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Abstract: Bead size and shape are important considerations for industry design and quality detection.
It is hard to deduce an appropriate mathematical model for predicting the bead geometry in a
continually changing welding process due to the complex interrelationship between different
welding parameters and the actual bead. In this paper, an artificial neural network model for
predicting the bead geometry with changing welding speed was developed. The experiment
was performed by a welding robot in gas metal arc welding process. The welding speed was
stochastically changed during the welding process. By transient response tests, it was indicated that
the changing welding speed had a spatial influence on bead geometry, which ranged from 10 mm
backward to 22 mm forward with certain welding parameters. For this study, the input parameters
of model were the spatial welding speed sequence, and the output parameters were bead width and
reinforcement. The bead geometry was recognized by polynomial fitting of the profile coordinates,
as measured by a structured laser light sensor. The results showed that the model with the structure
of 33-6-2 had achieved high accuracy in both the training dataset and test dataset, which were 99%
and 96%, respectively.

Keywords: bead geometry; prediction model; welding parameter; artificial neural network

1. Introduction

Welding is an essential process in most industrial manufacturing. It is critical to
realize automation in welding manufacturing due to the hard work condition and short-
age of skilled workers. However, most of the welding robots applied in the automatic
manufacturing now are still primary teaching-playback robots and off-line programming
robots, whose welding parameters are set in advance and have a lack of adaptability to
different work-piece with unpredictable manufacturing error and assembly error, and
flexibility to irregular bead geometry with specific requests in actual work conditions [1,2].
Improving the manufacturing quality and assembly quality heavily raises the production
cost, and the traditional “trial and error” method needs plenty of man hours. As such,
an acceptable solution is the introduction of intelligent welding technology to improve
the reliability of product and production efficiency [3,4]. For a given task, the intelligent
welding system should eliminate the trial time substantially to specify welding parame-
ters. Building a credible model for bead geometry prediction is an effective method for
actual manufacturing.

Welding is a rather complex process with many crucial parameters, such as voltage,
current, welding speed, groove geometry, etc. Because to the complex interrelationship
between these welding parameters, it is hard to deduce an appropriate physics model in
continuous welding process with changing parameters [5]. In recent decades, researchers
have applied various mathematical models to build the relationship between multi-input
and multi-output parameters, e.g., factorial design, linear and nonlinear regression, re-
sponse surface methodology, and artificial neural network (ANN) [4,6–11]. These design of
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experiments (DOE) techniques apply to different areas according to the complex relation-
ship between input and output parameters, and they achieve high accuracy and efficiency
in modeling. However, in the research of bead geometry prediction, most researchers
predict the bead geometry with constant parameters in these models. They change the
welding parameters bead-by-bead and they do not change the parameters in one same
bead. This may be insufficient for the actual welding process with changing groove and
irregular desired geometry. Developing a dynamic model with changing parameters for
welding process is still under research.

In recent years, ANN has been demonstrated to be a powerful tool in developing mod-
els for the interrelationships between various inputs and outputs in different areas, such
as finance, medicine, and engineering. The universal approximation theorem states that a
feed forward network with a single hidden layer containing a finite number of neurons can
approximate any continuous functions on compact subsets of Rn [12]. Many researchers
in welding area applied ANN in building model for parameters prediction in different
welding applications. Nagesh et al. [13] built a back propagation neural network (BPNN)
model with the inputs (electrode feed rate, arc-power, arc-voltage, arc-current, arc-length,
and arc-travel rate), outputs (bead height, bead width, depth of penetration, and area of
penetration) and yielded accurate results in shielded metal-arc welding. Shim et al. [14]
used BPNN and response surface methodology to predict bead reinforcement area by weld-
ing voltage, arc current, welding speed, contact tube weld distance, and welding angle, and
obtained good quality predictions in automatic gas metal arc welding. Kshirsagar et al. [15]
used a two-stage algorithm that consisted of support vector machine (SVM) and an ANN
to improve the prediction performance in automated tungsten inert gas (TIG) welding.
Ding et al. [16] designed a BPNN model with three inputs (wire feed rate, travel speed,
and stick-out), two outputs (bead height, bead width), and one hidden layer for shape
prediction used in arc-welding-based additive welding. Ahmed et al. [17] compared the
multilayer perceptron neural network (MLP-NN) and radial basis function neural network
(RBF-NN) for predicting the bead shape by welding parameters in shielded metal arc
welding, and found that RBF-NN was able to achieve a higher level of accuracy. Las-Casas
et al. [18] used ANN to predict ferrite quantity and bead geometry with the inputs of
welding voltage, current, different filler material, and obtained a small error percentage.

The ANN has been proven its reliability to these researchers in predicting bead geome-
try and other properties with a rather small dataset, which is usually less than 100 samples,
in almost all of the welding methods. Additionally, the ANN also has the advantages of
continuous updating with new data, handling large number of inputs and outputs neurons,
and filtering noises, showing its great potential in industrial manufacturing application [19].
While all researches mentioned above focus on the bead property prediction with stable
welding parameters in one sample, which only meets laboratory requirement, not the
actual manufacturing requirement.

The bead size and shape are important considerations for industry design and quality
detection. The most economic and reliable bead geometry depends on the actual desire and
real weldment. Identifying the specific welding parameters for desired bead geometry is a
hard work though costly and time-consuming trials. This makes it necessary to develop a
more efficient method to specify the welding parameters. The common welding parameters
include voltage, current, feed speed, and welding speed. The voltage, current, and feed
speed are usually unified by advanced welding machine in automated manufacturing
process to keep stable metal transfer. Changing the welding speed and path is a more
accessible method to control bead profile.

In this paper, a three-layer back propagation neural network model is developed for
predicting the bead width and reinforcement with stochastically changing welding speed
in gas metal arc welding (GMAW) process. The experiments are carried out on plates.
The welding speed is the only changing parameter in the study and the other welding
parameters are constant. The ANN model is trained and tested with 465 samples. The
sound result will provide the welding engineers with a new method to specify welding
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parameters with a special desired weld. In addition, all of the experiments are carried
out on large-sized plate, and both ends of experimental beads are not adopted for sample
acquisition, aiming to eliminate the influence of heat dissipation and accumulation in the
welding process.

2. Experimental Details
2.1. Experimental System

The experimental system consists of a six-axis industrial robot, a structured light
laser sensor, a welding machine, and a computer (Figure 1). All of these components are
connected via Ethernet. The computer sends the movement command to the robot and the
arc command to the welding machine. The sensor system extracts the laser stripe projected
on the work-piece and then sends a 1024 × 2 coordinates array to PC, which indicates the
geometry of the bead. The measurement resolution of the laser sensor system is 0.05 mm.

Figure 1. Experiment system.

2.2. Materials and Welding Parameters

Q235 steel is the base material used for this study. The plate is cut into 300 × 150 × 10 mm3

pieces and then brushed to eliminate dirt and oxides. The wire material is ER70s-6 with a
diameter of 1.2 mm. Table 1 shows the nominal chemical composition of Q235 steel and ER70s-6.
The shielding gas is composed of 82% Argon and 18% CO2, with a flow rate of 15 L/min. The
wire feed speed is set as 6 m/min. Additionally, the welding voltage is 21.4 V and welding
current is 107 A. The experiments of constant welding speed show that, when the welding
speed is in the range from 10 cm/min. to 60 cm/min. with other welding parameters above, a
stable and uniform bead can be obtained. Additionally, the range of changing welding speed is
limited from 10 cm/min. to 60 cm/min. in this study.

Table 1. Nominal chemical composition of Q235 steel and ER70s-6 (wt.%).

Material C Mn Si S P Cr Ni Cu Fe

Q235 0.17 max 0.35–0.80 0.30 max 0.035 max 0.035 max 0.03 max 0.03 max 0.3 max Bal.
ER70s-6 0.06–0.15 1.40–1.85 0.80–1.15 0.04 max 0.03 max 0.15 max 0.15 max 0.5 max Bal.

2.3. Bead Geometry Acquisition

Bead width and reinforcement are two key measures of bead geometry, which can
be detected by welders directly as the main judge criteria of bead quality. Figure 2 shows
these measures.
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Figure 2. Weld bead geometry.

The structured laser light sensor is widely used in the welding industry for seam
tracking and bead detection [20]. By projecting a laser line onto the surface of work piece,
the sensor obtains the 2D bead profile by CCD camera and then transforms the image
to relative two-dimensional coordinates. Subsequently, the whole bead profile can be
obtained as the laser sensor moved along with the welding torch. Extracting the bead
feature values is still a difficult task. The traditional methods to extract the turning points
are template matching and gradient calculation [21,22]. In this paper, a polynomial function
is introduced to extract the turning points.

In most of the welding conditions, the base plate is usually flat, which should perform
a straight line in sensor vision. However, the extracted laser line is usually slightly curved
and angled in practice, due to the uneven surface or heat distortion. A polynomial function
is used to model the base plate surface by the least square method (LSM). The polynomial
function can be expressed as,

yi = a0 + a1xi + a2x2
i + · · ·+ anxn

i (1)

where xi, yi are the 2D coordinates of the points on the laser line.
The algorithm first finds the peak point of the profile as the center of the bead. Subse-

quently, the regions of left surface and right surface are segmented by pre-set value, which
equals the max bead width. The point sets in two surface regions are used to optimize
Equation (1) by the LSM. The fitting results (Figure 3) show that quadratic fitting is suitable
for plate welding conditions, while it conforms to the distortion of plate surface properly
and it is robust to small dataset noise. By calculating the deviation in Y-axis to the fitting
curves in the middle region, the turning points can be found when the deviations of con-
tinuous points that are above threshold value are greater than the average deviations in
two surface regions. The top point of bead is found by calculating the distance between
the points among turning points and the base plate surface. Subsequently, the bead width
and reinforcement are then calculated according these feature points. The time processing
these calculations is 15.9 ms on average. Additionally, the average error is 0.076 mm by
detecting a standard V-groove with precision machining.

Figure 3. Fitting results. (a): left surface. (b): right surface.
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3. Model Development
3.1. Transient Response Tests

In order to define the input layer range and build the mapping relationship between
welding speed and bead geometry, transient response tests are carried out with minimum
welding speed, 10 cm/min., and maximum welding speed, 60 cm/min, which is tested in
constant parameter welding tests. Figures 4 and 5 show the results. When welding speed
steps from 10 cm/min to 60 cm/min, the bead width keeps decreasing in the range from
2 mm backward to 14 mm forward, and it increases to a stable value at 20 mm forward,
the bead reinforcement keeps decreasing in the range from 9 mm backward to 13 mm
forward, and it increases to a stable value at 22 mm forward. When welding speed steps
from 60 cm/min to 10 cm/min, the bead width keeps increasing in the range from 6 mm
backward to 16 mm forward, the bead reinforcement keeps increasing in the range from
10 mm backward to 12 mm forward. The first bead shows a shrinkage 10 mm behind the
step point, while the second bead changes more smoothly. This phenomenon is mainly
caused by the flow of weld pool and the movement of heat source. Finally, the inputs
neurons are defined with spatial welding speed sequence from 10 mm backward to 22 mm
forward, totaling 33 neurons.

Figure 4. Results of transient response test (welding speed steps from 60 cm/min to 10 cm/min.).
(a): bead width value; (b): bead reinforcement value; and, (c): actual bead.

3.2. Model Development

BPN is widely used in mathematical model research for its non-linear mapping be-
tween the input and output parameters. The neurons are full connected between two
adjacent layers. The weights are set randomly in advance. The activation function trans-
forms values to a scaled output value in a higher level. The error is estimated as the
difference between the actual and computed outputs. This procedure constitutes forward
flow of back propagation phase and error computed is back propagated through same
network to update weights. Weight change is calculated for all connections. The errors for
all patterns are summed and the algorithm is active until the error falls below a specified
value [10,11,13].

In this study, a basic three-layer back propagation neuron network is established. The
input layer is the spatial welding speed sequence, including 33 neurons. Additionally, the
output layer is the bead geometry values, including bead width and bead reinforcement.
The size of hidden layer is one of the most important considerations for the ANN model.
Chiu et al. [23] found that the increase in hidden neurons did slightly increase the accuracy
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in part, but not all datasets. To avoid overfitting and under fitting, the number of hidden
neurons is tested from 2 to 18 in step 2. Subsequently, a typical three-layer back propagation
is developed according to this task, as shown in Figure 6.

Figure 5. Results of transient response test (welding speed steps from 60 cm/min to 10 cm/min.).
(a): bead width value; (b): bead reinforcement value; and, (c): actual bead.

3.3. Datasets Acquisition

It is critical to achieve a large enough dataset for ANN model training and test to
correct the network parameters and validate the model performance of practical accuracy.
In addition to transient response tests, three other beads of 200 mm in length undergo
the GMAW process. The welding speeds are stable in both ends of 50 mm, 10 cm/min.,
or 60 cm/min., and steps to a random value per 10 mm in the middle 100 mm. From
each bead, 133 samples can be extracted by the experimental system, including the spatial
welding speed sequence, bead width, and bead reinforcement. Subsequently, a training
dataset of 332 samples and a test dataset of 133 samples are obtain.

Figure 6. Artificial neural network (ANN) model for bead geometry prediction.
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3.4. Training Process

The development and the training of the network are carried out on a PC using
PyTorch framework on Python. The learning rate is 0.01, the batch size is 32, the epochs are
30, the activation function is Tanh, and the other parameters are all defaults.

Figure 7 shows the training. In the first 50 steps, the training MSE decreases linearly
and it is volatile. In step 50 to step 100, it decreases slowly to a stable value. The test MSE
decreases with the training MSE accordingly but stably. From step 150 to the end, they
both stay at a stable value, which is about 0.0018.

Figure 7. The training and test in process.

3.5. Results and Discussion

Table 2 shows the training and test results of different number of hidden neurons. The
lowest training MSE is achieved in the 33-10-2 structure, while the highest training MSE is
achieved in the 33-2-2 model. Additionally, the lowest test MSE is achieved in the 33-6-2
model, while the highest MSE is obtained in the 33-4-2 model. No further reduction of
training MSE or test MSE is achieved when the number of hidden neurons increases. The
test MSEs are all slightly higher than the training MSEs in all models. The 33-6-2 model
structure is adopted for further development because the increase of the number of hidden
neurons will decrease the generalization ability of the ANN model.

Table 2. Training and test results of different hidden neurons.

Structure Training MSE Test MSE

33-2-2 6.7624 × 10−3 7.8341 × 10−3

33-4-2 2.5074 × 10−3 7.3037 × 10−3

33-6-2 1.9432 × 10−3 6.372 × 10−3

33-8-2 2.1679 × 10−3 8.3761 × 10−3

33-10-2 1.3076 × 10−3 7.8045 × 10−3

33-12-2 3.0185 × 10−3 8.2483 × 10−3

33-14-2 3.5779 × 10−3 6.888 × 10−3

33-16-2 2.3568 × 10−3 6.5465 × 10−3

33-18-2 4.5394 × 10−3 7.3875 × 10−3

Figure 8 shows the comparison of the prediction results from the ANN model and
actual values in test dataset. The results show little deviation between the predicted value
and actual value. The highest error is 0.899 mm and the average error is 0.23 mm in bead
width. Additionally, the highest error is 0.534 mm and the average error is 0.09 mm in
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bead reinforcement. On one hand, these errors are caused by the lack of a large number of
training samples, which may influence the generalization ability of the ANN model. On
the other hand, the welding process is not stable compared with other process technology.
Because to the influence of the fluctuations from droplet transition and spatter. The bead
width and reinforcement deviation are unavoidable, which introduces inevitable system
error. However, this precision is relatively acceptable in the welding process.

Figure 8. Comparison of predicted and actual results in test dataset: (a): bead width value; and, (b):
bead reinforcement value.

The prediction results in the test dataset show that the ANN model can accurately
predict bead width and reinforcement. Additionally, no counterintuitive data with unac-
ceptable deviation are detected in this work.

4. Conclusions

In this study, an ANN model is developed to predict bead geometry in a continu-
ously changing welding condition, in which the welding speed changes stochastically.
Additionally, the following conclusions have been made.

The welding parameter at one position has lasting infection on bead formation in a
long range along welding direction, which has been proved by transient response tests.
Building a mathematical model in dynamic welding process should involve the spatial
relationship of the changing welding parameters in a large enough range.

A basic three-layer back propagation neuron network shows a high accuracy in pre-
dicting bead geometry with a spatial welding speed sequence, which changes stochastically
while other welding parameters keep constant. The testing results show little deviation
between the actual bead geometry values and the predicted bead geometry values. This
makes it practicable to introduce the ANN model in the actual changing welding process.

This work only changed the welding speed on plates with no groove. Future work
will focus on the prediction model of bead geometry with more input parameters. Not only
welding speed, but also groove geometry, welding path, and weaving parameters will be
brought into the prediction model, which will meet the actual welding demand. Finally, a
reinforcement learning model will be established to control bead formation for an uneven
workpiece based on this prediction model.
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