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Received: 16 March 2021

Accepted: 23 April 2021

Published: 27 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Civil Engineering, Warsaw University of Technology, Al. Armii Ludowej 16,
00-637 Warsaw, Poland; wojciech.piatkiewicz.dokt@pw.edu.pl

2 Department of Thermal Physics, Acoustics and Environment, Building Research Institute,
Ksawerów 21, 00-637 Warsaw, Poland; b.pietruszka@itb.pl

* Correspondence: p.narloch@il.pw.edu.pl; Tel.: +48-691-660-184

Abstract: The article aims to determine the effect of cement addition on the water vapour resistance
factor of stabilized rammed earth. Literature analysis indicates that different earthen materials show
large differences in water vapour resistance factor values. The high diffusion resistance of concrete
concerning other construction materials suggests that cement will be one of the factors significantly
affecting these values. The paper presents water vapour resistance factor test results of rammed earth
with various soil particle sizes and cement contents. The obtained results showed that an increase of
cement addition increases the diffusion resistance of the material. However, the diffusion resistance
of cement stabilized rammed earth is still low compared to concrete.

Keywords: cement; cement stabilized rammed earth; diffusive resistance; rammed earth; water
vapour; water vapour resistance factor; water vapour permeability

1. Introduction

Rammed earth (RE) is a sustainable building material [1–6] whose main component is
inorganic soil. Due to its mechanical properties [5,7] and durability [8–10], cement is often
added to the soil. The erection of cement stabilized rammed earth (CSRE) wall consists of
ramming layers of moist soil–cement mixture in formwork. CSRE partitions are usually
not plastered [11,12]. However, if they are protected with plaster, they must be properly
selected to allow for the evaporation of the moisture contained in the CSRE layer [3,13].
On the exterior surfaces, the walls interact with the outside environment by exchanging
heat and water vapour. Similarly, on the interior surfaces, the walls interact with the indoor
environment in the same way [11,14] (Figure 1).

Building envelopes separate areas of air with different temperatures and relative
humidity, which means that they have different values of partial water vapour pressure.
As a result, water vapour diffusion occurs through building envelopes. Building envelopes
should be designed in such a way as to avoid water vapour condensation in their interior.
Water condensation reduces the durability of building partitions. Moreover, water freezing
and thawing in the structure cause the volume of the material to change, inducing the grad-
ual destruction of the material [15]. This leads to the formation of cracks and discoloration
in the building partition. Condensation of water vapour in materials also leads to the
deterioration of their physical and mechanical properties. Increasing humidity in materials
causes an increase in the thermal conductivity coefficient, leading to increased heat losses
from the building [15–19]. Such situations are particularly undesirable for energy-efficient
buildings, where the heat losses must be reduced as much as possible [16,20] to reach a
designed standard. Furthermore, as the humidity increases, the compressive [21–24] and
tensile strength [25,26] of a material decreases. The authors found no study that would
link humidity with the water vapour resistance factor. However, it can be inferred that by
filling the pores with water, the water vapour resistance factor of rammed earth will rise.
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The research [27] investigated CSRE walls in a climatic simulation chamber. The
simulator was designed to investigate full-sized building elements with realistic climatic
conditions. Four CSRE walls, 300 mm thick, were stabilized with the addition of 6%
Portland cement and differed in particle-size distribution. During the experiments, the
tested walls were subjected to temperature differences and changing weather conditions,
such as relative humidity and rainfall. Despite high humidity levels and temperature
differences, sensors mounted inside the walls showed a negligible risk of interstitial and
internal condensation.

The article by Brás et al. [28] showed an example of a building whose rammed earth
walls were, according to authors, inappropriately designed. The external side of the walls
was covered with cement-based plaster with very low permeability, while the internal side
of the walls was sealed with paint, glue, insulation material and plasterboard. As a result,
the water content in the earthen walls increased nearly to the point of saturation. This
induced a drastic drop in the compressive strength of the earthen material, causing the
walls to lose stability, and structural failure occurred [28].

Water condensation in building partitions can lead to their destruction as a result of
biological and chemical corrosion. The risk of mold growth on damp partitions is also a
considerable threat, posing risks to human health (including allergy sufferers, rheumat-
ics) [29,30]. Condensation of water vapour in partitions affects the microclimate of the
interior and the esthetics of the partitions [31].

For these reasons, ensuring proper water vapour flow through a building partition is
vital so that in given climatic conditions, there is no risk of internal condensation. The heat
conduction coefficient and the water vapour resistance factor of the materials from which a
partition is constructed have a large impact on the water vapour flow through the partition.
The order in which the layers in a building envelope are arranged is also important [15].

This paper presents an analysis of the impact of cement stabilization on the change
of the CSRE water vapour resistance factor, µ. This factor is a dimensionless indicator
determining the relation between the resistance of diffusion of a material layer and that of
an air layer of the same thickness and under the same conditions:

µ =
δ0

δMAT
(1)

where

δ0—water vapour permeability of air;
δMAT—water vapour permeability of the material;
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The water vapour permeability of air depends on the barometric pressure and temper-
ature during the test. It can be calculated by using Formula (2):

δ0 =
0.086·p0

RD·T·p
·
(

T
273

)1.81
(2)

where

T—thermodynamic temperature (K);
p—barometric pressure (hPa);
p0—standard barometric pressure (1013.25 hPa);
RD—gas constant of water vapour (462.10−6 (Nm/(mg·K)).

The water vapour permeability of a material is defined as the mass of vapour trans-
ferred through the sample per second and per unit area and is given by Formula (3):

δMAT = Wp·dMAT (3)

where

dMAT—mean specimen thickness (m);
Wp—water vapour permeance (kg/(m2·s·Pa)).

The water vapour permeance is defined concerning partial vapour pressure and is
given by Formula (4):

Wp =
G

A·∆pv

(4)

where

G—water vapour flow through the specimen (kg/s);
A—area of the specimen (m2);
∆pv

—water vapour pressure difference across specimen (Pa).

The area of the specimen (A) is calculated as the arithmetic mean of the free upper and
free lower surface areas. The surface area depends on the sealing system used in the test,
which may cover part of the sample surface, and therefore, corrections should be made.

Water vapour flow G is the main tested value. It is calculated as the mean of five
successive determinations of the change of mass per time ∆m12. The final value of G is
taken as the one in which the last five ∆m12 are within ±5% of each other [32]. The change
of mass per time ∆m12 is given by Formula (5):

∆m12 =
m2 − m1

t2 − t1
(5)

where

m1 and m2—mass of test assembly at time t1 and t2, respectively (kg);
t1 and t2—successive times of weighing (s).

The measurement is made by weighing a sample placed between environments with
two different relative humidities until they reach equilibrium. Depending on these relative
humidities, the testing method is called “dry cup” or “wet cup” [8,9] (Figure 2). The dry
cup method contains a desiccant saturated solution inside the cup, ensuring a humidity
of 0–3% [32–34]. Calcium chloride [8,9] or silica gel [35] can be used as a desiccant. The
wet cup method, on the other hand, contains a saturated aqueous solution, which provides
a moisture content with a range of 52–98% [32]. Potassium nitrate KNO3 is mostly used
as an aqueous solution [36]. Weighings of the specimens should be conducted at a steady
state, with the temperature being 23 ± 2 [36]. The dry cup method gives higher values
than the wet cup method (Figure 3) [37–39].
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1). The value of the water vapour resistance factor differs depending on the test direction, 
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a water vapour resistance factor between 10,6 and 23,1. The test direction of water vapour 
flow was parallel to the brick forming direction [34]. The samples in which the water va-
pour flow was perpendicular to the forming direction obtained a value of water vapour 
resistance factor between 1.31 to 1.9 times higher. For this direction, the water vapour 
resistance factor achieved values between 19.0 and 44.0 [34]. The flow of water vapour in 
rammed earth walls takes place perpendicular to the direction in which the ramming oc-
curred [40]. The samples are usually cylindrical in shape and a few centimeters thick [41]. 
It is easier to prepare them in a direction parallel to the direction of the test. This may 
indicate that the vapour permeability of some samples made of earthen materials under 
operating conditions will be higher than the values tested in the cup test [34]. In addition, 
the study [34] showed the dependence of the water vapour resistance factor on the particle 
size distribution. It shows that the vapour permeability decreases with the reduction of 
particle size, e.g., due to the increased proportion of clay in the mixture [17,34,42]. In the 
study of the vapour permeability of fired clay bricks, the main factor influencing vapour 
permeability was also the particle size distribution. With the increase of fine clay fractions 
in the mixture, the vapour permeability decreased [42]. In the CSRE study with a 6% ad-
dition of cement, researchers indicate that the main factors affecting the porosity of the 
material are particle size distribution and the degree of compaction [17]. Increasing the 
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Earthen materials can assume a wide range of water vapour resistance factors
(Table 1). The value of the water vapour resistance factor differs depending on the test direc-
tion, which is particularly important in the case of anisotropic earth materials. Maillard and
Aubert [34] tested the water vapour resistance factor of unfired clay bricks that have a dry
density between 1940 and 2050 kg/m3 using the dry cup method. The clay bricks achieved
a water vapour resistance factor between 10,6 and 23,1. The test direction of water vapour
flow was parallel to the brick forming direction [34]. The samples in which the water
vapour flow was perpendicular to the forming direction obtained a value of water vapour
resistance factor between 1.31 to 1.9 times higher. For this direction, the water vapour
resistance factor achieved values between 19.0 and 44.0 [34]. The flow of water vapour
in rammed earth walls takes place perpendicular to the direction in which the ramming
occurred [40]. The samples are usually cylindrical in shape and a few centimeters thick [41].
It is easier to prepare them in a direction parallel to the direction of the test. This may
indicate that the vapour permeability of some samples made of earthen materials under
operating conditions will be higher than the values tested in the cup test [34]. In addition,
the study [34] showed the dependence of the water vapour resistance factor on the particle
size distribution. It shows that the vapour permeability decreases with the reduction of
particle size, e.g., due to the increased proportion of clay in the mixture [17,34,42]. In the
study of the vapour permeability of fired clay bricks, the main factor influencing vapour
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permeability was also the particle size distribution. With the increase of fine clay fractions
in the mixture, the vapour permeability decreased [42]. In the CSRE study with a 6%
addition of cement, researchers indicate that the main factors affecting the porosity of
the material are particle size distribution and the degree of compaction [17]. Increasing
the compaction force led to a reduction in porosity between aggregates with a negligible
change in porosity inside the aggregate [40]. The water vapour resistance factor of CSRE
was measured by Hall and Allinson in [11] using the wet cup method according to EN
ISO 12572:2001 [32]. The CSRE mixture contained 7% wt Portland cement. Samples were
compacted at their optimum moisture content (OMC) using constant energy of 596 kJ/m3

and cured for 28 days at 20 ◦C and 75% relative humidity. The average value of the water
vapour resistance factor for the four test samples was 14.34 [11]. In other tests [37], earth
bricks with a similar dry density (1940–2070 kg/m3) achieved water vapour resistance
factor values between 3 and 7 (wet cup method) and between 7 to 9 (dry cup method).
A similarly high vapour permeability was obtained in the study where the rammed earth
wall dry density was 1660 kg/m3. The water vapour resistance factor for the wall tested
by the wet cup method was 4 [12]. In the study [39], rammed earth with a dry density of
1700 kg/m3 achieved water vapour resistance factor values ranging from 9.4 to 10.6.

Although the water vapour permeability test appears simple to perform, few results
for rammed earth are available (Table 1). The results suggest that earthen materials can
be considered permeable materials. A wide literature review indicates the need to study
the vapour permeability of compacted soil, especially the influence of stabilizers on this
property. Therefore, the paper presents water vapour resistance factor test results of
rammed earth with various soil particle sizes and cement contents.

Table 1. Water vapour resistance factor of earthen materials.

Material Stabilizer Clay Fraction
(<0.002 mm)

Density
(kg/m3) Method

Water Vapour
Resistance Factor

µ (-)
Reference

RE 0% 39% 1660 Wet 4 [12]

Unfired clay bricks 0% 31–58% 1940–2050 Dry 10.6–23.1
[34]19.0–44.0

Extruded earth bricks 0% 23–38% 1940–2070
Wet 3–7

[37]Dry 7–9
SRE 6% lime 16% 1700 Dry 9.4–10.6 [39]

CSRE 7% cement - 1900 Wet 14.34 [11]

The use of cement stabilizers in rammed earth technology is a common practice
today [43–45]. The addition of cement increases the mechanical strength and durability
of the material [43–47]. On the other hand, it is associated with many disadvantages—
including an adverse impact on the environment related to greenhouse gas emissions and
pollutants or limiting the possibility of recycling the material [48,49]. Reducing the vapour
permeability of stabilized rammed earth is also seen as a disadvantage of using cement [50].

2. Materials and Methods
2.1. Materials

The tests were carried out on eight series of samples differing in grain size and cement
addition (Table 2). Soil mixtures (Figure 4) were obtained by mixing three components: clay,
sand, and gravel, together in a dry state. Clay granularity was determined by aerometric
analysis and sand and gravel by sieve analysis. By mixing these ingredients in two different
proportions, two soil mixtures were obtained with the particle size distribution shown
in Figure 1. One soil mixture (symbol 433) contained 40% sand, 30% gravel, and 30%
silt and clay. The other soil mixture (symbol 703) contained 70% sand and 30% silt and
clay. To each dry soil mixture, Portland cement CEM I 42.5 R (Odra Cement Plant, Opole,
Poland) was added in an amount of 0% to 9% and mixed in a dry state to a homogeneous
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consistency. Afterward, tap water was added in an amount ensuring optimum moisture
content (OMC), i.e., the moisture content at which the maximum dry density was obtained
through sample-ramming. OMC depends on both particle size distribution and stabilizer
content. For prepared mixtures, depending on the grain size and cement content, the OMC
was from 8% to 10% wt (Table 2). Ten samples from each series were prepared for vapour
permeability and thermal conductivity tests.

Brito et al. demonstrated that the properties of cement-based materials depend on the
geological nature of the aggregates used [51]. The properties of rammed earth depend on
the mineral composition of the soil, especially the clay mineral content [52–54]. Both soil
mixtures contained 30% silty clay. Therefore, their mineral composition was similar. Soils
contained about 2.67% swelling minerals (i.e., beidellite—see Table 3).

Table 2. Sample series used in the tests.

Sample Series Soil Mixture Cement Addition (%) Water Content (%)
(Equal to OMC)

703 C 0% 703 0 10
703 C 3% 703 3 10
703 C 6% 703 6 10
703 C 9% 703 9 10
433 C 0% 433 0 8
433 C 3% 433 3 8
433 C 6% 433 6 9
433 C 9% 433 9 9
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Table 3. Mineral composition of soil mixtures used in tests.

Mineral Composition (%)

Mixtures Clay
Minerals

Including:
Goethite Siderite Carbonates Organic

Substance

Quartz and
Carbonate

CrumbsBeidellite Kaolinite Illite

703 13.11 2.67 2.58 7.86 - 1.8 - - 85.09

433 13.11 2.67 2.58 7.86 - 1.8 - - 85.09

Cylindrical samples with a diameter of 128 mm and a height of 15 cm were prepared.
They were formed in three layers by freely lowering the 6.5 kg manual hand rammer from
a height of 30 cm to the surface of the moist soil–cement mixture. Each layer was formed
by lowering the manual hand rammer 20 times.

The resulting cylindrical samples were cured for 28 days at a temperature of 23 ± 5 ◦C
and relative humidity of 50 ± 5%. Discs 3 cm high were cut from the center of the cylindrical
samples with a table saw (Figure 5). Samples prepared in this way (Figure 6) were first
subjected to the water vapour resistance factor test. Next, discs with a diameter of 5 cm
and a height of 22 mm were cut out from these samples and subjected to the thermal
conductivity test.
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2.2. Methods
2.2.1. Vapour Permeability Test

The tests were performed using the dry cup method according to ISO 12572:2016 [32].
Each test series consisted of 10 samples. Before testing, the samples were first dried at 40 ◦C
for 24 h, then at 60 ◦C and 80 ◦C after 48 h. Next, the samples were conditioned at 23 ± 3 ◦C
and 50 ± 3% relative humidity until a constant weight was obtained. Subsequently, at the
bottom of each vessel, a layer of moisture absorber was placed—calcium chloride (CaCl2).
The distance between the sample and the moisture absorber was 15 mm. Using melted
wax with the addition of a plasticizer. The tested samples were tightly attached to the open
side of the vessel (Figure 7).

Every 24 h, the weight changes of the samples were measured. When five consecutive
changes in mass per unit of time were constant (i.e., within ±5% of the mean for each
sample), the study was terminated. At each weighing, the conditions prevailing in the test
chamber were recorded, and it was checked whether they were within the standard [33].
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2.2.2. Thermal Conductivity Test

An additional test carried out as part of the study was the thermal conductivity
test. The test was conducted following standard EN 12664 [55]. Samples for this test
were obtained by cutting smaller samples from those prepared for the diffusion resistance
coefficient test. The samples were cylindrical with a diameter of 50 mm and a height of
22 mm. Before testing, the samples were conditioned at 23 ± 3 ◦C and 50 ± 3% humidity
until a constant weight was obtained.

Determination of the heat transfer coefficient under steady heat flow conditions was
performed using a single-sample FOX 50 plate apparatus with heat flux density sensors in
a horizontal orientation (Figure 8). The device has a measuring range of 0.1 to 10 W/mK.
Measurements were made at an average sample temperature of 10 ◦C, a temperature
difference over a sample thickness of 10 K, and heat transfer from the bottom up at an
ambient temperature of 22.4 ◦C.
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3. Results

The results of the tests are summarized in Table 4. The results indicate an almost
linear relationship between the addition of cement and the value of the water vapour
resistance factor for both tested soil mixtures (Figure 9). Likewise, the coefficients of the
determination indicate that for both series of samples, linear models are a good fit. The
determination coefficients are 0.93 for mixture 703 and 0.90 for mixture 433. With the
addition of 9% cement, a significant increase in the water vapour resistance factor was
observed (by 65% and 82% for mixture 703 and 433, respectively).

Table 4. Comparison of the results of heat conduction and diffusion resistance for the tested CSRE series.

Sample Series Average Dry Density
(kg/m3)

Average Water Vapour
Resistance Factor (-)

Average Coefficient of
Thermal Conductivity

(W/(mK))

703 C 0% 2093 16.6 0.74
703 C 3% 2085 21.3 0.72
703 C 6% 2106 24.1 0.72
703 C 9% 2186 27.9 0.72
433 C 0% 2158 16.6 0.70
433 C 3% 2155 21.5 0.75
433 C 6% 2167 25.4 0.68
433 C 9% 2187 31.8 0.69

There was no change in the average coefficient of thermal conductivity due to the ad-
dition of cement (Figure 10). The determination coefficients for linear regression were close
to 0, which resulted from the small size of the tested samples. The field of measurement
in the FOX 50 plate apparatus is a circle with a diameter of 2 cm. The nonhomogeneous
structure resulting from the granularity and air gaps in the sample significantly affect the
local thermal conductivity result. The average dry density results showed that the addition
of cement increased the dry density of the material.
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4. Discussion

The obtained CSRE water vapour resistance factor results determined by the same
measuring method (dry cup) are higher than the value given in the literature (Table 1). This
may be due to the different particle size distribution of the tested samples. In this study, the
authors used a mixture that contained a 12% clay fraction (see Figure 4). Table 1 consists
mostly of earthen materials, such as extruded earth bricks, unfired clay bricks, rammed
earth, or SRE, containing a higher clay fraction [12,34,37,39]. Many studies have highlighted
the significant influence of particle size distributions on the vapour permeability of rammed
earth [17,34,36,42].

The authors of this study showed an almost linear relationship between the addition
of cement and the value of the water vapour resistance factor. The addition of cement
changes the particle size distribution by increasing the proportion of very fine particles in
the mixture. Fine cement particles fill the pores of rammed earth, and the material is sealed.
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Despite the low clay fraction content compared to those reported in the literature,
the water vapour resistance factor of the tested samples without cement addition was
relatively high. The water vapour flow in the test was parallel to the forming direction,
which means that the value of the water vapour resistance factor in the perpendicular
direction will be even greater [34]. The differences in vapour permeability compared to the
literature also result from the difference in the density of the samples, which is affected by
the composition of the mixture and the force of compaction, as suggested in [40].

The use of cement additive ensures rammed earth durability in a cool climate (9%
according to [56]), increases the diffusion resistance of the material, and practically does
not affect its thermal conductivity. This is important information that is needed to properly
design an external partition in a cold climate, in which the external partition requires
thermal insulation. The value of the water vapour resistance factor of unstabilized rammed
earth and rammed earth stabilized with 9% cement is almost doubled. Therefore, the
amount of cement addition may affect the design of the external partition in a cool climate.

Rammed earth can also be stabilized with binders other than cement. Another popular
stabilizer is lime, which also improves the material’s resistance to water [39,43,57]. Typically
lime is added in the amount of 6% to 12% by weight [39]. As shown in Table 1, rammed
earth stabilized with 6% lime addition is characterized by a diffusion resistance coefficient
of approx. 9.4–10.6, thus lower than all the values obtained in the tests. This is most
likely because, in the research [39], the samples had a dry density of 1700 kg/m3 and a
different grain size. Therefore, it is not possible to compare the influence of cement and
lime stabilization on the rammed earth diffusion resistance based on the results provided.

It is possible to modify earthen materials with other substances, such as silicon
nanoparticles, titania and silica nanoparticles, silane–siloxane, beeswax and NaOH solu-
tions [12,40]. These modifications led to a reduction in water absorption, the moisture
buffering capacity MBV (4.2 to 1.4) [40], and increasing the water vapour resistance factor
(from 8 to 10) [12]. There is a way to stabilize earthen materials with microbes. Microbes
can have a positive effect on the properties of rammed earth. In the study [24], CSRE
blocks with 6% cement addition were used. Additionally, the blocks were cured with
ureolytic bacteria. The stabilization of the CSRE with microbes led to a reduction in water
absorption, which translates into increased strength and durability [24]. This shows that
further research is needed to assess the influence of other stabilizers as well as methods of
curing RE samples on their water vapour diffusion resistance.

5. Conclusions

In the research presented by this paper, unstabilized rammed earth composed of
different soil mixtures obtained a water vapour resistance factor of 16.6. With the addition of
9% cement, water vapour resistance factors between 27.9 and 31.8 were obtained depending
on the soil particle size. An almost linear relationship between the addition of cement and
the value of the water vapour resistance factor was observed. The addition of cement did
not significantly change the coefficient of thermal conductivity. In this study, the authors
obtained higher values of the water vapour resistance factor than in the literature. This may
be due to higher density and different particle size distributions. Along with an increase in
the proportion of cement in the mixture, the proportion of fine fractions increased, and the
diffusion resistance fell with it. Despite the increase in the water vapour resistance factor
when using cement, the material still has low diffusion resistance compared to concrete.
In this study, the authors obtained higher values of the water vapour resistance factor than
in the studied literature (Table 1), which could have been caused by a different particle
size distribution and a higher content of very fine fractions in the mixture. The addition
of cement may affect the risk of water vapour condensation in building envelopes using
rammed earth construction layers. There are other stabilizers for rammed earth. Therefore,
further research should assess the influence of their addition on changes in the diffusion
resistance of rammed earth.
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