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Abstract: The chemical composition of ground and polished fused silica glass surfaces plays a
decisive role in different applications of optics. In particular, a high level of carbon impurities is often
undesirable for further processing and especially for gluing or cementing where adhesion failure may
be attributed to carbonic surface-adherent contaminants. In this study, the surface carbon content
at different stages of classical optics manufacturing was thus investigated. Two different standard
processes—grinding and lapping with two final polishing processes using both polyurethane and
pitch pads—were considered. After each process step, the chemical composition and roughness
of the surface were analysed using X-ray photoelectron spectroscopy and atomic force microscopy.
An obvious correlation between surface roughness and effective surface area, respectively, and the
proportion of carbon contamination was observed. The lowest carbon contamination was found in
case of lapped and pitch polished surfaces.

Keywords: glasses; surface chemistry; surface analysis; optics manufacturing; carbonic contamina-
tion; roughness

1. Introduction

In the course of classical optics manufacturing, glass surfaces are in permanent contact
with abrasive tools and operating materials. Most of these media contain carbon, hydro-
carbons or carbonaceous compounds. For instance, grinding and lapping is usually per-
formed with abrasives made of diamond or silicon carbide. Moreover, either polyurethane
foil—consisting of carbamate groups—or pitch—consisting of hydrocarbons—is used as
polishing pad material [1]. Finally, tap water widely used in optics manufacturing usually
contains a considerable amount of carbon [2,3] given by carbonic acid, salts as well as dis-
solved and undissolved total organic carbon (TOC). In some manufacturing steps or special
cases, further carbonaceous substances are added to the water, for example, mineral oil for
mixing the cooling lubricant used for cutting and bound abrasive grinding or defoamers
that are sometimes applied during polishing.

It is obvious that to a certain extent, the glass surface interacts with the used tools and
operating materials. Quite an amount of published work focusses on the investigation of
impurities induced by the polishing process and the used polishing agents, namely cerium,
iron, aluminium, lanthanum, etc. [4–10]. However, manufacturing-induced contamination
of glass surfaces by carbon is less considered in literature, even though the presence and dis-
turbing effect of carbonaceous contamination layers is a well-known phenomenon [11,12].
It is normally attributed to pervasive hydrocarbon contamination overlayers [13] induced
by the adsorption of gases from the ambient air [14].

The analysis of the origin and grade of carbon contamination in the course of classical
optics manufacturing is of specific interest for the production of high performance optics
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where the lowest contaminants may cause a failure in functionality. This includes several
aspects or effects: (i) In the case of laser optics, the laser-induced damage threshold (LIDT)
of glass surfaces might be significantly lowered due to absorption of incoming laser light
at carbonic impurities [8,15]. Such impurities are embedded either in micro cracks and
subsurface damages or within the silica gel layer that is formed in the course of polishing [5].
(ii) The presence of carbon or carbonic groups may, moreover, cause the degradation of
surface adhesion. However, high adhesion is required for quite different approaches where,
for example, lens doublets or prism pairs are produced. This applies to optical contact
bonding [16] via adhesion due to intermolecular forces [17,18], classical cementing where
polished surfaces are connected using fine cements [1], and gluing of ground or lapped
lens borders and rims in holders, mounts and tubes [1]. (iii) Surface-adherent C=C bonds
are known to be hygroscopic [19] and thus act as functional groups for improved adhesion
of water. The water attracted by the presence of such carbon compounds may give rise to
several glass defects. This includes the so-called glass corrosion [20], where a greyish haze
is formed at the polished glass surface due to a water-induced hydrolytic scission of the
glass network.

It thus turns out that knowledge about the presence and origin of carbon is of interest
in modern optics manufacturing technology. In previous work it has been shown that
the contamination of polished glass surfaces by carbon features a certain dependency on
the concentration of the used polishing suspension [15]. This implies that differences in
tool—glass interactions may play a notable role in the degree or amount of contamination.
Against this background, carbon surface contamination of fused silica after each single
production step of classical optics manufacturing was investigated in the present work.
This study was performed in order to identify “critical” production steps and operating
materials as well as the particular contribution of the used tools and media to carbonaceous
surface contamination of the final polished surface.

2. Materials and Methods
2.1. Sample Preparation

The sample material investigated in this work was an optical fused silica glass (Tosoh
Corp., Tokyo, Japan, type Clear Silica Glass N). From the raw material, a glass block, four
different series of samples were produced by different standard production processes
applied in classical optics manufacturing, as shown schematically in Figure 1. The main
difference between these series was the approach used for grinding on the one hand and
the used polishing pad material on the other hand [1].

Initially, plane plates were cut from the fused silica block where a commercial cut-off
wheel was used. The edge of this cut-off wheel was coated with diamond particles with
a mean grit size of 126 µm (denomination D126, according to the FEPA standard). The
particles were embedded in a bronze matrix. In the course of cutting, a mixture of water and
a commercial cooling lubricant (Rhenus, Mönchengladbach, Germany, type Polinor GMC)
was applied. This coolant was also used during subsequent bound abrasive grinding. Such
grinding was performed with two different diamond grinding cup wheels for pre-grinding
and fine grinding. The mean diamond grit sizes of these tools were 46 µm (D46) and 15 µm
(D15), respectively. As for the cut-off wheel, the diamond particles were bound in a bronze
matrix.

In addition to bound abrasive grinding, loose abrasive grinding, i.e., lapping, was
applied after cutting to realise the second main series of samples. Here, silicon carbide
was used as lapping medium. Lapping was performed in three subsequent steps where
the mean grain size was successively reduced, i.e., 29 µm for rough lapping, 13 µm for
medium lapping and 7 µm in the case of fine lapping. This corresponds to the lapping
material designations F320, F500 and F800 according to the FEPA standard.

Finally, both bound abrasive ground and lapped samples were polished using two
different approaches as represented by the applied polishing pad materials, polyurethane
(PU) foil on the one hand and pitch on the other hand. In both cases, the applied polishing
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suspension was a commercial cerium oxide premix (Pieplow & Brand, Henstedt-Ulzburg,
Germany, type CERI 3000) with a mean polishing grain size of 0.7 µm. After each single
production step shown in Figure 1, the cut, ground, lapped or polished surfaces were
measured as described in more detail hereafter. Before chemical analysis, the samples were
cleaned with isopropyl alcohol.
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Figure 1. Workflow illustrating the preparation of the different investigated samples including the
particular sample denomination used in this work (given in parentheses).

2.2. Sample Characterisation

In order to gain information on the surface topography of the samples, both the
average area roughness Sa and the root mean square area roughness Sq were detected
(according to the standard ISO 4287/1-1997) after each manufacturing step. Here, an
atomic force microscope (AFM) (Nanosurf GmbH, Langen, Germany, model easyScan 2)
was applied where the measured area was 50 × 50 µm2.

Moreover, the chemical composition of the surfaces was determined by high-resolution
X-ray photoelectron spectroscopy (XPS) where a scanning XPS apparatus (Ulvac-phi,
Inc., Chigasaki, Japan, model PHI VersaProbe II) with a monochromatic Al-Kα source
and a photon energy of 1486.6 eV was used. The applied X-ray source has a power of
100 W, whereby the sample surface is scanned with a beam size of 100 µm over an area of
1400 × 200 µm2. High-resolution spectra were recorded with a pass energy of 46.95 eV and
a step size of 0.1 eV with a constant electron take-off angle of 45◦. The spectrometer was
calibrated to the copper and gold reference lines (932.62 eV and 83.96 eV); the minimum
detector resolution measured at the silver peak (Ag3d5/2) was 0.6 eV with a pass energy
of 23.5 eV. The measurements were carried out at room temperature and a base pressure
of 2 × 10−6 Pa. To avoid charging effects all measurements were performed with charge
compensation with a cold cathode electron flood source and low energy argon ions. All
spectra (N = 12) were shifted to the C1s carbon peak (248.6 eV). For data analyses the
software MultiPak (version 9.9.0.8, Ulvac-phi, Inc., Chigasaki, Japan) was applied.

To ensure a normal distribution (α = 0.05), a Kolmogorov–Smirnov normality test was
used. The data were analysed with a Tukey honestly significant difference test (α = 0.05) to
control the results for statistical differences between the variants.

3. Results and Discussion

The chemical composition of the investigated sample surfaces after each manufac-
turing step is shown in Figure 2. Here, merely the glass-forming elements oxygen and
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silicon as well as the major contaminant of interest, carbon, are considered. It can be seen
that the carbon content, which was almost zero in the case of the reference sample, i.e., the
fused silica bulk material, rapidly increased due to cutting. After a slight further increase
in the course of pre-grinding and rough lapping, the carbon concentration successively
decreased and approached or even reached the initially measured reference value. This
also applied to the oxygen and silicon content and its ratio, i.e., the nominal stoichiometry
of the investigated glass, O/Si = 66%/33% = 2. This value can only be observed after
polishing. In the course of cutting, grinding and lapping, the glass surface is thus covered
by a carbonaceous layer, which is successively removed by each subsequent manufacturing
step.
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The origin of surface-adherent carbon or carbonaceous compounds was identified
quite easily: As mentioned in Section 2.1, diamond (and thus pure carbon) grains were used
for cutting and bound abrasive grinding and silicon carbide grains were applied for lapping.
A certain rubbed-off fraction of these operating materials was transferred to the samples
as a result of fretting or rubbing wear between the used tools and the glass surface [21].
Moreover, water was used for each manufacturing step. For cutting and grinding, it was
mixed with a cooling lubricant made of mineral oil—and thus basically consisting of
hydrocarbons. For lapping, it was used for mixing the lapping suspension. Since water
contains a certain amount of (partially dissolved) carbon [2,3] it represented a further
source for carbon contamination. Finally, both polishing pad materials—polyurethane and
pitch—were composed of hydrocarbons and carbonaceous compounds, explaining the
residual carbon contamination after polishing.

An interesting aspect was observed when comparing the finished polished surfaces. It
turns out that the lowest carbon content and thus the highest surface purity or cleanliness
(not to be confused with “surface cleanliness” as specified by code number 5 in ISO 10110)
was achieved when using pitch as polishing pad material. This observation or effect can
be explained by the basic differences in the particular pad material–glass interactions as
discussed by various authors in the past [22–27].

The measured curves of bound abrasive ground and lapped samples showed a similar
qualitative behaviour. This implies that the contamination by carbon can be attributed to
the same basic underlying mechanism. The slight differences in the absolute values can be
explained by the different tools and operating materials and the differences in tool–surface
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interactions during bound abrasive grinding on the one hand and lapping on the other
hand.

As shown in Figure 3, the observed carbon concentration distribution correlated quite
well with surface roughness as determined via AFM measurements. As expected, surface
roughness decreased continuously in the course of grinding and lapping. It can further be
seen that the cut surface had a lower roughness than the pre-ground or rough and medium
lapped. This can be explained by the significant difference in tool–surface interaction
during cutting on the one hand and grinding or lapping on the other hand. In the first case,
abrasion was induced along a predominant direction due to the rotation and thus direction
of primary motion of the cut-off wheel. According to DIN 4760 and 4761, macroscopic
surface roughness can be classified into two main categories: (i) roughness in the form
of grooves or rills, which is the 3rd-order form deviation, and (ii) roughness in the form
of striations or cones, i.e., the 4th-order form deviation [28]. Cut surfaces preferentially
feature a 3rd-order roughness, whereas ground or lapped surfaces show a 4th-order-like
topography.
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The direct correlation of the carbon contamination and surface roughness can be
attributed to the particular surface area available for the adsorption of hydrocarbons and
carbonaceous contaminants where the interaction increases with increasing roughness [29].
Moreover, a higher roughness comes along with an increased number and depth of mi-
cro cracks and subsurface damages. As a rule, the micro crack depth at glass surfaces
can be estimated to amount to one-third of the equivalent diameter of the grit size of
the used grains [1]. In addition, the depth of subsurface damage is directly related to
surface roughness; it is given by the product of the peak-to-valley roughness and a glass-
dependent constant [30]. The higher the roughness, the higher the number and volume of
the abovementioned defects that act as capillaries for the accumulation of contaminants.

The differences in residual carbonic contaminants after polishing can be attributed to
the different coefficients of friction of fused silica and polyurethane (0.622 [22]) on the one
hand and pitch (0.735 [22]) on the other hand.

4. Conclusions

It can be summarised that each classical optics manufacturing step leads to a certain
carbon or carbonaceous contamination of the glass surface, where the highest amounts of
impurities occur during prefabrication. This includes cutting, pre-grinding and rough or
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medium lapping, where higher surface roughness results. The observed contaminations
cover the glass surface and most likely originate from wear debris of the used tools and
residues of the operating materials. The extent of contamination decreases in the course of
manufacturing and with decreasing surface roughness or effective surface, respectively.
This observation is of interest for further processing of ground glass surfaces and especially
for gluing or cementing where adhesion failure may be attributed to carbonic surface-
adherent contaminants.

The lowest carbon contamination is found in case of lapped and pitch polished
surfaces. This approach is thus the preferable one for the realisation of optical components
with high surface purity.

Due to the multiplicity of actuating variables, a definite description of the glass
polishing processes is highly complex and does not represent the focus of the present
work. However, the observed behaviour and reported results may contribute to a better
understanding of glass polishing processes. For this purpose, further investigations will be
performed in ongoing work. This includes FTIR- and depth-resolved XPS-measurements as
well as the analytical decomposition of relevant carbon peaks in order to identify alterations
in chemical bonds in the course of manufacturing.
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