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Abstract: The article presents the modeling of the dynamics of the vapor-gas mixture and heat and
mass transfer (sorption-desorption) in the capillary structure of the porous medium. This approach is
underpinned by the fact that the porous structure is represented by a system of linear microchannels
oriented along the axes of a three-dimensional coordinate system. The equivalent diameter of these
channels corresponds to the average pore diameter, and the ratio of the total pore volume to the
volume of the entire porous material corresponds to its porosity. The entire channel area is modeled
by a set of cubic elements with a certain humidity, moisture content, pressure and temperature.
A simulation is carried out taking into account the difference in temperatures of each of the phases:
solid, liquid and gas.

Keywords: porous medium; heat transfer; mass transfer; mathematical modeling; numerical re-
search methods

1. Introduction

Most of the materials used in construction have a capillary-porous structure. The
thermal insulation properties of these materials depend on the condition parameters:
temperature, pressure, humidity and moisture content. Predicting the heat loss levels
from the premises to the surrounding space through enclosing structures depends on the
accuracy and reliability of heat and mass transfer through the capillary-porous media.

Many computational schemes use models based on the phenomenological theory of
mass and heat transfer [1–3], whereby a real porous structure is replaced by a homogeneous
continuous medium. The transfer processes for this continuous medium are expressed by
mass and energy conservation equations, where volume-averaged physical values and
effective transfer coefficients are used [4–7].

This approach is quite justified, as the shape of pores, their quantity and distribution
in the material volume are random parameters, if we do not mean formed cracks in pore
connecting interpore space or channel porosity. The shape of such pores has a pronounced
configuration and size. It is the channel porosity (cracks, as shown in Figure 1) that can
significantly change thermophysical properties of the material. Naturally, in this case,
averaging of physical values over material volume results in errors in the calculations of
heat and mass transfer parameters.

In some cases, the use of this approach to solving problems of heat and mass transfer
results in uncertain individual values of transfer equations. In particular, it refers to source
terms, included with different signs in liquid and vaporous moisture mass conservation,
and expressing the moisture transition rate from one phase to another, during liquid
evaporation or condensation inside the material.

As it is difficult to determine this value, both mass conservation equations are usually
summed up. The resulting mass transfer equation no longer contains the specified value.
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However, in this case, the resulting equation describes the transfer of a certain total
moisture content, including both liquid and vapor phases. In this instance, the moisture
evaporation or condensation rate inside the material remains in the energy equation. Many
researchers use this technique. But at the same time the physics of the effects of evaporation
(condensation) remain undisclosed. We, however, avoided the indicated method and
directly considered the effects of the phase transition-evaporation or condensation. This is
the main idea of the article.
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Figure 1. Structure of materials: (а) granular concrete; (b), (с) cellular concrete. 
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Figure 1. Structure of materials: (a) granular concrete; (b), (c) cellular concrete.

For example, this approach is applied in the work [3], where the authors propose a
one-dimensional model, consisting of energy, dry air and total humidity equations.

In the work [5], they propose a mathematical model for the drying of wet building
materials, taking into account the presence of water and vapor. Pressure and temperature
are taken as variables. The authors consider simultaneous capillary water transfer and
vapor diffusion in two-dimensional areas. The effect of dry air movement was not consid-
ered in these models. In the work [8], a mathematical model is represented by equations
of moisture and heat, transferred through a silica brick; these parameters were taken as
independent variables. In the work [9] the same approach is proposed, but moisture and
heat are transferred through a complex anisotropic material structure. In the presented
works, the models take into account three basic phenomena: vapor diffusion, capillary
suction in a porous medium and advective transfer of moist air through thin channels. A
similar calculation scheme for moisture transfer in brick is presented in [10] and it is based
on the same control potentials.

An expanded mathematical model of heat and mass transfer in the homogeneous
porous building materials is presented in [11–13]. It includes four basic transfer equations:
water vapor, dry air, liquid moisture and energy. Dry air and water vapor densities, as well
as a volume fraction of liquid moisture and temperature, are used as independent variables.
The analyzed building material, namely brick, is considered as a porous material. A solid
phase is the material from which the brick is made; water and moist air are present in its
pores. The amount of water in the building material pores changes as a result of the transfer
caused by capillary pressure gradient, as well as evaporation and condensation processes,
while the amount of vapor also changes as a result of diffusion and phase transition
processes. In the presented models, phase heat equilibrium is assumed, therefore a unified
equation of energy transfer is considered. It also assumes averaging the parameters within
material volume.

Another approach, used to describe heat and mass transfer processes in capillary-
porous materials, is associated with a model of the evaporation zone deepening [14–16].
According to this model, there are dry and moist zones in a wet material. In a dry zone,
moisture is present only in a gaseous form (as vapor), and in the moist zone, all pores are
occupied by liquid moisture. The liquid evaporates only at the interface of these zones, it
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is deepening towards the wet moist zone. It is assumed that the heat is supplied to the
evaporation boundary by applying thermal conductivity of the material dry layer and
spent on moisture evaporation.

The mathematical formulation of this process is based on a Stefan-type problem [17].
Similar models are proposed in the works [14,15]; however, they neither consider radiation
heat transfer on the dried surface, nor analyze the step size sensitivity or computational
grid density. Currently, the heat and mass transfer models, based on the capillary-porous
structure, represented as the so-called pore network, are used [18–23]. According to this
model, a real microstructure of the porous material is replaced by a system of interconnected
and intersecting channels with a known arrangement and geometric dimensions. Results
of the mass transfer study, using this approach, are presented in [24–30].

Figure 2 shows the most common network models, where pores are represented by lines.

Materials 2021, 14, x FOR PEER REVIEW 3 of 24 
 

 

Another approach, used to describe heat and mass transfer processes in capillary-

porous materials, is associated with a model of the evaporation zone deepening [14–16]. 

According to this model, there are dry and moist zones in a wet material. In a dry zone, 

moisture is present only in a gaseous form (as vapor), and in the moist zone, all pores are 

occupied by liquid moisture. The liquid evaporates only at the interface of these zones, it 

is deepening towards the wet moist zone. It is assumed that the heat is supplied to the 

evaporation boundary by applying thermal conductivity of the material dry layer and 

spent on moisture evaporation. 

The mathematical formulation of this process is based on a Stefan-type problem [17]. 

Similar models are proposed in the works [14,15]; however, they neither consider radia-

tion heat transfer on the dried surface, nor analyze the step size sensitivity or computa-

tional grid density. Currently, the heat and mass transfer models, based on the capillary-

porous structure, represented as the so-called pore network, are used [18–23]. According 

to this model, a real microstructure of the porous material is replaced by a system of in-

terconnected and intersecting channels with a known arrangement and geometric dimen-

sions. Results of the mass transfer study, using this approach, are presented in [24–30]. 

Figure 2 shows the most common network models, where pores are represented by 

lines. 

(a) (b) (c) 

 

(d) (e) (f) 

 

Figure 2. Network models: (a)–[4]; (b)–[5]; (c)–[6]; (d)–[7]; (e)–[8]; (f)–[9]. 
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Figure 2. Network models: (a)–[4]; (b)–[5]; (c)–[6]; (d)–[7]; (e)–[8]; (f)–[9].

In these works, several numerical approaches are proposed for modeling the transfer
of heat, mass and momentum during porous material dehydration. These approaches
are characterized by spatial scale and physical processes to be reflected in the models.
These models consider the material as a continuum divided into microvolumes. It is
assumed that in these microvolumes (MV) individual phases are superimposed on each
other, meaning that they cannot be analyzed separately. Therefore, MV should be large
enough, for example larger than the pore size, in order to provide averaging of material
properties within the MV. On the other hand, MV should also be small enough to prevent
changes in the studied parameters within these volumes (e.g., temperature), resulting
from macroscopic gradients and associated nonequilibrium conditions at this microscale
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level. Transfer inside the material is modeled by averaged material properties, obtained
either experimentally, or by numerical calculation. Thus, complex pathways and microscale
transfer processes are included in a concentrated way in the material properties and transfer
equations, instead of explicitly taking them into account by modeling. A typical example is
the use of the Darcy’s law combined with fluid permeability, i.e., a macroscopic material
property, in order to describe the fluid transfer inside a porous material at the continuum
level, inherently including complex transfer phenomena at the microscale level. These
material properties are often a complex function of temperature and moisture.

In the works [22,23], it is shown that the model of a porous medium drying zone is the
result of generalization of many phenomenological observations and experimental studies,
and describes liquid phase distribution during drying of porous media. But they fail to
explain the internal mechanism of the “evaporation zone” phenomenon. Namely, which
of the drying factors affects liquid phase distribution during drying of porous media?
Therefore, in these works, the pore network models are proposed, which are applicable for
the slow isothermal drying of porous media.

In the works [24,25], associated heat and mass flows in the voids of complex geometry
are considered. The conventional drying models, presented in the above works, are based
on the assumption that a porous medium is a fictitious continuum, for which heat and mass
balances are derived either by homogenization or by volume averaging. The pore network
models are mainly developed because it is impossible to study transport phenomena at
the pore level. Therefore, the exact description of a transfer in a porous medium is greatly
simplified to the description of individual phases, i.e., gas and liquid.

In the works [25–27,30–33], the unsaturated moisture transfer processes in hygroscopic
capillary-porous materials are simulated, demonstrating a wide pore size distribution. The
pores are seen as computational nodes, where certain variables are computed, namely fluid
pressure or vapor partial pressure. Transfer phenomena are described by one-dimensional
approximations at the discrete pore level. Based on the mass balance at each node, two
linear systems are formed to be solved numerically, in order to obtain partial vapor pressure
in each gas pore (and in the boundary layer) and fluid pressure in each pore.

Correct determination of macroscopic parameters becomes the main problem to be
solved. Through continuous advances in the imaging technology [34], as well as the use of
methods of pore networks construction based on digital images of microstructures [35], it
will only be a matter of time before these parameters are precisely determined based on
the high performance pore network computations.

2. Materials and Methods

In this paper, a pore network model is used to study heat and mass transfer through a
capillary-porous building material. In order to study temperature and moisture conditions
of the capillary-porous material, a corresponding computational grid is formed, which is a
system of rectangular channels, arranged in parallel to coordinate axes, and intersecting
with each other.

Equivalent diameters of these channels correspond to the average pore diameter of the
analyzed porous medium; a ratio of the total pore volume to the porous material volume
corresponds to this material porosity.

2.1. Dispatch Model and Data
2.1.1. Computational Grid

One of the options to construct such a network is shown in Figure 3a–d.
The design model is based on a cubic element with s side. The pores are represented

as intersecting square section channels. The side of the dk square corresponds to the known
equivalent pore diameter of the material. The side length s of a cubic element is calculated
from the condition

s3ε = 3sdk
2 − 2dk

3 (1)
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where ε is the known material porosity, expressing a ratio of pore volume to the total
volume of the porous material.
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The analyzed network model of heat and moisture transfer through a porous medium
assumes that the most intensive vapor-air mixture (gas phase) and heat transfer occurs
in the direction of 0Z axis through K1K2 channels (Figure 3b,c), arranged parallel to this
axis. These channels in sections are squares with dk side. Regarding heat and mass transfer
through the building wall constructions, these channels are considered perpendicular to
outer and inner surfaces of the building enclosure and connected to the inner and outer
air media. According to this model, a liquid phase is arranged in the form of separate
inclusions (mark 1 in Figure 3) in the network channels with I1I2; J1J2 axes are parallel
to 0X and 0Y axes and perpendicular to K1K2 channels through which the gas phase is
transferred. These inclusions of the liquid phase are in the form of rectangular columns.
It is assumed that cross-sections of the channels, where liquid columns are arranged, are
rectangles with dk and dl1 sides. It is assumed that columns with the liquid phase are
interconnected by channels with M1M2, N1N2, P1P2 and Q1Q2 axes; they are parallel to the
0Z axis. The channels, connecting liquid columns, also contain a liquid phase. According
to the assumed model, liquid evaporates or condenses on the column surfaces, occupying
sections I1I2 and J1J2 channels (Figure 3).



Materials 2021, 14, 1819 6 of 21

As a result of evaporation or condensation, the liquid mass in these columns, as well
as their height, can vary with time. The liquid mass in the column-connecting channels is
considered constant with time. Width of specified channels with M1M2, N1N2, P1P2 and
Q1Q2 axes corresponds to dk value, and their height dl2 is calculated from the minimum
possible moisture content of the liquid phase wl,min in the material, corresponding to
conditions of the analyzed problem, wl,min value is determined by the minimum relative
air humidity ϕmin in a porous material or in the external medium during the entire process
of heat and mass transfer. This value is taken from the problem’s initial or boundary
conditions. In order to determine wl,min from ϕmin, the sorption-desorption curve for an
analyzed material should be used.

The liquid phase moisture content is considered as a ratio of the liquid mass in a
certain volume of the porous material to this volume value. In the scope of considered
cubic element, the moisture content is described by wl min = ml/s3 expression, where ml
is the liquid moisture mass, contained in this element. The liquid mass, contained in the
considered channels with M1M2, N1N2, P1P2 and Q1Q2 axes, can be calculated as

ml,min = 4sdKdl2ρl .

This value can also be obtained from the following expression

ml,min = wl,min(φmin)s3.

By making the last two expressions equal, we can get the width of channels dl2

dl2 =
wl,min(φmin)s2

4dKρl
.

With this configuration of the computational domain, the total pore volume in the
considered cubic element is

Vp = dK
2s + 4dl1dK ×

(
s
2
− dK

2

)
+ 4(s − dl1)dKdl2.

This value shall correspond to the specified material porosity ε. It follows from the
condition (1) that

Vp = s3ε = 3sdk
2 − 2dk

3.

By making the last two expressions for Vp equal, we can get the width of channels dl1,
where liquid columns are arranged

dl1 =
dK ×

(
s
2 − dK

2

)
− dl2 × s(

s
2 − dK

2 − dl2
) .

This network model assumes that the heat and mass transfer processes proceed
symmetrically relative to ABCD, HEFG, BEFC and AHGD planes. That is, there is no mass
and heat transfer through these planes.

Intersections of these symmetry planes with the section, shown in Figure 3c, are
represented by N1N2 and M1M2 segments, whereas intersections of symmetry planes with
the section, shown in Figure 3d, correspond to WT, TS, SV and VW segments. The pore
volume in a cubic element occupied by the liquid phase is

Vl = 4dk × dl2 × s + 4dk × dl1 × (dh − dl2). (2)
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If the moisture content of the liquid phase in a porous material is equal to wl, then its
mass in the considered cubic element is

δml = Vl × ρl = wl,0 × s3.

This equality, taking expression (2) into account, makes it possible to establish a
relationship between the height of liquid columns dh and the material moisture content wl

dh =
wls3 + 4ρldkdl2 × (dl1 − s)

4ρldkdl1
. (3)

2.1.2. Transfer Model

In order to study the behavior of moisture content and temperature of the porous
material with time, the mass and heat balance equations are formulated for the considered
cubic elements, arranged sequentially in the direction of a 0Z axis. The balance equations
are formulated for discrete instants of time τk with ∆τ interval.

The mass transfer in a gas phase, i.e., in a mixture of dry air and water vapor, occurs
mainly in a channel with K1K2 axes by molecular diffusion and filtration. Mass transfer by
the diffusion occurs due to mass concentration gradients (partial density) of dry air and
vapor in a gas mixture, and it is described by Fick’s law:

ja,di f = −Dva
∂ρa

∂z
(4)

jv,di f = −Dva
∂ρa

∂z
(5)

where ρv, [kg/m3] is partial density of water vapor in a mixture; ρa, [kg/m3] is partial
density of dry air in a mixture; jv,dif, [kg/(m2s)] is vapor flow density due to diffusion; ja,dif,
[kg/(m2s)] is dry air flow density due to diffusion; Dva, [m2/s] is the diffusion coefficient
of water vapor and dry air in a gas mixture.

Density values of dry air and water vapor are calculated according to the ideal gas
state equations;

ρa =
pa

RaTg
(6)

ρv =
pv

RaTg
(7)

where pa,pv, [Pa] is partial pressure of dry air and water vapor in a mixture; Ra, Rv,
[J/(kg·K)] are gas constants of dry air and water vapor; Tg, [K] is gas mixture temperature.
Besides, the gas medium (vapor-air mixture) transfer also occurs due to filtration.

Density values of vapor and air flows due to filtration are described by the Darcy equations;

ja, f il = −ρa
Kg

µg

∂pg

∂z
(8)

jv, f il = −ρv
Kg

µg

∂pg

∂z
(9)

where Kg, [m2] is permeability coefficient of the porous material for a gas medium; µg,
[Pa·s] is dynamic viscosity coefficient of a gas medium; pg = pa + pv, [Pa] is vapor-air
medium pressure.
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The gas phase in a cubic element occupies the space of a channel with K1K2 axis, as
well as part of the channel volumes with I1I2 and J1J2 axes (Figure 3). The volume, occupied
by a gas phase, is calculated from the following expression:

Vg
k
i = dK

2s + 4
(

s
2
− dK

2
− dhk

i

)
dKdl1 (10)

where dhk
i is liquid column height in the i-th element at τk instant of time.

The balance equation of dry air mass in a cubic element with i number for τk instant
of time is derived from the condition that air enters the considered element with diffusion
J+a,di f and filtration J+a, f il flows from an adjacent element with i − 1 number through a
surface with dκ2 area, and it is transferred to the next adjacent element with i + 1 number
flows J−a,di f and J−a, f il . In order to derive this equation, in expressions (4), (8) describing
air flows by diffusion and filtration, the derivatives with respect to z variable are replaced
by finite differences.

Dry Air Transport Dodel

Taking expression (6) into account, this equation is represented as:

pa
k
,i

RaTg
k
,i

Vg
k
i −

pa
k−1
,i

RaTg
k−1
,i

Vg
k−1
i =

(
J+a,di f − J−a,di f + J+a, f il − J−a, f il

)
dK

2∆τ (11)

J−a,di f = −Dva,i+1/2
s

(
pa

k
,i+1

RaTg
k
,i+1

− pa
k
,i

RaTg
k
,i

)
J+a, f il = − ρa

k
,i−1/2

s
Kg
µg

(
pa

k
,i + pv

k
,i − pa

k
,i−1 − pv

k
,i−1

)
J−a, f il = − ρa

k
,i+1/2

s
Kg
µg

(
pa

k
,i+1 + pv

k
,i+1 − pa

k
,i − pv

k
,i

)
.

This is the conservation equation for the local dry air mass. The left side of the
equation is the mass difference in an elementary cubic cell between two successive points
in time (through a time step), obtained from the law for an ideal gas. The right-hand side is
recorded for the same times and consists of the difference in mass flows due to diffusion
due to the concentration gradient and mass flow due to filtration due to the total pressure
gradient. These two effects on the right side of expression (11) are not opposite to each
other, but complement each other. Many researchers use this approach.

In this discrete equation, the values with the i index describe gas medium parameters
in the considered an element of the porous material. Formally, it is considered that they
refer to R node, located in the center of this element (Figure 3). Values with fractional
indices are calculated as arithmetic (or weighted) mean values related to adjacent elements.
Values with k index refer to the current moment of time, and those with the k−1 index to
the previous one.

Water Vapor Transfer Model

The mass balance equation for water vapor is also based on the condition that vapor
transfer through a cubic element occurs by diffusion and filtration in the direction of 0Z
axis. Diffusion and filtration water vapor flows are described by expressions (5) and (9),
where the derivatives are replaced by finite differences.

Besides, it is considered that water vapor, evaporated from liquid column surfaces
enters the gas medium with a diffusion flow J+ l_v,di f through I1I2; J1J2 channels.

The vapor mass balance equation, considering expression (7), is written as:

pv
k
,i

RvTg
k
,i

Vg
k
i −

pv
k−1
,i

RvTg
k−1
,i

Vg
k−1
i =

(
J+v,di f − J−v,di f + J+v, f il − J−v, f il

)
dK

2∆τ+

+4Jl_v,di f dl1dK∆τ,
(12)
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where

J+v,di f = −
Dva,i−1/2

s

(
pv

k
,i

RvTg
k
,i
−

pv
k
,i−1

RvTg
k
,i−1

)
;

J−v,di f = −
Dva,i+1/2

s

(
pv

k
,i+1

RvTg
k
,i+1

−
pv

k
,i

RvTg
k
,i

)
;

J+v, f il = −
ρv

k
,i−1/2

s
Kg

µg

(
pa

k
,i + pv

k
,i − pa

k
,i−1 − pv

k
,i−1

)
;

J−v, f il = −
ρv

k
,i+1/2

s
Kg

µg

(
pa

k
,i+1 + pv

k
,i+1 − pa

k
,i − pv

k
,i

)
;

Jl_v,di f = − Dva,i
s
2 − dhk

i

(
pv

k
,i

RvTg
k
,i
−

pv_l
k
,i

RvTg_l
k
,i

)
+

pv_l
k
,i

RvTg_l
k
,i

uS;

(
s
2 − dhk

i

)
is a distance from the surface of liquid columns to R point; us is Stefan’s

speed; pv_l
k
,i is the partial pressure of water vapor directly above the surface of liquid

columns; Tg_l
k
,i is the temperature of the liquid column surface, where liquid is evapo-

rated from.

Liquid (Water) Transfer Model

Liquid phase transfer in the channels with M1M2, N1N2, P1P2 and Q1Q2 axes occurs
due to filtration, resulting from the action of pressure gradient in a liquid medium. This
filtration flow is described by the Darcy equation

jl = −ρl
Kl
µl

∂pl
∂z

(13)

where jl [kg/(m2s)] is density of the filtration fluid flow; pl [Pa] is pressure in a liquid phase;
µl [Pa·s] is the dynamic coefficient of medium liquid viscosity; [Pa·s] is the dynamic coeffi-
cient of medium liquid viscosity; ρl [kg/m3] is liquid density; Kl [m2] is the permeability
coefficient of the porous material for a liquid medium. Pressure in a liquid phase is defined
as the difference between a vapor-gas medium and capillary pressure:

pl = pg − pc.

Considering this expression, Equation (13) can be written as

jl = ρl
Kl
µl

∂pc

∂z
(14)

since it can be assumed that ∂pg
∂z << ∂pc

∂z .
Capillary pressure pc depends on the specific moisture content wl. In this regard,

derivative ∂pc
∂z in the expression (16) is replaced by ∂pc

∂z = dpc
dwl

dwl
dh

∂h
∂z . Derivative dpc

dwl
is

determined from the experimental dependence of capillary pressure pc on the specific
moisture content wl, derivative dwl

dh is calculated from the expression (3):

dwl
dh

=
4dl1dKρl

s3 = Ch

Accordingly, the mass balance equation for a liquid phase is derived

ρl

(
dhk

i − dhk−1
i

)
dl1dK =

(
J+ l, f il − J− l, f il

)
dl2dK∆τ− Jl_v,di f dl1dK∆τ; (15)
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where

J+ l, f il =
ρl
µl

Ch

(
Kl

dpc

dwl

)∣∣∣∣
i−1/2

hk
i − hk

i−1
s

;

J− l, f il =
ρl
µl

Ch

(
Kl

dpc

dwl

)∣∣∣∣
i+1/2

hk
i+1 − hk

i
s

.

Equation (17), as well as Equation (13) for water vapor consider the diffusion transfer
Jl_v,di f of evaporated moisture from liquid column surfaces into a gas phase.

The partial pressure of water vapor above the surface of liquid columns is calculated as

pv_l
k
,i =psut

(
Tg_l

k
,i

)
· ϕ
(

wl
k
,i, Tg_l

k
,i

)
,

where psut

(
Tg_l

k
,i

)
is saturation pressure, corresponding to the surface temperature of

liquid columns; ϕ
(

wl
k
,i, Tg_l

k
,i

)
is relative air humidity, corresponding to specific moisture

content wl
k
,i. This dependence is determined from the sorption-desorption isotherm for a

specified material.

Model of Heat Transfer in a Vapor-Air Medium

The energy conservation equation for volume Vg
k
i of the vapor-air mixture is based

on the condition that heat enters this volume by convection Qg_conv and heat conductivity
Qg_cond. The heat convective flows Qg_conv are created by diffusion and filtration flows of
dry air and water vapor.

In addition, the heat Ql_g_conv is transferred by convection into a gas medium with
moisture flow, evaporated from liquid column surfaces. The heat flow with heat conductiv-
ity that Qg_cond generates is due to the presence of a temperature gradient in a gas medium
along the 0Z axis. By means of heat conductivity, the heat Ql_g_cond also enters the consid-
ered volume from the surface of liquid columns, resulting from temperature differences be-
tween a gas medium and a liquid phase. Besides, the heat Qs_g_cond = Qs1_g_cond + Qs2_g_cond
centers a gas medium from the surfaces of pore walls by means of heat conductivity. A
block diagram of the movement of heat and material flows (and their corresponding desig-
nations) for the central nodal part of a single elementary cubic element of material, which
is shown in Figure 3c, which in an enlarged form is shown in Figure 4.
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Figure 4. Scheme of heat transfer for the gas phase in an elementary cubic element.
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Considering the above, the heat balance equation for a gas medium is derived:

Vg
k
i

(
Ia

k
i + Iv

k
i

)
= Vg

k−1
i

(
Ia

k−1
i + Iv

k−1
i

)
+ Q+

g_conv − Q−
g_conv + Q+

g_cond − Q−
g_cond + Ql_g_conv + Ql_g_cond+

+Qs1_g_cond + Qs2_g_cond;

where

Q+
g_conv =

(
J+a,di f + J+a, f il

)
Ia,ki−1/2 dK

2∆τ+
(

J+v,di f + J+v, f il

)
Iv,ki−1/2 dK

2∆τ;

Q−
g_conv =

(
J−a,di f + J−a, f il

)
Ia,ki+1/2 dK

2∆τ+
(

J−v,di f + J−v, f il

)
Iv,ki+1/2 dK

2∆τ;

Q+
g_cond = q +g dK

2∆τ; Q−
g_cond = q−gdK

2∆τ;

Ql_g_conv = 4Jl_v,di f Il_v,ki dl1dK∆τ; Ql_g_cond = 4q+ l_gdl1dK∆τ;

Qs1_g_cond = 4q+s1_g(s − dl1)dK∆τ; Qs2_g_cond = 4q+s2_g fs2_g∆τ+ 4q+s3_g fs3_g∆τ.

After substituting these expressions into the heat balance equation for gas, we get:

Vg
k
i

(
Ia

k
i + Iv

k
i

)
= Vg

k−1
i

(
Ia

k−1
i + Iv

k−1
i

)
+

+
(

J+a,di f + J+a, f il

)
Ia,ki−1/2 dK

2∆τ−
(

J−a,di f + J−a, f il

)
Ia,ki+1/2 dK

2∆τ+

+
(

J+v,di f + J+v, f il

)
Iv,ki−1/2 dK

2∆τ−
(

J−v,di f + J−v, f il

)
Iv,ki+1/2 dK

2∆τ+

+4Jl_v,di f Il_v,ki dl1dK∆τ+ q+gdK
2∆τ− q−gdK

2∆τ
+4q+ l_gdl1dK∆τ+ 4q+s1_g(s − dl1)dK∆τ+ 4q+s2_g fs2_g∆τ+ 4q+s3_g fs3_g∆τ

(16)

where

Ia
k
i = Catg

k
i

pa
k
i

RaTg
k
i
; Iv

k
i =

[
Cwtn

(
pv

k
i

)
+ rv + Cv

(
tg

k
i − tn

(
pv

k
i

))]
pv

k
i

RvTg
k
i
;

Il_v,ki = Cwtg_l
k
,i + rv; q+g = −λg

tg
k
i −tg

k
i−1

s ; q−g = −λg
tg

k
i+1−tg

k
i

dz ;

q+ l_g = −λg
tg

k
,i−tg_l

k
,i

( s
2−dhk

i )
; q+s1_g = −λg

tg
k
,i−ts1_g

k
,i

dK/2 ; q+s2_g = −λg
tg

k
,i−ts2_g

k
,i

dl1/2 ;

q+s3_g = −λg
tg

k
,i−ts2_g

k
,i

dK/2 ; fs2_g = 2dK

(
s
2 − dK

2 − dhk
i

)
; fs3_g = 2dl1

(
s
2 − dK

2 − dhk
i

)
;

ts1_g
k
,i is temperature [◦C] of the channel wall surfaces with K1K2 axis, which is in

contact with a vapor-gas medium; ts2_g
k
,i is the temperature of channel wall surfaces with

I1I2 and J1J2 axes, which are in contact with a vapor-gas medium; tn

(
pv

k
i

)
is saturation

temperature, corresponding to vapor pressure; pv
k
i ; Ca; Cv; Cw, [J/(kg·K)] are specific

heat capacity values of dry air, water vapor and water; rv, [J/kg] is specific heat of vapor
formation; λg, [W/(m·K)] is the heat conductivity coefficient of a vapor-gas mixture; fs2_g;
fs3_g are contact surfaces of a vapor-gas mixture with channel walls with I1I2; J1J2 axes
I1I2; J1J2.

Model of Heat Transfer in the Liquid Phase

The energy conservation equations for a liquid phase are derived for liquid volume
Vl = dKdl2s +

(
dhk

i − dl2
)

dKdl1, including channel volumes, dl2, high, containing a con-

stant liquid volume, and volumes of liquid columns, dhk
i − dl2 varying with time. If the

liquid temperature value in J1; J2; I1; I2 nodes (Figure 1) in the design element with i
number is tw

k
,i, then the heat content in this liquid volume at the time step k is calculated

from the expression Ql
k
,i = Cwρwtw

k
,i

[
dKdl2s +

(
dhk

i − dl2
)

dKdl1
]
.

Through channels with M1M2, N1N2, P1P2 Q1Q2 axes, where the liquid fraction is
located, the heat transfer is performed by means of heat conductivity due to the temperature
gradient, as well as by convection with filtration liquid flows.

From the surfaces of liquid columns, heat is removed from the considered volume by
means of heat conductivity and convection with liquid flow, evaporating from the column
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surface and transferred into a vapor-air mixture. Heat is also transferred from liquid to
channel walls by M1M2, N1N2, P1P2 and Q1Q2 axes, as well as to channel walls with
J1J2 and I1I2 axes, where the liquid columns are located. Thus, the energy conservation
equation for the liquid fraction is represented as:

Cwρwtw
k
,iVl

k
,i = Cwρwtw

k−1
,i Vl

k−1
,i − q− l_gdl1dK∆τ− Jl_v,di f Cwtg_l

k
,idl1dK∆τ

+(q+w − q−w)dKdl2∆τ+
(

J+ l, f ilCwtw
k
i−1/2 − J− l, f ilCwtw

k
i+1/2

)
dl2dK∆τ−

−q− l_s1 fs1_l∆τ+ q− l_s2 fs2_l∆τ+ q− l_s3 fs3_l∆τ

(17)

where

q− l_g = −λw
tg_l

k
,i−tw

k
,i

dhk
i

; q+w = −λw
tw

k
i −tw

k
i−1

s ; q−w = −λw
tw

k
i+1−tw

k
i

s ;

q− l_s1 = −λw
tw−s1

k
,i−tw

k
,i

dl2
; q− l_s2 = −λw

tw
k
,i−tw−s2

k
,i

dl1/2 ; q− l_s3 = −λw
tw

k
,i−tw−s2

k
,i

dK/2 ;

fs1_l = (2dl2 + dK)(s − dl1); fs2_l = 2dK

(
dhk

i − dl2
)

; fs3_l = 2dl1
(

dhk
i − dl2

)
.

tw−s1
k
,i is the temperature ([◦C]) of channel wall surfaces with M1M2; N1N2; P1P2;

Q1Q2 axes, which are in contact with a liquid phase; tw−s2
k
,i is temperature of channel wall

surfaces with I1I2; J1J2 axes, which are in contact with a liquid medium; λw, W/(m K) is
liquid heat conductivity coefficient; fs1_l is a contact surface of a liquid phase with channel
walls, through which the liquid is filtered fs2_l ; fs3_l- are contact surfaces of a vapor-gas
mixture with channel walls, where the liquid column is located.

Heat Transfer Model in a Solid Structure

The energy conservation equation for a solid fraction of the considered element,
occupying volume Vs = s3(1 − ε), is derived taking into account the fact that heat transfer
occurs along a solid body in the direction of 0Z axis by means of heat conductivity.

The heat flow by means of heat conductivity enters the cubic element and leaves it
through the face with the area of fs = s2 − dK

2 − 4dKdl2. On the surfaces of channel walls
with the K1K2 axis, the heat exchange of a solid fraction with a gas medium occurs. On
channel walls with I1I2 and J1J2 axes, the heat exchange occurs with a gas phase, present in
these channels, as well as with liquid columns. On channel walls with M1M2, N1N2, P1P2
and Q1Q2 axes, there is a heat exchange of solid phase with a liquid medium.

Thus, the energy conservation equation for the solid fraction is represented as:

Csρsts
k
,iVs = Csρsts

k−1
,i Vs + q+s fs∆τ− q−s fs∆τ− 4q−s1_g(s − dl1)dK∆τ+

+4q+s1_l fs1_l∆τ− 4q+ l_s2 fs2_l∆τ− 4q+ l_s3 fs3_l∆τ−
−4q−s2_g fs2_g∆τ− 4q−s3_g fs3_g∆τ

(18)

where

q+s = −λs
ts

k
i −ts

k
i−1

s ; q−s = −λs
ts

k
i+1−ts

k
i

s ; q−s1_g = −λs
ts1_g

k
,i−ts

k
,i

s2/2 ; q+s1_l = −λs
ts

k
,i−tw−s1

k
,i

s2/2 ;

s2 = 0, 5(s − dK)− dl2;

q+ l_s2 = −λs
tw−s2

k
,i−ts

k
,i

s1,1/2 ; q+ l_s3 = −λs
tw−s2

k
,i−ts

k
,i

s1,2/2 ;

q−s2_g = −λs
ts2_g

k
,i−ts

k
,i

s1,1/2 ; q−s3_g = −λs
ts2_g

k
,i−ts

k
,i

s1,2/2 ;

s1,1 = 0, 5(s − dl1); s1,2 = 0, 5(s − dK).

The temperature-moisture state of a capillary-porous material is described by a system
of equations for the mass and energy conservation: (11); (12); (15); (16); (17); (18). This
system of equations is written for all cubic elements with the numbers I = 1...N.

Its solution makes it possible to calculate the values of network functions describing:
partial pressure of dry air pa

k
,i; partial pressure of water vapor pv

k
,i; height of liquid columns

dhk
i ; vapor-air mixture temperature tg

k
i ; liquid phase temperature tw

k
,i and solid fraction



Materials 2021, 14, 1819 13 of 21

temperature of a porous material ts
k
,i. Except for indicated values, this system of equations

also contains: liquid column surface temperature tg_l
k
,i; surface temperature of channel walls

with K1K2 axis, which is in contact with a vapor-gas medium ts1_g
k
,i; surface temperature

of channel walls with I1I2; J1J2 axes, which are in contact with a vapor-gas medium ts2_g
k
,i;

surface temperature of channel walls with M1M2; N1N2; P1P2; Q1Q2 axes, which are in
contact with a liquid phase tw−s1

k
,i and surface temperature of channel walls with I1I2 and

J1J2 axes, which are in contact with a liquid medium tw−s2
k
,i. In order to determine specified

temperature values on the medium contact surfaces, the matching conditions are used.

2.1.3. The Matching Conditions on the Surfaces

The matching conditions on the surfaces of liquid columns, where a vapor-air mixture
contacts with the liquid, and from which evaporation (condensation) occurs, are as follows:

q− l_g = rv Jl_v,di f + q+ l_g

or

− λw
tg_l

k
,i − tw

k
,i

dhk
i

= rv Jl_v,di f − λg
tg

k
,i − tg_l

k
,i

0, 5s − dhk
i

.

The value is determined from this expression: tg_l
k
,i:

tg_l
k
,i =

λw
dhk

i(
λg

0,5s−dhk
i
+ λw

dhk
i

) tw
k
,i +

λg

0,5s−dhk
i(

λg

0,5s−dhk
i
+ λw

dhk
i

) tg
k
,i −

rv Jl_v,di f(
λg

0,5s−dhk
i
+ λw

dhk
i

) .

The matching condition on channel walls with M1M2; N1N2; P1P2; Q1Q2 axes, which
are in contact with a liquid phase, are represented as:

q− l_s1 =q+s1_l

or

− λw
tw−s1

k
,i − tw

k
,i

dl2
= −λs

ts
k
,i − tw−s1

k
,i

0, 5s2
.

This expression determines tw−s1
k
,i

tw−s1
k
,i =

λw
dl2(

λs
0,5s2

+ λw
dl2

) tw
k
,i +

λs
0,5s2(

λs
0,5s2

+ λw
dl2

) ts
k
,i.

The matching condition on channel walls with K1K2 axis, where the heat exchange of
a vapor-gas mixture with a solid phase of the porous material occurs, is as follows:

q+s1_g = q−s1_g

or

− λg
tg

k
,i − ts1_g

k
,i

0, 5dK
= −λs

ts1_g
k
,i − ts

k
,i

0, 5s2
.

This equation determines the contact surface temperature of channel walls with K1K2
axis with a vapor-air medium

ts1_g
k
,i =

λs
s2(

λg
dK

+ λs
s2

) ts
k
,i +

λg
dK(

λg
dK

+ λs
s2

) tg
k
,i.
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In order to determine the surface temperature ts2_g
k
,i of channel walls with I1I2; J1J2

axes, which are in contact with a vapor-gas medium, the matching conditions are repre-
sented as

q+s2_g fs2_g + q+s3_g fs3_g = q−s2_g fs2_g + q−s3_g fs3_g

or with consideration of the above expressions

−λg
tg

k
,i−ts2_g

k
,i

dl1/2 2dK

(
s
2 − dK

2 − dhk
i

)
− λg

tg
k
,i−ts2_g

k
,i

dK/2 2dl1
(

s
2 − dK

2 − dhk
i

)
=

= −λs
ts2_g

k
,i−ts

k
,i

s1,1/2 2dK

(
s
2 − dK

2 − dhk
i

)
− λs

ts2_g
k
,i−ts

k
,i

s1,2/2 2dl1
(

s
2 − dK

2 − dhk
i

) .

From the presented expression, it follows that

ts2_g
k
,i =

λs

(
dK
s1,1

+ dl1
s1,2

)
(

λg

(
dK
dl1

+ dl1
dK

)
+ λs

(
dK
s1,1

+ dl1
s1,2

)) ts
k
,i +

λg

(
dK
dl1

+ dl1
dK

)
(

λg

(
dK
dl1

+ dl1
dK

)
+ λs

(
dK
s1,1

+ dl1
s1,2

)) tg
k
,i.

The surface temperature tw−s2
k
,i of channel walls with I1I2; J1J2 axes, which are in

contact with a liquid medium, is determined using the matching condition

q+ l_s2 fs2_l + q+ l_s3 fs3_l = q− l_s2 fs2_l + q− l_s3 fs3_l .

which, taking above expressions into account, is represented as

−λs
tw−s2

k
,i−ts

k
,i

s1,1/2 2dK

(
dhk

i − dl2
)
− λs

tw−s2
k
,i−ts

k
,i

s1,2/2 2dl1
(

dhk
i − dl2

)
=

= −λw
tw

k
,i−tw−s2

k
,i

dl1/2 2dK

(
dhk

i − dl2
)
− λw

tw
k
,i−tw−s2

k
,i

dK/2 2dl1
(

dhk
i − dl2

) .

From this expression, it follows that

tw−s2
k
,i =

λs

(
dK
s1,1

+ dl1
s1,2

)
(

λw

(
dK
dl1

+ dl1
dK

)
+ λs

(
dK
s1,1

+ dl1
s1,2

)) ts
k
,i +

λw

(
dK
dl1

+ dl1
dK

)
(
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2.2. Condition for Solving Equations

In order to solve the problem of heat and mass transfer dynamics in the considered
formulation, the initial and boundary conditions for presented equations should be formu-
lated. The initial distribution of temperature t0 and moisture content wl,0 over the material
thickness can be set as initial conditions. The boundary conditions shall reflect ambient
temperature t∞ and a certain indicator of its moisture condition: relative air humidity
ϕ∞ or partial pressure of water vapor pv,∞ or its concentration ρv,∞ in air. Also, the total
pressure of a vapor-air mixture outside the material pg,∞ = pa,∞ + pv,∞, should be set; it
usually corresponds to the atmospheric pressure.

3. Results

As an example, the change in temperature and moisture condition in time of a porous
material, Z = 0.1 [m] thick was analyzed. Its porosity is ε = 0.157. Thermophysical properties
of the considered material correspond to properties of a ceramic brick. Permeability
coefficient for gaseous medium Kg = 2.2 × 10−13, [m2]. For the dependences of the
permeability coefficients and capillary pressure for the liquid in the material on the moisture
content, the data given in [9] were used. Note that the values of capillary pressure and the
coefficient of permeability of a liquid in a material depend significantly on its moisture
content. For the considered range of changes in moisture content w = 3...60 [kg/m3]
capillary pressure, respectively, varied within pc = 9.5 × 106...0.1 × 106 [Pa], and the ratio
of the permeability coefficient (for liquid) to its dynamic coefficient viscosity varied in
the range Kl/µl = 4.0 × 10−16 . . . 6.7 × 10−11 [m2] [9]. The heat capacity and thermal
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conductivity coefficients for each phase were chosen to be constant and, accordingly, equal:
Ca = 1006.43; Cv = 1875.2; Cw = 4183, [J/(kg·K)] and λg = 0.0259; λw = 0.612; λs = 0.7,
[W/(m·K)]. The specific heat of the liquid-vapor phase transition is rv = 2.260·106, [J/kg],
and the diffusion coefficient of vapor in air is Dva = 2.31 × 10−5, [m2/s].

3.1. Evaporation Processes

At the initial time, the material moisture content is wl,0 = 60 [kg/m3]. This value
produces half of the maximum possible moisture content in the material, at which time
all pores are filled with liquid. At the specified moisture content, the relative air humidity
inside the material is practically equal to one. The initial material temperature is 20 [◦C].
The material is placed in an air medium, its temperature is also 20 [◦C], the relative humidity
is ϕ = 0.6. At this point, ρv,∞ = 0.0104 [kg/m3].

The calculation results of the variation with time in temperature and moisture condi-
tions of the capillary-porous material for these conditions are shown in Figure 5.
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Figure 5. Distribution of the vapor partial pressure over the material thickness (a), relative air
humidity (b), temperature (c), moisture content (d), and vapor flow density from the liquid column
surfaces (e), moment of time: 1 − τ = 2.5 × 105 s; 2 − τ = 5.0 × 105 s; 3 − τ = 7.5 × 105 s.
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As is shown in Figure 5a,b, the partial pressure of water vapor, as well as relative
air humidity inside the material, decrease with time. The maximum values of these
quantities are observed in the middle section of the material. In the direction of heat and
mass exchange surfaces (z = 0 and z = 0.1 m), these quantities decrease to their values in
the external medium. The material moisture content wl changes in a similar way to wl
(Figure 5d).

As a result, at the initial time, the material and environment temperature are identical,
while the material internal energy is spent on the evaporation process in the initial period
of heat and mass transfer. Therefore, its temperature initially decreases and becomes lower
than the initial value. Then, as the external medium temperature becomes higher than the
material temperature, heat flows into the material from the outside. This heat is spent on
the evaporation process and the gradual material heating. Its temperature rises over time
(Figure 5c).

The distribution of evaporated vapor mass flows Jl_v,di f over the material thickness is
shown in Figure 5e. As is shown in this figure, the evaporation process inside the material
most intensely occurs in the areas near its surfaces. Over time, the maxima of curves
Jl_v,di f (z) gradually move into the material.

In the second example, a material with the same initial parameters is placed in an air
medium at 35 [◦C]. The partial density of water vapor in the air medium is the same as
in the first case: ρv,∞ = 0.0104 [kg/m3]. Naturally, the relative humidity of the external air
medium falls down to ϕ = 0.26.

The calculation results of the variation with time in temperature and moisture condi-
tions of the capillary-porous material for these conditions are shown in Figure 6.

As can be seen from a comparison of Figure 6 with Figure 5, the behavior of the water
vapor partial pressure with time, the relative air humidity and moisture content inside
the material, is basically the same as in the previously considered case, when the initial
material temperature was the same as external medium temperature. However, when the
medium temperature outside the material is higher than the initial material temperature,
its drying is much more intensive.

It has been proven by the moisture content degree in the material wl for the same
time intervals, analyzed in the first variant. If in the first variant at τ = 7.5 × 105 [s], the
maximum moisture content in the middle part of the material, with its maximum, is wl =
35.65 [kg/m3] (Figure 5d), then in the second variant, the specified moisture content will
be wl = 7.48 [kg/m3] (Figure 6d).

Unlike the first variant, the temperature inside the material changes with time. From
the initial time, the porous material temperature starts to increase due to the initial tem-
perature difference between the material and the external medium. The heat, entering the
material from the outside, is spent on material heating and liquid evaporation inside the
material.

The distribution of evaporated vapor mass flows Jl_v,di f over the material thickness is
shown in Figure 6e.

As in the previously analyzed variant, the evaporation process inside the material in
the initial period occurs most intensely in the areas near its surfaces. Over time, the maxima
of curves Jl_v,di f (z) gradually move into the material and merge into one maximum in
its middle.

3.2. Condensation Processes

The next example considers the case when the investigated porous material, which
at the initial moment of time has a temperature of t0 = 35 ◦C and a moisture content
wl,0 = 3.8 [kg/m3], is placed in an air environment with a temperature of t∞ = 20 [◦C] and a
relative humidity of ϕ∞ = 0.6 In this case, as in the previous cases, ρv, ∞ = 0.0104 [kg/m3].
Under such conditions, the process of moisture condensation begins on the surfaces of the
sample, and then in its inner layers. The results of calculating the change in time of the
temperature-humidity state of the sample under these conditions are shown in Figure 7.
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Figure 6. Distribution of the vapor partial pressure over the material thickness (a), relative air
humidity (b), temperature (c), moisture content (d), and vapor flow density from the liquid column
surfaces (e), moment of time: 1 − τ = 2.5 × 105 [s]; 2 − τ = 5.0 × 105 [s]; 3 − τ = 7.5 × 105 [s]

As seen from Figure 7a,b, as a result of moisture condensation on the surfaces and
inside the material, the partial pressure of water vapor, as well as the relative humidity
of the air inside the material, increases over time. Over time, the moisture content of
the porous material also increases (Figure 7e) and approaches the value of the maximum
hygroscopic value corresponding to the humidity of the outside air. The temperature on
the surfaces and inside the material gradually decreases (Figure 7c,d).

The modulus of the vapor flux density Jl_v,di f (z), which condenses inside the material
(the flux itself is negative), has its maximum values at the surface in the initial period. Over
time, the maximum value of the modulus of the vapor flow Jl_v,di f (z), which condenses
inside the material, moves to the middle of the sample.
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Figure 7. Distribution of the vapor partial pressure (a), relative air humidity (b), temperature (c, d),
moisture content (e), and vapor flow density from the liquid column surfaces (f; g) over the material
thickness and moment of time: 1 − τ = 5 × 103 [s]; 2 − τ = 2.5 × 105 [s]; 3 − τ = 5.0 × 105 [s].

4. Discussion

As follows from the presented results, the analyzed network model of a wet capillary-
porous material can be used to calculate the dynamics of changes in its temperature and
moisture conditions.
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This model makes it possible to calculate distribution over the thickness and change
in time of the partial pressure of water vapor, temperature and liquid moisture content
inside the material with the changes in temperature and moisture of the outside air.

According to the results of computational studies, evaporation (or condensation)
inside the pores of a material with a change in external conditions occurs more intensively
near its boundaries. Over time, the most intense areas of evaporation pass into the depth
of the material. Note that the dynamics of temperature change are more intense than the
dynamics of changes in humidity and moisture content.

For all considered cases, the times of establishment of thermodynamic equilibrium
are rather long at more than 10 days (more than 7.5 × 105 s). Such dynamics logically
correspond to the physics of the resulting effects.

The model is non-equilibrium, it is based on the differences in the parameters of the
state of the vapor-gas and liquid phases in the micropores of the material. The difference in
temperatures reached up to 1.5 [◦C], in pressures-up to 5 [MPa], mainly due to the capillary
pressure in the microchannel with a solid liquid. By the way, the capillary pressure was
not specified by an analytical expression containing the surface tension, but the original
tabular data [9] were used, taking into account the deviation of the microchannel from a
strict cylindrical shape, for example, its possible cone shape.

The model is not devoid of limitations and incompleteness of taking into account the
accompanying physical effects. It is applicable for a temperature range of no less than
0 [◦C] and no more than 100 [◦C]. At subzero temperatures, water freezes (or ice melts), and
such a phase transformation is not taken into account. At temperatures above 100 [◦C], it is
necessary to complicate the model and take into account the effects of volumetric boiling
of the liquid. The model also does not take into account the adhesion of vapor molecules
on the surface of the solid material of the walls of the microchannel, does not take into
account the possible film flow over the surface of the walls and does not take into account
possible structural modes of liquid flow in the microchannel, such as slug, foam, dispersed
and other flows.

Possible further studies of the proposed model are as follows. First of all, this could in-
volve checking the model for: sensitivity to changes in fixed parameters and characteristics
of a solid material (pore diameter, integral porosity index, its permeability); dependence of
thermophysical characteristics on temperature and pressure; the structure of the filtration
fluid flow; and other factors. It is of interest to make similar calculations for other materials,
for example, thermal insulation. It is possible to develop a model for a different pore shape,
for example, a spherical one.

It is extremely interesting to compare the model calculations with some data that were
previously obtained by the authors in the experimental study of the dynamics of changes
in the moisture content of a number of building and heat-insulating materials, depending
on the humidity of the surrounding air.

In studying the condensation processes, calculations showed that in the first 5 min
the specific mass flows of water vapor are very high—they reach 10−6 [kg/(m2·s)] and
higher. It can result in the formation of a continuous film of dropping liquid (water) on
the material (brick) surface and complete filling of pores with water in a thin near-surface
layer to a material depth of 0.5...1 [mm]. When the ambient temperature drops to sub-zero
values (in degrees Celsius), this condition can result in the ice formation in near-surface
micropores. A further decrease in temperature is accompanied by volumetric expansion of
ice, leading to microdestructions of the material surface, leading to a loss of surface strength.
Therefore, the modeling results of water vapor condensation can be applied to engineering
calculations in the processes and technologies against the surface microdestruction in
facade building structures.

5. Conclusions

The presented model includes a certain number of parameters, thermophysical prop-
erties and characteristics of a porous material. Some of them depend heavily on moisture
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content. It refers chiefly to capillary pressure and filtration coefficients. The computational
model also describes the dependence of the material equilibrium moisture content on the
air relative humidity (sorption curve). To provide solid results on the temperature-moisture
condition of a porous material, based on the proposed calculation model, reliable data
on the specified characteristics of materials are required. These characteristics for specific
materials should be obtained from complex experimental studies using special laboratory
facilities, which is a research problem to be solved. To derive required thermophysical
characteristics of the studied material from the experimental data, we may use the proposed
transfer model to solve inverse problems of heat and mass transfer.

It is also important to obtain reliable information on the structure of porous materials
based on modern optical or electronic microscopy, using fluorescent substances that fill
the pores.

The developed model can be effectively used in describing the processes of drying
capillary-porous materials; in fact, from the problem involving this area of heat and mass
transfer, the original problem statement arose. This model is probably not quite suitable
for studying colloidal structures.

It is also advisable to thoroughly check the model (verification or validation) using other
numerical modeling approaches, for example, using the LBM model or direct CFD-modeling.

Undoubtedly, such bifurcations of the further use of the model will require its corre-
sponding correction, adjustment and, of course, time.
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