
the training with batches with non-standard parameter conditions, which cover more
regions of the parameter space, outperforms the training with batches with the standard
parameter conditions.

Furthermore, the surrogate model has been optimized, decreasing the number of FE
simulations required for its training. First, the number of cycles of the training batches
has been reduced from 50 to 10 cycles. Remarkably, the surrogate model trained with
batches with less cycles is able to reproduce larger batches more accurately in the validation
scenarios. Next, the number of batches that feed the surrogate model has been decreased,
and we have found a threshold of 220 batches before the accuracy starts to fall. This opti-
mization has supposed an important decrease of 84% of the CPU time and has minimized
the computational resources spent in the simulations needed to create the surrogate model.

Finally, the final optimized surrogate model is able to reproduce reasonably well
the simulations inside the whole range of parameters of the real industrial plant. In fact,
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the models have the ability predict the target variables in the validation scenarios with a
MAE of around 3 ◦C from the simulations, which is considered an acceptable error in an
experimental context. The key advantage of the surrogate model is that it is four orders of
magnitude faster than the simulations, triggering the exploration of new operation scenarios
in an efficient environment. This opens the door to the setting of the optimal parameter
values of the press hardening process, improving the KPIs of the batch production of
the process. In addition, the surrogate model provides a soft real-time response, which
is crucial for the development of tools such as digital twins or reinforcement learning
agents. These promising technologies demand a fast and efficient environment that act as a
representation of a real scenario to be trained. Surrogate modeling will also be required in
the introduction of other geometries in the press hardening process due to the increasing
complexity. To recap, the surrogate model methodology proposed in the work enables
the self-autonomous system’s presence in the press hardening process industrial plants,
with the possibility to be expanded to other manufacturing conditions or processes.
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In this section, the figures of the target variables of the press hardening process TS
f in

and TD
max are presented.
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Figure A1. Validation scenario 1: Predicted values as function of the simulated output values of the
TS

f in. The histograms and the color map represent the relative counts as function of the temperature.
(a) SModA and (b) SModB.
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Figure A2. Validation scenario 1: Predicted values as function of the simulated output values of the
TD

max. The histograms and the color map represent the relative counts as function of the temperature.
(a) SModA and (b) SModB.
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Figure A3. Validation scenario 2: Predicted values as function of the simulated output values of
the TS

f in under. The histograms and the color map represent the relative counts as function of the
temperature. (a) SModA and (b) SModB.
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Figure A4. Validation scenario 2: Predicted values as function of the simulated output values of
the TD

max under. The histograms and the color map represent the relative counts as function of the
temperature. (a) SModA and (b) SModB.
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Figure A5. Validation scenario 3: Predicted values as function of the simulated output values of the
TS

f in. The histograms and the color map represent the relative counts as function of the temperature.
(a) SModA and (b) SModB.
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Figure A6. Validation scenario 3: Predicted values as function of the simulated output values of the
TD

max. The histograms and the color map represent the relative counts as function of the temperature.
(a) SModA and (b) SModB.
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Figure A7. Validation scenario 4: Predicted values as function of the simulated output values of the
TS

f in. The histograms represent the relative counts as function of the temperature and the color map
indicates the cycle. (a) SModA and (b) SModB.
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Figure A8. Validation scenario 4: Predicted values as function of the simulated output values of the
TD

max. The histograms represent the relative counts as function of the temperature and the color map
indicates the cycle. (a) SModA and (b) SModB.
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Figure A9. Validation scenario 5: Predicted values as function of the simulated output values of the
TS

f in. The histograms and the color map represent the relative counts as function of the temperature.
(a) SModA and (b) SModB.
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Figure A10. Validation scenario 5: Predicted values as function of the simulated output values of the
TD

max. The histograms and the color map represent the relative counts as function of the temperature.
(a) SModA and (b) SModB.

10 20 30 40 50
Cycle

100

120

140

160

180

200

T
S f
in

trep = 11s

(a)

10 20 30 40 50
Cycle

100

120

140

160

180

200

T
S f
in

trep = 13s

(b)

10 20 30 40 50
Cycle

100

120

140

160

180

200

T
S f
in

trep = 15s

(c)

10 20 30 40 50
Cycle

100

120

140

160

180

200

T
S f
in

trep = 17s

Simulated batch

Predicted batch

(d)
Figure A11. Comparison between the simulated curves and the predicted curves for the final
surrogate model of TS

f in evaluated for batches with tcool = (a) 11 s, (b) 13 s, (c) 15 s, and (d) 17 s.
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Figure A12. Comparison between the simulated curves and the predicted curves for the final
surrogate model of TD

max evaluated for batches with tcool = (a) 11 s, (b) 13 s, (c) 15 s, and (d) 17 s.
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