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Abstract: This experimental study focuses on the assessment of mineral additives and their incor-
poration into cement composites (CC). The assessment was based on a holistic approach to the
performance of the durability properties of CC. Environmental suitability was also taken into con-
sideration. In the experiments, cement pastes with w/c ratios of 0.3, 0.4, and 0.5, respectively, were
prepared. Natural zeolite (NZ) and densified silica fume (SF) at doses of 7.5 and 15.0 wt.% of cement
were used as the investigated (replacement) materials. Their effects (including development over
time) on density, strength (flexural and compressive), porosity by water absorption, permeability by
rapid chloride penetration (RCP) test, phase content by thermal analysis, and hydration progression,
were observed. The results were then used to propose an evaluation approach. Natural zeolite was
used for its known pozzolanic activity and classification as a supplementary cementitious material
(SCM). In contrast SF acted as a filler in cement pastes, and thus did not have a direct positive effect
on durability. The concept of comprehensive analysis for unknown additive classification is proposed
to expressly differentiate between SCM, inert, and improving mineral additive. This concept could
be applied to the assessment of mineral additives with regards to the durability and suitability of
cement composites.

Keywords: cement composite; silica fume; zeolite; w/b ratio; cement paste porosity; cement ma-
trix permeability

1. Introduction

The durability of building materials can be considered in several respects, but it is
currently clearly understood as one of the pillars of sustainability in the construction
sector. Sustainability, another aspect penetrating industrial production, is an integral
part of intergenerational equity relating to the right to a beneficial environment—one of
the common values of humankind [1]. The sustainability of concrete can be succinctly
described from three points of view:

(a) technical—representing material functionality,
(b) environmental—linked to saving of natural resources through prolongation of the

construction lifetime, and
(c) economic—frugality parameter. All these aspects are mutually interconnected in

sustainability holistic approach [2,3].

Durability is a priority factor for concrete, considering its purpose as a structural
material. It consists of performance (preservation of properties) and time (long-term life-
time) aspects [4,5]. It is determined by stipulation specification and consequently by fresh
concrete composition, as well as by production technology, processing, and curing [6–8].
The concept of several scales of concrete [9–11] related to durability is given in Figure 1a.
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It is well-known that the durability of concrete mainly relates to porosity. Even compres-
sive strength as a basic CC (cement composites) durability property is well described as
dependence on porosity that relates to the w/c ratio [12–14]. Besides plastic CC properties
(rheology, density, and setting time), there are various tests for the hardened state of CC
based on mechanical, physical, thermophysical, chemical, or physico-chemical proper-
ties [15]. The various alternatives of system porosity-permeability [16] with effects on key
parameters [12] are given in Figure 1b.

Figure 1. Concept of cement composite designing: (a) Multi-scale approach; (b) Variations of an open pore system in a
cement paste.

According to Figure 1b, four basic cases of open pore system can occur within a cement
paste microstructure (inaccessible pores will not be considered) [17,18]:

1. High porosity and high permeability (up left)—increases water absorption, intensifies
liquid migration, and has a negative effect on strength and deformation.

2. High porosity and low permeability (up right)—negatively affects water absorption
and strength and deformation, but leads to lower liquid migration.

3. Low porosity and high permeability (down left)—decreases water absorption and
increases liquid migration.

4. Low porosity and low permeability (down right)—this is the ideal case, wherein the
lowest water absorption and liquid migration are achieved as well as the highest
strength and lowest deformations.

The crucial aspects for CC durability are, therefore, the quantity and quality of cement
paste. Quantity affects overall durability due to its much lesser durability in comparison
with the aggregate. With increase in cement paste amount of same w/c, the volume of
the pores increases, thus increasing porosity and permeability [19]. The main factor of
cement paste quantity is the aggregate (mainly its granularity and grain shape) [20–27].
This is due to voids that are created between grains that have to be fulfilled by cement
paste. Moreover, appropriate workability have to be ensured. Currently, aggregate packing
(among particle packing models) are in focus [28–30]. Cement paste (CP) quality is the
result of a porous system (porosity, capillarity). It has impacts on all mechanical, physical,
and chemical properties, while the most important parameter is the water-to-cement
(binder) ratio w/c (w/b) [31,32]. The temperature of input materials is an often neglected
aspect, even though increasing temperature negatively influences the workability of plastic
concrete. This consequently leads to the additional need for water [33,34]. Increase in
cement paste quality can be done by several ways: (1) decreasing w/c ratio—however,
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this increases the amount of cement paste and, thus, could be counterproductive [35],
(2) using latent hydraulic (GGBFS) or pozzolanic materials (fly ash, diatomite, silica fume,
zeolite, metakaolin, etc.) [36], and (3) active air—considering entraining air as beneficial for
general durability is controversial [37]; however, in our opinion, only an environment with
freeze-thaw cycles is beneficial for hardened CC, since using an air-entraining admixture
increases permeability and, thus, overall porosity [38–41].

Current research on concrete durability is focused on adjusting its durability, while
minimizing the content of its constituents; for example, ordinary Portland cement (OPC)
with a high carbon footprint, since production of OPC is connected to high heat energy
demand [42–44]. This is based on using Supplementary Cementitious Materials (SCM),
while durability properties are, at least, preserved [45–47]. Beushausen et al. [35] proposed a
performance-based approach for concrete durability in the designing stage as an alternative
to the traditional prescriptive approach. In [48], Juhart et al. presented a new method based
on a systematic design approach for the efficient use of ordinary Portland cement (OPC)
in cement-based materials, in combination with inert mineral fillers. They successfully
applied it to identify and characterize proper fillers and to find optimum mix-ratios for
eco-efficient pastes consisting of OPC, very fine micro-fillers, and fine eco-fillers.

Tran et al. [49] concluded that using natural zeolites in the cement composites on the
one hand reduces compressive strength and workability; their addition can considerably
enhance other engineering properties, such as shrinkage, chloride penetration, water per-
meability, carbonation resistance, and sulphate resistance. Shahmansouri et al. [50] studied
eco-friendly geopolymer concrete incorporating silica fume and natural zeolite, while
ascertaining a worsening effect of additives on workability, but a beneficial compressive
strength (silica fume) and long-term compressive strength (natural zeolite). In [51], Azad
et al. studied the effect of zeolite on the environmental and physical characteristics of
green concrete filters, which they declared was enhancing the filter ability in reducing
pollution parameters of wastewater, as well as the no-deteriorative effect of using zeolite on
physical properties of porous concrete. Nas and Kurbetci [52] showed improved durability
against freeze-thaw cycles as well as against penetration of chloride ions using NZ (natural
zeolite). Ahmad [53] studied different ratios of silica fume replacement on compressive
strength and hardness, also considering the cost, while he presented that 15% of Portland
cement replacement is most beneficial. Sasanipour et al. [54], in their study on the effect of
silica fume on durability of self-compacting concrete made with waste recycled concrete
aggregates, concluded that SF (silica fume) plays an important role in improving durability
performance, since it decreases water absorption and significantly increases electrical resis-
tivity and chloride ion penetration resistance. Khodabakhshian et al. [55] performed an
investigation on the durability performance of structural concrete containing silica fume,
concluding on some negative effects of SF on concrete rheology, but showing a positive
effect on compressive strength, even in corrosive environments (sodium and magnesium
sulphate, sulphuric acid); SF also slightly improved water absorption. In our previous
study [56], we found that increasing the amount of zeolite supplement leads to a decrease
in workability, while studying its utilization in the precast industry. Berenguer et al. [57]
studied the durability of concrete structures with sugar bagasse ash, while considering
it (sample A) as a pozzolanic material to improve the durability properties of concrete.
In [58], Pan et al. investigated the effect of the rheological properties of fresh concrete on
shotcrete-rebound based on different additive components.

This paper focuses on examining select known mineral additives as materials adjusting
the binder phase of CC in relation to design and production durability, thus resulting in
sustainable concretes. This study is based on experiments performed exclusively on cement
pastes with various w/b ratios and cement replacements. In this manner, the impact of
aggregate (filler phase) on the results could be eliminated and, thus, a higher amount
of primary materials (cement, additives) in unit volume than in mortars or concretes
could be tested. In addition, gravitation pore, ITZ (interfacial transition zone) zone pores,
and partially entrapped voids creation could be neglected. This approach is more suitable
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in investigating cement composite durability and sustainability. Moreover, thermal analysis
was applied to study the hydration processes. The novelty of the paper lies in the proposed
method of evaluation and classification of the mineral additives, as per their effects on CC
properties relating mainly to durability. The proposed method is based on comprehensive
performance analysis, thus eliminating isolated evaluation of the absolute values of the
test results. In this article, the filler indicates the low reactivity component in the role of
the aggregate. The binder phase covers cement paste as a compound of cement and water
with or without active mineral additives.

2. Materials and Methods
2.1. Input Materials

As reference material, cement CEM II/A-S 42.R (CRH Plant, Turna nad Bodvou,
Slovakia) was used. This type of cement is considered to be universal for ready-mix
concretes as well as for precast concretes. As SCMs materials, natural zeolite ZeoBau 50
(Zeocem plant, Bystre, Slovakia) and densified silica fume Mapeplast SF (Mapei, Ivanka pri
Dunaji, Slovakia) were applied. The chemical composition and specific gravity of materials
are given in Table 1. Natural zeolite (NZ) and granulated silica fume (SF) were selected as
effective SCMs regarding the durability of cement composites. NZ is a natural mineral with
pozzolanic properties, and its carbon footprint is much lower than that of ordinary Portland
cement, since NZ does not undergo thermal procession. SF is secondary material produced
as a by-product in the production of ferosilicium. Despite its high price, SF is often used
when very specific properties (mainly connected with high strength or durability against
high corrosive environments) are required [53].

Table 1. Chemical composition and specific gravity of the binding materials used.

Main Elements Expressed as Oxide (wt.%) Specific Gravity
(kg·m−3)SiO2 Al2O3 CaO K2O Fe2O3 MgO SO3 Other

Cement 18.6 3.7 62.1 0.9 2.8 2.1 4.4 5.4 3050
Zeolite 58.7 9.0 2.8 2.6 1.4 0.7 0.1 24.7 2440

Silica-fume 92.5 0.4 0.3 1.0 1.2 1.0 0.1 3.5 2200

To mix the cement pastes, tap water according to EN 1008:2002-07 [59] was used.
To adjust CP mixtures’ workability, polycarboxylate-ether based high-range water reducing
(HWR) superplasticizer SF40 (MAPEI, Slovakia) with 34 wt.% of solid content was added
as a high-range water reducing admixture.

2.2. Mix Design and Labelling

Overall, 15 cement paste batches were mixed. Reference cement pastes and cement
pastes with SCMs at two supplement ratios (7.5 wt.% and 15.0 wt.%) were tested at three
different w/b ratios (0.3, 0.4, and 0.5, respectively). Mix proportion (binder, water) was the
same within each of the binder-to-water ratio. Labelling is given in Table 2. The amount
of materials given in Table 2 corresponds to approximately 3.5 L of an individual batch
needed to prepare all the samples for the experiment with sufficient excess.

2.3. Fresh Cement Pastes and Sample Preparation

The materials were mixed for 120 s in a mixer. To achieve appropriate workability,
all the pastes (excluding those with w/b = 0.5) were adjusted by a superplasticizer. Five
minutes after first contact of the binder and water (zero time), the flow on Haegermann
table with 25 strikes was measured according to EN 1015-3:1999-02 [60]. Then, 30 and
60 min from zero time, the flow dimensions were measured again. Before the test, a batch
was remixed for 30 s. After 60 min from the start and finish flow test, the paste was input
into molds in 1 layer, vibrated for 5 s, and covered by impermeable foil to prevent the
specimen from drying out. At the same time, the density of the fresh pastes (D-mix) was
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determined. Beam specimens of dimensions 40× 40× 160 mm according to EN 196-1:2016-
04 [61] were prepared for the strength and water absorption tests; disc specimens were of
diameter 42 mm and width 27 mm for the RCPT (rapid chloride penetration test) test.

Table 2. Labeling and compositions of the prepared mixtures.

Component Replacement
(wt.% of Cement)

w/b Ratio

0.3 0.4 0.5

Reference 0.0 REF_0.3 REF_0.4 REF_0.5

Natural zeolite 7.5 NZ7.5_0.3 NZ7.5_0.4 NZ7.5_0.4

Natural zeolite 15.0 NZ15.0_0.3 NZ15.0_0.4 NZ15.0_0.4

Silica-fume 7.5 SF7.5_0.3 SF7.5_0.4 SF7.5_0.4

Silica-fume 15.0 SF15.0_0.3 SF15.0_0.4 SF15.0_0.4

Total binder (g) 5600 4800 4200

Water (g) 1680 1920 2100

2.4. Water Absorption

The water absorption test was performed using a sample with the same shape as for
the flexural strength tests according to STN 73 1316:1989-05 [62]. The tests were conducted
at 28 days (WA-28) and 180 days (WA-180) of curing under water. Three samples from
every batch and each of two curing times were tested. After pulling the samples out from
the water bath, they were surface-dried with a cloth and weighed in saturated and surface
dried (ssd) state. They were then dried in an oven at temperature of 105 ± 5 ◦C until
constant mass (Equation (1)) was achieved (oven-dried state “d”)—a minimum of 6 days.
Afterwards, WA was calculated according to Equation (2) and the samples set aside for the
strength test.

md ≡ mi ←
mi−24h −mi

mi−24h
·100 < 0.1; i ∈ {24; 48; 72; . . .}hours (1)

WA =
mssd −md

md
·100 (2)

where,

md—oven dried constant mass of sample rounded to 0.1 (g);
mssd—mass of saturated sample rounded to 0.1 (g);
WA—water absorption (wt.%).

2.5. Compressive and Flexural Strength

Compressive and flexural strength was investigated after 28 and 180 days of curing
under water in saturated (ssd) as well as in oven-dried state (d). For each stated option,
three samples for flexural strength and six samples for compressive strength were tested.
The contact area of each specimen was brushed to achieve a flat surface and thus precise
results. Flexural strength measurement (fflex-28-ssd, fflex-180-ssd, fflex-28-d, fflex-180-d) was
performed on beams (width 40 mm, height 40 mm, and length 160 mm) with 1 loading in the
center (3-point bending set-up) by loading speed of 0.05 MPa/s (approximately equaling
0.02 kN/s). After measuring the dimensions of the fracture area, fflex was calculated
according to EN 12390-5:2019-8 [63]. Fracture curves as well as fracture area were optically
evaluated and recorded by a camera with macro lens and by the optical microscope
AmScope M162C-2L-PB10.

Subsequently, compressive strength (marking similar to flexural strength: fc-28-ssd,
fc-180-ssd, fc-28-ssd and fc-180-ssd) was executed on six beams’ fractions with loading



Materials 2021, 14, 1448 6 of 31

speed of 0,5 MPa (what equals 0.8 kN/s) using a spacing device and calculated according
to EN 12390-3:2019-07 [64].

2.6. Rapid Chloride Penetration Test

The rapid chloride penetration test (RCPT) was performed on a cement paste disc
with diameter Φ = 42 mm and width a = 27 mm (exposed area A = 5542 mm2), as per ASTM
C1202-19 [65]. High current flow through all the samples at 28 days of curing caused a rapid
increase in the temperature of the sample and a consequent current rise; the measurements
were taken at 180 days of curing. The current-diffusivity-temperature relationship is one of
the disadvantages of this test method [66,67]. Another drawback is ambiguity—identifying
which ions are the carrier of charge—since it could be Cl- from the electrolyte solution
as well as ions from the pore solution of the test specimen [15,68,69]. Despite these facts,
we consider RCPT (or called the rapid “ions” penetration test) convincing for cement
paste comparative analysis. In spite of our attempts to decrease voltage to 20 V, 30 V,
40 V, or 50 V, respectively, when the current decrease was linear (but stayed approximately
constant), as well as temperature, we stayed consistent with the standard RCPT procedure—
it consisted of applying 60 V voltage to the sample, where one side was in contact with 3%
solution of NaCl and the other with the 0.3 M solution of NaOH, as given in Figure 2.

Figure 2. RCPT set-up.

In the six-hour test, the initial current and that of every 30 min were recorded. During
the test, the temperature of the sample or solutions should be controlled. Since electrical
current is the amount of passing charge over time, the overall passing charge can be
calculated as a definite integral of current in time (software and datalogger measurement) or
according to Equation (3) (numerical calculation by the trapezoid method). According to the
passing charge result, permeability and thus the quality of cement paste can be evaluated.

Q =
∫ t

0
I.dt = 900.

[
I0 + 2.

(
n

∑
i=30

Ii

)
+ I360

]
; n ∈ {60, 90, . . . , 330} min (3)

where,

Q—overall passing charge (C);
I—measured electrical current (A);
t—time (min).

2.7. Thermal Analysis

Thermal analysis was primarily used to determine the content of the main cement
composite’s components (ettringite, C-S-H phase, portlandite, and remnant hydration
phases). Cement paste samples were dried (at 105 ◦C), crushed, ground, and analyzed in
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powder form using a STA Jupiter 4 thermal analyzer (Netsch, Germany) under nitrogen
atmosphere at a heating rate of 30 K/min in a temperature range of 25–900 ◦C in DSC/TG
mode. The same mass of samples of 30 ± 1 mg per sample was heated in corundum pots.
The contents of the ettringite, C-S-H phase, portlandite, and other hydration phases were
detected from the amount of decomposed matter, derived from the particular TG curves,
in the temperature range of 105–160 ◦C, 160–423 ◦C, 423–500 ◦C, and 500–900 ◦C, respec-
tively. Consequently, free portlandite amount, chemical-based water content, and hydration
degree were calculated for the individual cement paste samples.

3. Results and Discussion
3.1. Workability

The results of the workability test are reported in Table 3. Workability is the very first
and one of the most important properties of cement composite, since it determines the labor
required to place it in a framework [70–72]. In the case of unsatisfactory workability, there
is the tendency to adjust it with water, decreasing the durability of cement composites [73].
The results of Haegermann’s test, which is based on measuring flowability under dynamic
conditions, provides good information, not only on workability/consistency, but also on
overall rheology [74].

Table 3. Results of consistency in Haegermann’s table.

Label HWR
Admixture 5 min 30 min 60 min

(wt.% of Cement) (mm)

REF_0.3 0.34 228 240 247

REF_0.4 0.06 220 240 231

REF_0.5 0.00 262 251 260

NZ7.5_0.3 0.34 270 232 (17) * 252

NZ7.5_0.4 0.06 230 225 218

NZ7.5_0.5 0.00 273 260 258

NZ15.0_0.3 0.70 228 210 192

NZ15.0_0.4 0.06 198 195 192

NZ15.0_0.5 0.00 235 231 237

SF7.5_0.3 0.52 277 243 (14) * 243 (14) *

SF7.5_0.4 0.06 242 213 234

SF7.5_0.5 0.00 281 265 279

SF15.0_0.3 0.52 182 225 223

SF15.0_0.4 0.06 220 218 211

SF15.0_0.5 0.00 255 256 251
* Result without impacts (amount of strikes till maximum limit—300 mm—was reached).

Difference in consistency between the mixtures with w/b = 0.4 (REF_0.4 sample) and
w/b = 0.5 (REF_0.5 sample) 5 min after mixing is illustrated in Figure 3.
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Figure 3. Consistency after mixing (5 min): (a) REF_0.4; (b) REF_0.5.

The need to adjust consistency (increase in plasticizer dosage) grows with w/b de-
crease. It is due to better dispersion of binder grains in a mixture with higher water
content [13]. This fact is crucial in mix designing, since there is a specific dosage for each
plasticizer to achieve specific consistency with a well-designed aggregate composition
and at a given w/b ratio [75]. When maximum dosage exceeds the given w/b ratio, no
improvement in cement composite consistency is observed; moreover, bleeding occurs [76].
Another observation connected with plasticizer–consistency relation was that using high
dosages of plasticizer can lead to higher stickiness (viscosity), which should be evaluated
by rheometry.

Replacement of 7.5% of cement by any of the additives, silica-fume and zeolite,
(NZ7.5_0.3, NZ7.5_0.4, NZ7.5_0.5, SF7.5_0.3, SF7.5_0.4, SF7.5_0.5) did not have a significant
effect on consistency. Replacement of 15.0% of cement (NZ15.0_0.3, NZ15.0_0.4, NZ15.0_0.5,
SF15.0_0.3, SF15.0_0.4, SF15.0_0.5) led to deterioration in flowability. The same effect was
observed in [77,78]. Thus, the SCMs used could be used as stabilizers in fresh cement
composites against segregation and bleeding [79].

No significant decrease of flowability in time was observed in any of the mixtures.
On the other hand, adding an admixture at higher dosages (mainly SF7.5_0.3 and SF15.0_0.3
and temporarily NZ7.5_0.3–30 min) led to the “additional plasticization” effect. A mixture
of NZ7.5_0.3 for 30 min and SF7.5_0.3 had a self-consolidating character.

In contrast, the highest dosage with a NZ15.0_0.3 mixture was necessary due to these
mutual factors:

(a) high amount of replacement by zeolite [56,80];
(b) the structure of zeolite (clinoptilolite) crystalline grid-cavities, interconnected by

channels, enables water to be stored, leading to a decrease in consistency [81];
(c) a less amount of water (w/b = 0.3) [82]. The same is also seen when the results for

zeolite and silica fume are compared. SF grains were not fully de-agglomerated and
acted as the ball bearings and filler. This also impacted other properties, as will be
discussed further. Therefore, the w/b ratio for SF had to be replaced by the w/c ratio,
which is higher.

3.2. Density

The values of the determined densities of the studied fresh mixtures (D-mix) and
prepared samples after 28 and 180 days (D-28-ssd, D-180-ssd, D-28-d and D-180-d) at a
particular time and under moisture conditions are given in Figures 4 and 5.
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Figure 4. Fresh pastes’ density.

Figure 5. Densities of hardened cement pastes (CP): (a) ssd state; (b) oven-dried state.

The values of density in fresh state (D-mix) varied from 2078± 13 kg m−3 (REF_0.3) to
1772 ± 14 kg m−3 (SF15.0_0.5). The density of a mixture depends mainly on the densities
of its constituents. Therefore, the densities of the prepared cement pastes decrease with
w/b ratio as well as with the amount of additive replacement.

The same pattern as for the D-mix is preserved for D-28-ssd, D-180-ssd, D-28-d, and D-
180-d. The highest values are achieved for REF_0.3 (2132, 2151, 1879 and 1909 kg m−3),
the lowest values for NZ15.0_0.5 (1864, 2054, 1733 and 1774 kg m−3), and for SF15.0_0.5
(1857, 1854, 1405 and 1434 kg m−3). An interesting trend is seen, where generally:
(a) density increases in time, even when fresh and hardened state are compared [83],
and (b) density increases in ssd as well as in oven-dried state. Despite the lack of literature
concerning this issue, the increase of density in time was documented in [84–86]. This can
be clarified by curing the specimens under water and by the in-building process of water
into the silicate matrix within the hydration reaction.
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Based on the determined D-mix results, real compositions of each mixture could
be calculated. Usually, a volume method—based on first calculating, then measuring,
and then correcting—is applied to the mix design precision [87,88]. Using this method, it is
important to know the accurate values of the input materials’ specific gravity, to estimate
air volume. After fresh density and real air content measurements, it is necessary to
correct mix composition with a correcting factor. Our proposal is to apply the simplifier
approach—it should consist of choosing the w/c ratio and cement paste/aggregate ratio,
then measuring the density of the mixture, and finally calculating as per Equations (4)–(7):

Dmix = m(cp) + m(agg) = m(c) + m(w) + m(agg) (4)

Dmix = m(c) + m(c)·x + (m(c) + m(w))·y (5)

Dmix = m(c)·[1 + x + (1 + x)·y] = m(c)·(1 + x)·(1 + y) (6)

m(c) =
Dmix

(1 + x)·(1 + y)
; m(w) = m(c)·x; m(agg) = (m(c) + m(w))·y (7)

where,

m(cp), m(agg), m(c), and m(w)—mass of cement paste, aggregate, cement, and water, respec-
tively;
x—water to cement ratio;
y—cement paste to aggregate ratio.

When this ratio method for CC designing is used, the measured D-mix helps calculate
the composition for 1 m3. Moreover, composition (primarily w/b ratio) should be re-
evaluated after a hardened CC performance. This simplified but effective approach is
analogous to concepts of k-value and equivalent performance [89]. The corrected real
compositions of the studied mixtures are presented in Table 4.

Table 4. Recalculated mix compositions.

Label D-mix avg Water (w) Cement (c)
SCM

Additive
(a)

w/c w/(c + a) =
w/b

(kg m−3) (kg m−3) (kg m−3] (kg m−3) (-) (-)

REF_0.3 2078 480 1598 0 0.30 0.30

REF_0.4 1933 552 1381 0 0.40 0.40

REF_0.5 1824 608 1216 0 0.50 0.50

NZ7.5_0.3 2055 474 1462 119 0.32 0.30

NZ7.5_0.4 1925 550 1272 103 0.43 0.40

NZ7.5_0.5 1836 612 1132 92 0.54 0.50

NZ15.0_0.3 1977 456 1293 228 0.35 0.30

NZ15.0_0.4 1893 541 1149 203 0.47 0.40

NZ15.0_0.5 1806 602 1023 181 0.59 0.50

SF7.5_0.3 2055 474 1462 119 0.32 0.30

SF7.5_0.4 1927 551 1273 103 0.43 0.40

SF7.5_0.5 1828 609 1128 91 0.54 0.50

SF15.0_0.3 1988 459 1300 229 0.35 0.30

SF15.0_0.4 1876 536 1139 201 0.47 0.40

SF15.0_0.5 1772 591 1004 177 0.59 0.50
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In the calculation, two situations within mineral additives can be considered. First,
when the additive acts as the active, then the w/b ratio should be taken into account
(analogous: 0 < k-value ≤ 1). If not, the w/c ratio is taken into account and the additive is
considered an inert filler (very fine aggregate; analogous: k-value = 0). This can purely be
reviewed by another test, as will be presented further. The calculated cement and water
content negligibly differs from the values of the volume methods (about 0.6%). We consider
the ratios method to be more undemanding and quicker than the volume one, thus being
in compliance with Ernst Mach’s modification of Ockham’s razor in science. The most
suitable method in targeted designing of CC mix compositions with required parameters
(durability and consequently sustainability) is a combined method. However, particular
functions and properties of the filling and binding phase of CC have to be considered.

The values of water content given in Table 4 were used to estimation of non-evaporable
water (hereinafter w(non-ev.)) [90,91] in particular composites. W(non-ev.) was calculated
as the ratio of the remaining water in samples after drying and binder content, according
to (Equation (8)). In the case of silica-fume, w(non-ev.)/c ratios were also calculated, as per
the argument stated above. Non-evaporable water content and its development in time are
given in Figure 6.

w(non− ev.) = m(w)− (D(ssd)− D(d)) (8)

where,

m(w)—content of water in fresh CP (kg·m−3);
D(ssd)—density of CP in saturated-surface-dry state (kg·m−3);
D(d)—density of CP in oven-dried state (kg·m−3).

Figure 6. Development of chemically bounded water.

It is obvious that with increase of w/c, w(non-ev)/b ratio also increases, which could
be explained by more extensive water-cement grain contact in a matrix with higher porosity
and permeability and thus rapid ratio of water incorporation into the matrix. Except for
silica-fume mixes and mix NZ15.0_0.3 (this we consider to be a random error), a trend of
reducing curve steepness can also be seen. We assume that it is caused by excess water,
since this increases the rate of hydration. In mixes NZ15.0_0.3, NZ15.0_0.4 and NZ15.0_0.5,
this curve may be shifted to the right (or down), due to retaining of water in the zeolite
crystalline grid [81] when a higher amount of replacement is used. There is no clear
tendency in relative increase of the w(non-ev.)/b ratio relating either to the w/c ratio or
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to type and amount of replacement; however, we predicted that relative increase should
decrease in time and this decrease should be faster with increasing w/c ratio, while with
higher w/c, maximum w(non-ev.)/b will be faster reached. This value may correspond
to 0.24 (complete hydration of cement [92]). However, this should be subject to more
targeted and rigorous experiments. In any case, the determination of chemically bounded
water by the described method could be a simple way to control the hydration process in
cement composites.

3.3. Flexural Strength

The results of flexural strength in different curing times and moisture content of the
samples are given in Table 5.

Table 5. Flexural strength results.

fflex-28-ssd Variation fflex-28-d Variation fflex-180-ssd Variation fflex-180-d Variation

(MPa) (rel. %) (MPa) (rel. %) (MPa) (rel. %) (MPa) (rel. %)

REF_0.3 9.5 5.3 4.7 4.3 11.1 4.5 5.2 7.7

REF_0.4 5.7 3.5 4.0 2.5 9.1 na 2.8 7.1

REF_0.5 7.1 18.3 3.4 5.9 7.2 2.8 1.5 6.7

NZ7.5_0.3 7.1 7.0 6.1 24.6 5.4 7.4 4.9 13.4

NZ7.5_0.4 3.7 8.1 2.6 3.8 3.3 3.0 4.7 8.0

NZ7.5_0.5 3.0 0.0 4.4 4.5 3.8 7.9 3.6 8.6

NZ15.0_0.3 7.7 11.7 3.0 16.7 5.1 9.8 3.0 6.0

NZ15.0_0.4 5.1 2.0 4.5 4.4 3.7 5.4 3.5 11.1

NZ15.0_0.5 2.9 3.4 3.8 18.4 2.8 7.1 2.7 8.7

SF7.5_0.3 10.6 5.7 1.9 15.8 6.5 7.7 4.4 7.6

SF7.5_0.4 6.7 11.9 1.4 0.0 3.3 6.1 3.3 13.5

SF7.5_0.5 4.5 8.9 1.8 22.2 4.6 13.0 4.6 5.5

SF15.0_0.3 8.6 5.8 4.2 9.5 8.0 6.3 2.9 41.4

SF15.0_0.4 4.9 2.0 2.2 22.7 5.3 1.9 1.6 37.5

SF15.0_0.5 3.0 6.7 3.7 13.5 5.1 13.7 1.7 11.8

Within some series, it was necessary to reject results that were deviating (maximum
one of three per mixture/time/curing condition). High variation factors are due to brittle-
ness of the cement paste composite, where there is a deficit of filler (sand, coarser aggregate),
which puts up a resistance against fracture, as in the case of mortar or concrete. Excluding
samples REF_0.3 (mainly due to density), the shape of the fracture curve and cross-section
area was not linear, but rotund (Figure 7a,b). Moreover, the samples after oven-drying
evinces higher brittleness, leading to irregular (zigzag) fracture shape (Figure 7c,d). Al-
though the flexural strength of cement paste is not a crucial property, it could provide
important data and be used to fractionalize the beam for compressive strength.

According to the results and the statements declared above, the absolute values of
flexural strength are not as important as the following trends, which can be observed.
Decrease in f-flex is connected with a decrease in w/b ratio and density [93]. This does not
fit samples with SF, since SF acts in this case as a filler, as can be seen in Figure 8. A partial
increase in time was observed only for the reference REF_0.3-REF_0.5 samples in ssd state.
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Figure 7. Fracture shape of sample in (a) ssd state—curve; (b) ssd state—cross-section area; (c) oven-dried state—curve;
(d) oven-dried state—cross-section area.

Figure 8. Cross-section and details of samples with SF (silica fume). The needle (black line) indicates
an SF grain.

The values of samples in oven-dry condition are significantly lower than those in
ssd state, which could have been caused by an increase in brittleness after the drying
process [94,95]. A decrease in f-flex of cement pastes at 100 ◦C was also reported in [96].
In addition, the results of individual oven-dried specimens of the samples vary more than
those in the ssd state.

3.4. Compressive Strength

The results of compressive strength on day 28 and day 180 for each moisture state are
given in Figure 9.
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Figure 9. Compressive strengths: (a) ssd state; (b) oven-dried state.

Mutual comparisons between particular results are given in Figure 10.

Figure 10. Development of compressive strength and mutual relationships.

If there are several alongside results at the extreme end, they indicate the same means
of population according to unpaired two-sample Student’s t-test at a significance level
of 0.05.

The results of fc-28-ssd vary from 40.7 ± 2.2 (SF7.5_0.5 sample) and 40.9 ± 3.7
(SF15.0_0.5 sample) to 103.1 ± 5.5 (the REF_0.3 sample) and 107.5 ± 3.1 MPa (NZ7.5_0.3
sample). The values of fc-28-d fluctuate between 45.2± 3.1 (SF7.5_0.5 sample) to 138.9 ± 8.3 MPa
(REF_0.3 sample). Compressive strength in saturated state after 180 days (fc-180-ssd) ranges
between 58.6 ± 2.6 (SF15.0_0.5 sample), 59.2 ± 4.1 (NZ15.0_0.5 sample), and 61.2 ± 1.9
(SF7.5_0.5 sample) at the minimum and 109.9± 5.1 (NZ7.5_0.3 sample) and 115.6 ± 5.4 MPa
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(REF_0.3 sample) at the maximum. The results of fc-180-d fluctuate in the range from
54.9 ± 2.0 (NZ15.0_0.5 sample) and 55.1 ± 3.2 (SF7.5_0.5 sample) to 142.6 ± 5.3 MPa
(REF_0.3 sample).

Compressive strength decreases with w/b increase, which is well-known as Abram’s
law [93,97]. This is also valid for samples with SF, when the w/b ratio is substituted
by the w/c ratio, as given in Table 4. Re-calculation had to be performed due to visual
evaluation of cross-section of samples with SF (Figure 8) and due to the assumption that
SF should have a much higher activity [55] than observed. The same observation about
compressive strength of CP with densified silica-fume is provided in [98,99]. The reason
for this is because no-deagglomeration occurred while mixing, as cement paste does not
have grounding capability. Relations within our experiment are given in Figure 11, where
the coefficient of determination reaches 0.9743.

Figure 11. Relation between fc−28−ssd and real w/b ratio.

Compressive strength was confirmed as a reliable variable in active additive assess-
ment, but is not the only one, while fc cannot differ between active additive and high
absorbance fineness. Slight decrease of fc can be observed when a higher amount of
replacement is used, which is in line with [100–102].

Considering relation fc-180-ssd:fc-28-ssd, there is an obvious trend, since compressive
strength increases with time, complying with theory. Moreover, relative increase is raised
with w/b ratio. This phenomenon can be observed on mortars fc result in [103]. This
means that the fc of mixtures with lower w/b ratio increases rapidly at the beginning and
then more slowly, compared with a higher w/b ratio, where the development is gradual.
In practice, it is called “cement burnout” and can constitute a problem in quality control
management, since seven-day compressive strength is considered an indicator of strength,
which, however, does not need to increase to the required 28-day compressive strength.

Excluding samples NZ7.5_0.3 and NZ7.5_0.4, oven-dried samples achieved significant
higher values (increase from 10.5 rel.% up to 48.9 rel.%) of compressive strength on day
28 day, as those in ssd state. This has been proven in our previous studies [21,104].

The property stated above is not convincing for day 180, nor when fc-180-d and fc-28-d
are compared. According to [105–107], we strongly presume that compressive strength
is intensively affected by the moisture state of the sample at the time of performing the
test. Moisture content probably has more effect than curing conditions. This also should
be a subject of extent and rigorous research with respect to durability and consequently
sustainability, since we could highly underestimate real compressive strength.
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The relationship between compressive strength and water absorption, which is given
in Figure 12, is also obvious, with a coefficient of determination equal to 0.8749. This is due
to the fact that compressive strength as well as water absorption are linked to porosity [108].

Figure 12. Relation between fc−28−ssd and real WA−28.

3.5. Rapid Chloride Penetration Test

The values of the overall charge (Q) that passed through the 180-day samples over a
6-h period are given in Figure 13.

Figure 13. Chlorides penetration test results.



Materials 2021, 14, 1448 17 of 31

For comprehensiveness, values of initial current, maximum current, and current at
the end are also presented. The values of charge varied from 433C (SF15.0_0.3 sample)
to 4091C (REF_0.5 sample) without conversion to the d = 95 mm samples. It is obvious
again that durability, in this case represented by permeability, decreases with w/b increase.
The second trend that can be seen is permeability decrease with amount of cement re-
placement. As for compressive strength, the NZ used is a convenient replacement from a
permeability point of view, but an “improver” for cement composites [109]. The samples
with SF should be considered as a separate case, as despite a higher w/c ratio compared
to REF_0.3-REF_0.5 samples, they reached lower values of passing charge. This could be
because SF acted as a filler and barrier for penetration, while breaking the pore connection.
The confirmation for this could be because mortars achieve lower Q in the RCP test as well
as concretes in comparison with mortars [110]. In addition, partly pozzolanic reaction of
SF grains surface will lead to permeability improvement [111].

This measurement technique is considered to be determinative, and also should be
declared as the rapid ions passing test (RIPT), while other ions like OH- from the sample
intensify passing charge [69]. The first consideration is based on the temperature effect
that accelerates passing ratio, adhering to Fick’s first law and Nernst-Planck equation.
The more permeable the sample is, the more charge passes though, a higher current is
achieved, and then higher Joule (Ohm) heat is developed and temperature rises [68]. This
heat is divided between the electrolytes solution (lower part) and the sample (higher part),
as per the thermal capacity of the material. Consequently, poor quality (in sense of high
permeability) CC are classified as worse than they real are [112]. Temperatures within
permeable samples (w/b > 0.5, 28 days) can exceed 100 ◦C right after test initialization;
therefore, cooling is necessary. However, according to our observations, when the sample
sealing is not deteriorated, maximum current is reached and the current development curve
is broken (current starts to decrease), and temperature starts to decrease. A connection
between the initial current I(0) overall charged passed (Q) can also be observed. Generally,
low initial current foreshadows low total charged [113]. On that account, we propose,
relating to this test (mainly when cement pastes are subjects of research), values of initial,
maximum, and final current, respectively, and temperature measurement. This can be
replaced by combining all these variances into one plot.

Three measurement progressions from our experiment are given in Figure 14a (without
temperature progress, which in our case served only for controlling the electrolytes due
to safety). A schematic detail of current fluctuation within the RCPT is illustrated in
Figure 14b.

Figure 14. (a) Current development in the RCP test; (b) schematic detail of current fluctuation.
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As can be seen in Figure 14b, periodic fluctuation of moving current was observed,
when it slowly decreased and rapidly increased. The rate of fluctuation increased with
more permeable samples. From this point of view, the sample acted like a capacitor.
Typical current progression of more permeable samples has been observed to consist of
three phases:

(1) rapid increase of current and temperature,
(2) stabilization of maximum increase of temperature,
(3) slow current and temperature decrease. These findings can be confirmed by values of

initial, maximum, and final current values, while these variances are more disarranged
in the case of high permeable samples than those with low permeability.

3.6. Water Absorption

The results of water absorption after 28 days (WA-28) and 180 days (WA-180), as well
as relative decrease of water absorption in time are given in Figure 15.

Figure 15. Results of water absorption.

The values of WA-28 of the samples ranged from 15.1 ± 0.3 wt.% (REF_0.3 sample) to
35.6± 0.2 wt.% (NZ15.0_0.5 sample) and for WA-180 from 14.5± 0.2 wt.% (REF_0.3 sample)
to 34.0 ± 0.1 wt.% (NZ15.0_0.5 sample). WA decrease over time can also be observed.
This could be explained by microstructure densification due to the hydration process [114].
An obvious dependence between w/b ratio and WA was confirmed, while WA increased
with the amount of free water that can be evaporated from the composite [115–117]. When
we take into consideration the fact from our assumption that the real w/b ratio for all
the mixtures SF7.5_0.3-SF15.0_0.5 are in fact equal to the w/c ratio (Table 4), the question
arises: why are the WAs of these mixtures not higher? The reason for this is most likely
because we should see the WA of the final composite as a result of the WAs of its particular
components. In mixtures SF7.5_0.3, SF7.5_0.4, and SF7.5_0.5, the amount of SF represents
5.8, 5.3, and 5.0 wt.%, respectively and in mixtures SF15.0_0.3, SF15.0_0.4 and SF15.0_0.5 it
is 11.5, 10.7, and 10.0 wt.%, respectively. The WA of densified SF that is not deagglomerated
is much lower than that of cement.

In Figure 8, it can be seen that only a little part of the SF grain is penetrated by
water. Higher w/c ratios of a lower amount of cement paste within the SF samples are
compensated by lower WA of SF, and the resulting WAs are similar to that of other mixtures
(REF and NZ ones)) within a particular w/b ratio. This procedure could be used as a
technique to assess activity of the additive. Our proposal to design a mix composition for
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the final WA is based on Equation (9) and Figure 16. Basically, the equation represents the
weighted average of water absorptions of cement paste and aggregate as separate phases.

WA(cc) =
m( f )
D(cc)

·WA( f ) +
m(cp)
D(cc)

·WA(cp) (9)

where,

WA(cc)—overall cement composite water absorption (wt.%);
m(f)—filler (aggregate) content in fresh cement composite (kg·m−3);
D(cc)—density of cement composite in fresh state (kg·m−3);
WA(f)—water absorption of filler (wt.%);
m(cp)—cement paste content in fresh cement composite (kg·m−3);
WA(cp)—water absorption of cement paste (wt.%).

Figure 16. Graphical interpretation of Equation (9).

From our experience, when we retroactively submitted various CC compositions (not
yet published), the precision of the proposed equation reached >95%. The significance
of the proposed calculation was based on predetermination of the final WA, while CC
composition is designed, mainly for environment exposure class XA. In addition, it can
serve as a tool for inspection of (a) retrospective determination of mix composition (mainly
cement content and w/c ratio) or (b) determination of WA result plausibility. In Slovak
Republic, the maximal level of WA is 6.0 wt.% on the 28th day for exposure classes XA1-
XA3, as per STN EN 206+A1 [118]. According to the results presented in this study and
assuming that (a) the mass of cement paste in CC is 25% (equals 28 vol.%), (b) WA of the
aggregate is 1.0 wt.%, then the limit would be met with w/c < 0.40. Therefore, we are
strongly convinced that the limits for maximum w/c (XA1-0.55; XA2-0.50; and XA3-0.45,
respectively) or for WA are inappropriate according to the stated standard. The problematic
factor in WA determination of the aggregate according to EN 1097-6:2013-07 [119], is due
to particle <0.063 mm washing out. Thus, the WA value of the aggregate is lower than that
with the most absorbent filler. Consequently, in CC, these particles were able to absorb
mix water, decrease w/c ratio, and thus result in the overall composite’s WA. Therefore,
we should determine the WA of aggregate with particles <0.063 mm or WA of cement paste,
including these particles.

In general (excluding NZ15.0_0.3), the increase in relative decrease of WA with time
relates to a higher w/b ratio. When the shape of the curves is compared with this in
Figure 6, an apparent similarity is seen, since WA and D are based on a similar measuring
technique and with properties they are connected to.
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3.7. Thermal Analysis

Mass loss corresponding to decomposition of the main hydration components, derived
from the TG curves, are presented in Table 6. Chemically bound water and hydration
degrees were calculated for the 28-day and 180-day cured samples according to [120].
TG/DTG curves of the NZ15.0_0.3 sample are given in Figure 17.

Table 6. Mass loss measured by thermal analysis (TA) in regards to the main hydration products, chemically bounded water,
and hydration degree.

Label
Ettringite

105–160 ◦C
(%)

C-S-H
160–

423 ◦C
(%)

Portlandite
423–500 ◦C

(%)

Phases in Range
500–900 ◦C

(%)

wch.b.
(%)

Hydration
Degree α

(%)

Days
of

curing
28 180 28 180 28 180 28 180 28 180 28 180

REF_0.3 3.4 3.5 5.7 6.4 3.5 3.7 3.4 3.1 14.0 14.8 58.4 61.6

REF_0.4 3.4 3.9 5.3 7.1 3.0 4.1 8.7 3.3 15.2 16.4 63.5 68.3

REF_0.5 3.3 4.5 6.8 7.2 4.1 4.2 2.8 5.1 15.3 17.9 63.9 74.5

NZ7.5_0.3 3.4 3.7 6.0 6.5 3.2 3.4 4.0 3.2 14.2 14.9 59.1 62.1

NZ7.5_0.4 3.5 4.0 6.3 7.0 3.3 3.7 3.8 3.0 14.7 16.0 61.1 66.5

NZ7.5_0.5 4.1 4.8 6.7 7.4 3.4 3.7 4.5 3.4 15.9 17.2 66.3 71.7

NZ15.0_0.3 3.9 4.3 5.7 6.9 2.4 2.9 6.9 2.8 14.9 15.3 61.9 63.7

NZ15.0_0.4 4.3 4.6 6.5 6.9 2.8 2.9 4.4 3.3 15.3 15.7 63.8 65.6

NZ15.0_0.5 4.6 5.4 6.2 7.3 2.6 2.8 7.2 5.2 16.4 17.7 68.5 73.6

SF7.5_0.3 3.1 3.5 5.5 6.5 2.8 3.3 5.3 3.2 13.6 14.7 56.7 61.2

SF7.5_0.4 3.4 4.1 6.6 7.2 3.5 3.8 3.7 3.8 15.0 16.7 62.4 69.6

SF7.5_0.5 4.0 4.4 6.3 7.6 3.3 3.9 6.8 4.0 16.4 17.5 68.5 72.9

SF15.0_0.3 3.2 3.7 5.0 5.9 2.2 2.5 5.5 3.3 12.7 13.4 52.8 55.8

SF15.0_0.4 3.8 4.4 5.7 6.9 2.7 3.0 6.8 4.2 14.9 16.0 62.1 66.9

SF15.0_0.5 3.8 4.5 6.2 6.9 2.8 3.0 6.1 6.1 15.2 16.9 63.2 70.4

Figure 17. Thermogravimetric (TG)/DTG curves of the NZ15.0_0.3 sample.
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The content of C-S-H and portlandite phases increased with time for all the studied
samples. This confirms the ongoing hydration processes in the cement samples. The abso-
lute 180-day content of C-S-H increased with the w/b ratio more significantly than that of
portlandite. On the contrary, the amount of hydration phases decomposing above 500 ◦C
decreased for the samples with additives, when compared the 28-day and 180-day values.

On comparing the pastes with SCMs of various replacement ratios, it can be concluded
that the content of portlandite decreased with increase in the additives’ ratio. For both
NZ- and SF-blended composites, the content of portlandite was lower in samples with
15 wt.% replacement of cement than in samples with 7.5 wt.% replacement. This is likely
caused by more effective pozzolanic activity at a higher amount of SCM as a pozzolanic
additive. However, this was not confirmed by the C-S-H phase increase in samples with
higher cement substitution by SCMs than expected.

Chemically bound water increased with time and varied from 12.7 to 16.4% and from
13.4 to 17.9% for the 28-day and 180-day samples, respectively. The lowest relative increase
in chemically bounded water was observed for the NZ15.0_0.3 and NZ15.0_0.4 samples
(2.9%) and the highest one for the REF_0.5 sample (16.7%). The chemically bound water
values determined by TA (wch.b.) are in a good correlation with the calculated w(non-ev.)
values of the reference and composites with mineral additives, determined according to
density as presented above. The fact that samples for TA were pretreated by drying at
105 ◦C has to be taken into consideration, since many cement hydrates like C-S-H, ettringite,
and monosulfate, lose part of their chemically combined water below 105 ◦C [121]. Having
said that, distinguishing between chemically (or non-evaporable) bound water, physically
adsorbed, and free water (together as evaporable water) is a complex issue [89]. On the
other hand, computation as per the densities presented in this paper could be used as a
simple control method.

Based on Batthy’s method, the degree of hydration α is directly proportional to the
content of chemically bound water. Figure 18 presents the relative changes in hydration
degrees over time per individual samples.

Figure 18. (a) Development of hydration degree; (b) amount of portlandite on day 28 and day 180.

Obviously, the hydration degree increased with time. In Figure 18, two patterns can
be seen. First within the NZ7.5 and SF7.5 samples (concave shape) and second within the
NZ15.0 and SF15.0 samples (convex shape). Regarding the sensitivity of hydration degree
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determined from TA and techniques for its investigation, it will be necessary to perform
more extent and rigorous research.

3.8. Evaluation of Mineral Additives and Their Effect on the CC with Regards to Durability and
Environmental Suitability

Every new mineral additive that is intended for use in a cement composite should un-
dergo comprehensive analysis. It could then be categorized as per its activity. The proposed
evaluation model is based on a comparative analysis of tests covering mechanical, physical,
microstructural, and chemical properties. For effective application of the proposed model,
reference cement pastes should be prepared. For optimal w/c ratio for the investigated
cement paste with and without mineral additive, we consider 0.4 (w/c ref). In addition,
reference cement pastes without the subjected mineral additive with higher (w/c–up, e.g.,
0.5) and lower (w/c–down, e.g., 0.3) water to cement ratio should be prepared. Then, each
result should be compared (a) firstly to w/c ref, (b) then to w/c down or up ratios. The out-
come of the performance [35] analysis of the particular results should lead to categorization
into one of the following four proposed mineral additive types (summarized in Table 7).

Table 7. Assumptions for mineral additive parameters.

Considered
Assumption

Real Performance
Type A B C, D

Additive particle

Real binder in the w/b ratio cem. + add. cem. cem. cem. + add.
Relation to the designed

w/b ratio - Higher equal/lower equal

Participation in hydration Yes no no yes

A type—inert material with low water absorption (for example, coarse grain additives
having water absorption values similar to sand, approximately up to 2.5%). This mineral
additive would play a role of fine filler (but coarser than the proposed B type material) in
CC. This does not mean that after grinding, it becomes a cement supplementary material
(as SF in this study). When using this type, it is assumed that the real w/c ratio of CC will
increase due to unabsorbed water in the subjected material or because a small surface is
exposed to the hydration reaction. This likely worsens durability and thus sustainability
of CC.

B type—inert material with high water absorption (for example, a dust or filler with no
pozzolanic or latent hydraulic properties like crystalline fine limestone or quartz with water
absorption values up to 20%). It is assumed that if applying this kind of mineral additive,
the real w/c ratio of CC will decrease due to physically bound water in the material. This
additive could act as an improving (but not active) additive and its incorporation could
result in indirect improvement in some CC durability properties. This is due to the filler
effect and physical stimulation of cement hydration [122]. We consider the use of the term
SCM in [123] for this type of mineral additive as controversial.

C type—material similar to cement. SCM has pozzolanic or latent hydraulic properties
that are objectivized by mineralogical analysis [121,124]. The overall performance of the
CC with this additive type should be at least the same or at a slightly better level as the
reference CC without SCMs.

D type—the subjected material as an improving active additive. This has pozzolanic
or latent hydraulic properties that are objectivized by mineralogical analysis. The overall
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performance of the CC with this additive type should achieve significantly better value
of at least one tested property than the reference paste. We use this distinction (C and D
types) only due to semantic precision. Furthermore, the amount of replacement plays a
key role, since some mineral additives act as SCM only at specific replacement ratios [125].

We highlight that the results have to be compared to the reference cement paste in
accordance with statistically unpaired two-samples test, due to insufficient individual
results that are usually obtained. It is also necessary to perform a long-term investigation
in connection with the development of durability properties over time [126].

3.8.1. Prediction of Consistency

Rheology as a set of properties in fresh state is the most crucial aspect of CC in
practice [127]. When an adjustment of workability is performed on the construction
site, it could lead to durability deterioration (when additional water is used) or risk of
segregation (when a plasticizer is used) [128]. Thus, robust composition of cement paste
with suitable consistency is necessary to know when the CC is designed [129]. With
the assessment of a mineral additive, two options may occur when a consistency test is
performed. The first one—a higher consistency than for the reference paste will be typical
for A type, due to a higher w/c ratio, since the mix water is only partially absorbed into
the material. The second option—a lower or the same consistency as for the reference paste
will be observed for the B, C, and D types, respectively, since consistency usually becomes
stiff with active additives, as well as fineness (Figure 19) [49,50,55,130,131]. Water demand
and thus change in workability is mainly based on the mineral additive surface area [132].

Figure 19. Predicted consistencies (flow diameters on Haegerman’s table) of fresh mixtures depend-
ing on the type of mineral additive.

3.8.2. Prediction of Compressive Strength of CC

The curves representing the compressive strength trends for particular mineral ad-
ditive types, based on our experimental research, are presented in Figure 20. When type
C represents a trend for the reference paste (C is assumed to follow w/c ref ex definition),
CC with A type additive should follow the compressive strength curve “w/c up” and the
values of the compressive strength will be lower than those for the reference paste. Con-
trariwise, CC with B type additive is predicted to follow the “w/c down” curve (Figure 20).
Cement pastes with an improving active additive (D type) are expected to perform accord-
ing to the green curve in Figure 20 [103,133]. In the first phase, the compressive strength will
likely be under the “w/c ref” curve, which means that the values of compressive strength
reach a lower level than for the reference paste without the improving additives; however,
in the long-term, the compressive strength will grow and reach higher values compared to
the reference composite. However, replacement ratios have to be taken into consideration,
since decrease occurs when a high replacement of cement is used [103,134,135].
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Figure 20. Predicted compressive strengths of CC depending on the type of mineral additive.

3.8.3. Prediction of Water Absorption of CC

The water absorption of cement paste is as good as the compressive strength connected
to the w/c ratio [117]. Furthermore, when A and B type additives are incorporated into
CC, the overall WA is related to the WA of the particular components and their quantity.
Thus, CC with an A type additive is assumed to have a little higher WA, and CC with a
B type additive, the same or a little lower. In cases of CC with C and D type additives,
WA reaches a value as the reference composite (Figure 21); however, its decline over time
should be faster [114,136]. The amount of replacement should also be taken into account.
Water absorption as a property cannot qualify the material; on the other hand, it is possible
to first approximately estimate the w/c ratio of the CC sample and then the amount of
cement and water, when filler (aggregate) composition is known.

Figure 21. Predicted water absorption of CC depending on the type of mineral additive.

3.8.4. Prediction of Permeability of CC

Permeability relates to both quality and quantity of the cement paste. The CC with A
and B type additives would have a lower permeability due to the number of “flow obstacles”
(in A case) [110] and due to a lower real w/c ratio than in the reference paste (B case) [137].
To classify as a C type additive, it is necessary to reach a value at least the same as the
reference composite; however, from experience, the value is much lower than that of the
reference one [135], even lower when compared to A and B types. The permeability value
of CC with a D type additive should be better ex definition; moreover, the same as for the
C type is valid in this case. The estimated values are illustrated in Figure 22.
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Figure 22. Predicted penetration of ions expressed by charge passing through the CC depending on
the type of mineral additive.

3.8.5. Prediction of Hydration Phases Composition in CC

Quantitative hydration phases analysis (by X-ray diffraction or thermogravimetric
analysis) and their time-scale development would be able to distinguish between the filling
effect of inert additives (A and B types) and active additives (C and D types) [138,139].
The main phases, C-S-H and portlandite, should be closely investigated with regards to
their amount and mutual transformation with time (a more distinguishing aspect) [140].
Their content relates to the quality of cement paste and its components. Cement paste with
an A type additive having a higher real w/c as in the reference paste would have a slightly
higher content of C-S-H and lower content of portlandite; the development of phases with
time would be a little more upward. This can be explained by more space for hydration
product formation [141]. In CC with a B type additive, both phases would reach lower
content and development would be flatter than in the reference paste. In the case of CC
with a C type additive, the content as well as time development should be very similar to
the reference cement paste, but as well as within the CC with D type additive, it is assumed
that the content of the C-S-H phase should be significantly higher and portlandite lower,
while the development ratio should be quicker (Figure 23) [142].

Figure 23. Prediction of the content of hydration phases and their development over time in CC
depending on the type of mineral additive.
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4. Conclusions

The study shows the influence of various durability properties by mineral additives.
Natural zeolite and silica-fume at doses of 7.5 wt.% and 15.0 wt.% were used as a replace-
ment for cement. The following conclusions can be drawn:

• Monitoring of CC density (in ssd and oven-dried state) over time could provide decent
information not only about water absorption but also about the hydration process.
The chemically bound water, calculated from densities and thermal analysis, evinces
good correlation.

• Flexural strength should not be regarded as a cement paste durability parameter due
to its high brittleness, which leads to sudden collapse during loading and thus to low
precision of measurements.

• Despite the fact that compressive strength is the most frequently measured property
of CC, for complex evaluation of CC durability, it is necessary to perform additional
non-mechanical tests, such as permeability and chemical analysis.

• The evaluation of results should undergo statistic comparative analysis and Student’s
t-test seems to be suitable enough.

• The moisture content of the specimen significantly affects compressive strength, which
could lead to overestimation or underestimation of durability, and thus sustainability
of CC.

• The results of the rapid chloride penetration test could be considered an efficient
qualificator of cement paste durability evaluation when mineral additives are assessed.

• Monitoring the parameters’ progress over time is inevitable in the evaluation of
mineral additives’ activity.

This work contributes to a wide research on cement composites’ durability and sus-
tainability. We believe we have fulfilled the goal of this experimental study—to propose
the concept of mineral additives’ evaluation in comprehensive analysis of cement paste
properties. The concept presented at the end of the discussion has reasonable application ca-
pacity in current research and development of cement composite mineral additives mainly
due to its holistic approach. Within the presented concept, it is necessary to consider the
investigated material as unknown, with regards to its activity or improvement properties.
Classification of the investigated additive type can be performed until complex evaluation
of the effects on specific CC properties is done.
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