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Abstract: Machining of Titanium alloys (Ti6Al4V) becomes more vital due to its essential role in
biomedical, aerospace, and many other industries owing to the enhanced engineering properties.
In the current study, a Box–Behnken design of the response surface methodology (RSM) was used
to investigate the performance of the abrasive water jet machining (AWJM) of Ti6Al4V. For process
parameter optimization, a systematic strategy combining RSM and a heat-transfer search (HTS)
algorithm was investigated. The nozzle traverse speed (Tv), abrasive mass flow rate (Af), and stand-
off distance (Sd) were selected as AWJM variables, whereas the material removal rate (MRR), surface
roughness (SR), and kerf taper angle (θ) were considered as output responses. Statistical models
were developed for the response, and Analysis of variance (ANOVA) was executed for determining
the robustness of responses. The single objective optimization result yielded a maximum MRR of
0.2304 g/min (at Tv of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm), a minimum SR of 2.99 µm,
and a minimum θ of 1.72 (both responses at Tv of 150 mm/min, Af of 500 g/min, and Sd of 1.5 mm).
A multi-objective HTS algorithm was implemented, and Pareto optimal points were produced.
3D and 2D plots were plotted using Pareto optimal points, which highlighted the non-dominant
feasible solutions. The effectiveness of the suggested model was proved in predicting and optimizing
the AWJM variables. The surface morphology of the machined surfaces was investigated using
the scanning electron microscope. The confirmation test was performed using optimized cutting
parameters to validate the results.

Keywords: abrasive waterjet machining (AWJM); Ti6Al4V; response surface methodology (RSM);
optimization; heat transfer search (HTS) algorithm; surface morphology

1. Introduction

Owing to excellent advantageous properties such as a low elastic modulus, high
corrosion resistance, excellent strength, weldability, and heat-treatable nature, the titanium
Ti6Al4V alloys have become more popular in widespread application areas such as auto-
mobiles, jet engines, power-generating components, body frame of aircraft, and medicated
implants [1,2]. Due to the high fatigue strength and fracture-resistant characteristics of
these metals, they exhibit wide applications [3,4]. The engaging explicit qualities of Ti6Al4V
alloys broaden its use in various fields [1]. However, the poor thermal conductivity of tita-
nium alloys challenges its machinability in conventional manufacturing techniques [5–7].
The poor conduction of heat causes attainment of higher temperatures during conventional
machining of the alloy resulting in significant tool wear and hence higher machining
cost [8–10]. Keeping in mind the tool wear of hard-to-cut titanium alloy, past researchers
have explored various non-conventional techniques to overcome the difficulties associated
with traditional machining [6,11–15].
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Abrasive waterjet machining (AWJM) is one of the most widely used non-traditional
processes in industries for the machining of hard materials [14,16,17]. AWJM has a high
cutting speed, ensures high accuracy and flexibility, has no heat-affected zone, and is
eco-friendly [18,19]. Some of the other advantages include the low machining cost, ease
in programming, and conservation of properties due to a lower temperature during ma-
chining and the wide range of machinable materials [15,19,20]. In AWJM, the high velocity
and pressured water jet mixed with abrasives target the workpiece leading to erosion of
the material. Some of the limitations of AWJM include the development of surface rough-
ness, kerf taper, delamination, abrasive embedment, etc., which results in poor quality
of the machined part [18]. The use of optimized AWJM process parameters can reduce
these limitations.

Several researchers have studied the optimization of the AWJM process parameters.
Chaturvedi et al. [6] investigated the optimization of AWJM variables for machining of
Ti6Al4V alloy. They performed experiments using an L25 orthogonal array considering the
pressure, stopping distance, transverse speed, and abrasive throughput as process variables
and surface roughness, MRR, machining time, HRC strength of the machined part as a
response. They found pressure to be the most significant parameter affecting machining
time and surface roughness. Saravanan et al. [1] employed the Taguchi-gray relational
technique for optimizing AWJ machining parameters for Ti6Al4V alloy. They considered
SiC volume, SiC size, and abrasive flow rate (Af) as potential parameters affecting MRR
and SR and found that particle size was the significant variable for producing higher MRR
with low SR. Karkalos et al. [14] studied AWJ machining on Ti6Al4V alloy using glass
beads as abrasives to investigate the economic and environmental score of sustainability
for the process. To determine the correlation between input variables and the depth of
penetration, kerf taper angle, and kerf width, they performed GRA. They reported AWJM
as a sustainable process. Tripathi et al. [21] investigated the effect of cutting speed and Af
on MRR, SR, roundness, and cylindricity. Their optimized results observed that a recently
developed Rao algorithm was more effective compared to JAYA and TLBO algorithms.
Patel et al. [22] explored AWJM for the machining of polymer matrix composites using
four multi-criteria techniques, namely MOORA, TOPSIS, GRA, and Data Envelopment
Analysis-based Ranking (DEAR). They found that the optimal setting determined using
the DEAR method resulted in better quality characteristics.

Thakur and Singh [18] investigated the optimization of SR, MRR, and the delamination
factor during AWJM by considering the MWCNT weight percentage, stand-off distance
(Sd), jet pressure, and nozzle traverse rate (Tv) as input variables. The optimized settings
using GRA resulted in 4.25% improved MRR, a reduction of 23.94% in kerf taper, and a
reduction of 26.08% in the delamination factor compared to the initial set of parameters.
The machining of aluminum/tungsten carbide composites using AWJM was optimized
by Kumar et al. [23]. They prepared specimens using 2, 4, 6, 8, and 10 wt% of tungsten
carbide. RSM was implemented for developing a mathematical relationship between
dependent and independent variables. ANOVA results highlighted transverse speed as
the most influential variable on MRR followed by % reinforcement and Sd. Joel et al. [24]
used Multi-Objective Teaching Learning-Based Optimization (MOTLBO) to optimize three
conflicting responses as the minimization of SR and the maximization of MRR and hardness
during machining of C360 brass using AWJM. Deaconescu and Deaconescu [9] deployed
the Box–Behnken design of RSM during cutting of X2 CrNiMo 17-12-2 austenitic stainless
steel using AWJM. They obtained good surface quality using a lower traverse speed and
Sd, and medium to fine grit size.

Doğankaya et al. [25] presented the parametric effect of AWJM variables on UHMWPE
plates. For experimental design, they used CCD of RSM. ANOVA results highlighted
effective parameters among the abrasive mass flow rate, pressure, Sd, and feed. They
applied particle swarm optimization to find a trade-off between conflicting response
measures such as surface roughness and dimensional error. The reported accuracy of
regression models varied between 0.1% and 5.6%. Reddy et al. [26] investigated multi-
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objective optimization using WASPAS and MOORA techniques for input controllable
parameters of AWJM such as Tv, Af, and Sd, which influences performance characteristics
of MRR, kerf width, and SR. They performed experiments on the Inconel-625 workpiece.
They found that MRR was positively varying with Tv and Af. SR was increasing with an
increase in Af and decreasing with an increase in Tv. Samson et al. [27] identified optimum
parameter settings in AWJM of Inconel 718 alloy using the VIKOR method. They identified
a pressure of 180 MPa, Af 0.42 kg/min, and Sd 2 mm as an optimum condition. The
L9 orthogonal array was used to design experiments. The selected input variables were
Af, Sd, and pressure whereas the performance characteristics were MRR, SR, taper angle,
and roundness.

The literature review revealed that parametric optimization of AWJM has been inves-
tigated to a great extent using several multi-objective techniques such as GRA, TOPSIS,
VIKOR, WASPAS, MOORA, MOTLBO, JAYA, TLBO, etc. One of the revolutionary multi-
objective algorithms is the Heat transfer search (HTS) algorithm [28]. The HTS algorithm
is a parameterless optimization algorithm that is faster, easy to implement, and demon-
strates better convergence towards the results. The major advantageous side of the HTS
algorithm is the right balance of exploration and exploitation. Six different search mecha-
nisms introduced in this algorithm make it properly balanced. The number of generations
helps in generating the different search mechanisms. HTS results in a globally optimal
solution with ease in solving critical problems. In recent times, the HTS has successfully
been used for various benchmarking objectives pertaining to a variety of fields [9,29–32].
Patel and Raja [33] carried out a performance assessment of a heat pump using the HTS
algorithm. The results of the algorithm were elucidated in the form of Pareto-optimal
points. They compared optimized results with experimental results and found a deviation
of 10.95% in the co-efficient of performance. Raja et al. [34] proposed the HTS algorithm
for thermo-economic and thermodynamic optimization of the heat exchanger consider-
ing six design variables. They further compared the results of the HTS algorithm with
NSGA-II and TLBO and found the HTS algorithm was more effective. Chaudhari et al. [35]
optimized WEDM machining variables using an RSM-based HTS algorithm. They used
the BBD of RSM for the experimental design with microhardness, MRR, and SR as output
attributes. The generated models were verified using ANOVA. They presented a set of
optimal non-dominant solutions. Vora et al. [29] optimized the process parameters of the
activated-tungsten inert gas welding process using the HTS algorithm. The obtained results
from the study have shown good agreement between the predicted and actual output of
responses. Vora et al. [9] adopted the HTS algorithm to generate optimal Pareto points
during laser cutting of Ti6Al4V alloy. The designing of experiments was accompanied
using Taguchi’s L9 array. They generated 2D and 3D Pareto graphs for selecting optimal
input variable settings for multiple responses.

However, to the best of the author’s knowledge, no study has been reported on
the application of HTS for optimizing performance characteristics of the AWJM process
for Ti6Al4V alloy. Thus, the present study has conducted an exhaustive investigation to
simultaneously optimize MRR, SR, and the Kerf taper angle using the HTS algorithm. RSM
with the analysis of variance is used to develop the significant mathematical relationship
between input and output variables. The significance of the variables was tested at a 95%
confidence level using the ANOVA technique, which is essential to recognize the most
influential model terms. The effect of machining variables on responses was then studied
by plotting the main effect plots for individual response variables. Single-objective and
multi-objective optimization was then carried out using the HTS algorithm. Confirmation
trials have been conducted to check the accuracy of predicted results of the HTS algorithm.
The authors strongly believe that the present study will provide significant information to
the researchers and industries working with AWJM.
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2. Materials and Methods

The experimental work was carried out using a 3-axis jetcut 1631 abrasive waterjet cut-
ting machine (Innovative International Ltd., Ahmedabad, India). The workpiece Ti6Al4V
alloy was fixed on the machine bed using fixtures. The workpiece was procured from
Nextgen steel and alloys, Mumbai, India. The chemical composition of the workpiece ex-
amined by spectroscopic analysis is given in Table 1. The machine was fitted with a 0.1 mm
diameter nozzle and controlled using a fanuc controller. The abrasive material used during
experiments was silicon carbide. Figure 1 demonstrates the working configuration during
experiments. The selected input process factors were nozzle traverse speed (Tv), abrasive
flow rate (Af), and stand-off distance (Sd). The levels of variable process parameters, as
shown in Table 2, were assigned based on published literature for similar alloys and a
series of recurrent tests. Table 2 also shows the machining conditions. MRR, SR, and the
kerf taper angle (θ) were considered as the quality characteristics.

Table 1. Chemical composition (wt.%) of Ti6Al4V.

C Fe Al N2 Cu V Ti

0.05 0.20 6.20 0.04 0.001 4.0 Balanced
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Table 2. AWJM process parameters.

Process Parameter Level (−1) Level (0) Level (1)

Nozze Transverse Speed (Tv), mm/min 150 200 250
Abrasive Flow Rate (Af), g/min 300 400 500

Stand-off distance (Sd), mm 1.5 2.5 3.5

Mesh size of abrasive 80
Nozzle material ROCTEC 100 Composite Carbide
Nozzle diameter 1.02 mm

Orifice material/diameter Diamond/0.33 mm
Impact angle of jet 90◦

The experiments were systematically designed using the design of experiments (DOE)
technique. The DOE arranges the experiments such that the maximum amount of infor-
mation can be collected by performing fewer experiments. There are many experimental
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designs are available under the DOE heading. Among them, the most popular are Box–
Behnken designs based on RSM [30]. RSM is a mathematical modeling technique used
to build a relationship between dependent and independent variables [35]. The BBD for
three process parameters, each at three levels, was designed for the presented study using
Minitab 17 statistical analysis software. A total of 15 experiments were designed using BBD.
Square slots 10 mm in size were created in a Ti6Al4V alloy with small uncut material at the
exit such that the slot remains intact with the base plate. Table 3 shows the 15 experimental
runs by considering the 3 factors at 3 levels.

Table 3. RSM BBD design along with experimentally measured values of responses.

Standard
Order

Run
Order

Tv
(mm/min)

Af
(g/min)

Sd
(mm)

MRR
(g/min)

SR
(µm)

θ

(◦)

8 1 250 400 3.5 0.1767 5.73 3.06
15 2 200 400 2.5 0.1706 4.32 2.31
4 3 250 500 2.5 0.2062 5.27 2.82

10 4 200 500 1.5 0.2250 3.58 2.06
12 5 200 500 3.5 0.2062 4.99 2.67
9 6 200 300 1.5 0.1076 4.76 2.53

11 7 200 300 3.5 0.1302 4.87 2.60
13 8 200 400 2.5 0.1650 4.26 2.28
6 9 250 400 1.5 0.1768 5.31 2.86
5 10 150 400 1.5 0.1375 3.59 2.007
1 11 150 300 2.5 0.1302 3.96 2.12
2 12 250 300 2.5 0.1303 5.68 3.04
3 13 150 500 2.5 0.2063 3.39 2.11
7 14 150 400 3.5 0.1768 4.24 2.27

14 15 200 400 2.5 0.1743 4.33 2.31

The MRR (gram/s) is the quantum of material removed per unit of time and is
calculated using Equation (1). The weight of the job before machining (Wbm) and after
machining (Wam) was determined using a digital weighing machine with a precision of
±0.001 g. The time (t) required for cutting the square slot of the defined size is measured
using a stopwatch with an approximate precision of ±1 s.

MRR =
Wbm − Wam

ρ× t
(1)

The surface roughness was measured with the Mitutoyo Surftest SJ-410 model (Mitu-
toyo Ltd., New Delhi, India) with a precision of ±0.01 µm. The cutoff length selected was
0.8 mm with an evaluation length of 8 mm. Three measurement runs were conducted, and
the average value was considered for further calculation.

The kerf taper angle was calculated using Equation (2).

θ = tan−1
[

Wt −Wb
2d

]
(2)

where Wt is the width at the top, Wb is the width at the bottom, and d is the depth of
penetration. The top width and bottom width of the machined slot were measured using
optical microscopy. Figure 2 shows the schematic of the kerf taper angle measurement.

A scanning electron microscope (Zeiss Ultra 55, Bangalore, India) was used to investi-
gate the surface morphology of the machined surfaces. The experimental data were then
analyzed using Minitab software (version 17). The effect of process variables in terms of
their contribution was investigated using ANOVA. A confidence interval of 95% (α = 0.05)
was considered for analysis.
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The selected-response MRR is of the ‘higher the better’ category whereas SR and the
kerf taper angle are in the ‘lower the better’ category. So, it is essential to determine the
optimal parametric settings for achieving these responses simultaneously. According to
this, optimization of the AWJM variables was performed in the present study by the HTS
algorithm for determining optimal parameter setting.

3. Results and Discussion

The AWJM process variables as per the BBD of RSM are shown in Table 3. The
measured values of the selected output response parameters of MRR, SR, and θ are also
shown in Table 3. Mathematical regression models were generated using the RSM technique
for the prediction of output responses. ANOVA was used for statistical analysis, which
shows the influence of machining variables on output parameters. Minitab 17 software
was used for all the statistical analyses. The significance of the variables was tested at a
95% confidence level, which is essential to recognize the most influential model terms [30].
For a confidence level of 95%, the p-value for any input parameter should be less than 0.05
to consider the respective parameter term as significant [36,37]. The effect of the machining
variables on responses was then studied by plotting the main effect plots for individual
response variables. The main effect plots of the response highlight the optimum factor-level
combinations for a given response. Single-objective and multi-objective optimization was
then attempted by the HTS algorithm followed by the confirmation experiments.

3.1. Analysis of MRR

The relative effect of machining variables on responses can be effectively determined
using the ANOVA technique. The investigation of input process parameters on MRR was
determined by p-value at a 95% confidence level. The p-value for any input parameter
should be less than 0.05 to consider the respective parameter term as significant at the 95%
level [38]. A non-linear regression equation was developed using the backward elimination
method, with α selected as 0.05 for a 95% significant level. So, the non-significant terms
were eliminated from the regression equation as they did not have any significant impact
on the response value. Equation (3) shows the mathematical regression equation for MRR
developed using Minitab 17 software through the backward elimination procedure.

MRR = −0.2395 + 0.000589 (Tv) + 0.00069 (Af) + 0.0861 (Sd)

−0.000196 (Tv × Sd)− 0.000104 (Af × Sd)
(3)

where Tv is the nozzle transverse speed, Af is the abrasive flow rate, and Sd is the stand-off
distance.
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Table 4 shows the ANOVA for MRR. The p-value of the model term was obtained
as 0.000, which is less than 0.05. This suggests the model has a large significant effect.
The linear model term along with all three input process parameters was found to have
a significant effect on MRR. Lack-of-fit was obtained as an insignificant term, which
indicates that the proposed model is adequate for predicting the output variables [28,35].
Insignificant lack-of-fit also reveals the adequacy and fitness of the proposed model [35].
The value of R2 indicates that 96.27% of the variation of MRR was contributed by the
control factors, and only 3.63% of the total variation cannot be described by the proposed
model. The ‘Adj. R-Sq.’ was obtained as 94.19%. The proposed model can be treated as
adequate and the best fit, as the variation between R-sq. and Adj. R-sq. was obtained to
be within the limit [39–41]. The close relation of the R-square values signifies the model
is appropriate for predicting the future outcomes of MRR [42]. The standard deviation of
0.008341 was obtained for MRR. This shows the maximum deviation can only be 0.008341
from the mean value. Figure 3 shows the normal probability plot for MRR. It can be
observed that all the residuals are positioned on a straight line. This indicates the suitability
of the existing model for the future outcome, and the regression model is also well fitted
with the observed values [43].

Table 4. ANOVA for MRR.

Source DF Adj SS Adj MS F Value p-Value Significance

Model 5 0.016149 0.003230 46.42 0.000 Significant
Linear 3 0.008332 0.002777 39.92 0.000 Significant

Tv 1 0.000514 0.000514 7.39 0.024 Significant
Af 1 0.002825 0.002825 40.61 0.000 Significant
Sd 1 0.000912 0.000912 13.11 0.006 Significant

2-way interaction 2 0.000814 0.000407 5.85 0.024 Significant
Tv × Sd 1 0.000386 0.000386 5.55 0.043 Significant
Af × Sd 1 0.000429 0.000429 6.16 0.035 Significant

Error 9 0.000626 0.000070
Lack of Fit 7 0.000582 0.000083 3.79 0.225 Insignificant
Pure Error 2 0.000044 0.000022

Total 14 0.016775

S = 0.008341, R-Sq. = 96.27%, R-Sq. (Adj.) = 94.19%
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Figure 3. Normal probability plot for MRR.

Figure 4 represents the influence of various parameters on MRR. It can be observed
that Tv increases the MRR. This is due to an increase in intermolecular forces and energy
causing the sharing and erosion of more material from the parent material [23]. Higher
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Tv allows very little overlap of the machining action thus increasing MRR [44]. It can
be highlighted that when Af is increased from 300 to 500 gm/min, it enhanced the rate
of material removal. The abrasives have sharp edges, which perform the cutting action.
As the number of abrasives increase with an increase in Af, the number of sharp edges
performing the cutting action increases, resulting in higher MRR. Furthermore, higher
Af allows more abrasive particles to penetrate the surface, thus increasing MRR [45]. An
increase in Sd also enables higher MRR due to the divergence of the jet because the jet
diameter increases due to divergence, which leads to the erosion of material from larger
areas [18]. Reddy et al. [45] reported that MRR increases with three process variables,
namely, Tv, Af, and Sd which coincide with the results obtained in the present study.
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Figure 4. Effect of AWJM parameters on MRR.

3.2. Analysis of SR

Statistical analysis using ANOVA to investigate the effect of input process parameters
on SR is shown in Table 5. The mathematical regression equation for SR is developed using
the backward elimination procedure as shown in Equation (4):

SR = 9.08− 0.01764 (Tv)− 0.01072 (Af) + 1.947 (Sd) + 0.000087 (Tv ∗ Tv)

+0.1928 (Sd × Sd) + 0.003269 (Af × Sd)
(4)

The ANOVA results for the developed model at a 95% confidence level are shown
in Table 5. The p-value of the model term of 0.000 suggests the existing model for SR is
largely significant. The linear model, square model, and two-way interaction terms had a
significant effect on SR. The process parameters of Af, Sd along with the interaction terms of
Tv × Tv, Sd × Sd, and Af × Sd had a significant effect on the response value. The ANOVA
results of SR depict that SR is highly influenced by variation in Af followed by Sd. Lack-of-
fit was obtained as an insignificant term, which indicates the proposed model is adequate
for predicting the output variables [30]. Insignificant lack-of-fit also reveals the adequacy
and fitness of the existing proposed model. The values of R-sq. and Adj. R-sq. were found
to be 99.01% and 98.27%, respectively. An extremely close relation between these R-sq.
values show the adequacy and fitness of the existing model. A standard deviation of 0.0991
shows the existing model is well suited for the prediction of future outcomes with the least
error. Figure 5 shows the normal probability plot of SR. It can be observed that all the
residuals are positioned on a straight line. The absence of residual clustering and a normal



Materials 2021, 14, 7746 9 of 22

distribution of errors indicates the existing model is very well suited for predicting the
satisfactory effect of the response [43].

Table 5. ANOVA for SR.

Source DF Adj SS Adj MS F Value p-Value Significance

Model 6 7.86108 1.31018 133.17 0.000 Significant
Linear 3 0.74036 0.24679 25.08 0.000 Significant

Tv 1 0.04482 0.04482 4.56 0.065 Significant
Af 1 0.68120 0.68120 69.24 0.000 Significant
Sd 1 0.34918 0.34918 35.49 0.000 Significant

Square 2 0.29148 0.14574 14.81 0.002 Significant
Tv × Tv 1 0.17409 0.17409 17.69 0.003 Significant
Sd × Sd 1 0.13805 0.13805 14.03 0.006 Significant

2-way interaction 1 0.42739 0.42739 43.44 0.000 Significant
Af × Sd 1 0.42739 0.42739 43.44 0.000 Significant

Error 8 0.07871 0.00984
Lack of Fit 6 0.07599 0.01266 9.32 0.100 Insignificant
Pure Error 2 0.00272 0.00136

Total 14 7.93978

S = 0.0991, R-Sq. = 99.01%, R-Sq. (Adj.) = 98.27%
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Figure 5. Normal probability plot for SR.

The influence of process parameters on SR is shown in Figure 6. Figure 6 shows
an increase in Tv speed increases the SR. The reason for this is that at lower Tv, a large
number of abrasive particles are allowed more time to participate in the cutting action
and this helps in removing a large number of asperities from the surface, resulting in a
better-quality machined surface [20]. The trend of Tv and SR was in agreement with the
trend reported by Deaconescu and Deaconescu while machining using AWJM [18]. In the
case of Af, a decrease in SR can be observed with the increase in Af. In line with this, the
smoothing of machined surfaces can result when Af is increased [46]. In the case of Sd, a
remarkable increase in SR is seen when Sd increased from 1.5 to 3.5 mm. The divergence of
the impacting jet before impingement caused by an increased Sd can be attributed to the
observed phenomenon. At lower Sd, coherence of the abrasive jet is maintained, which
ensures high kinetic energy at the jet impact region, thus removing the asperities from the
surfaces properly. However, at high Sd, the jet becomes divergent resulting in a low density
of abrasive particles due to the expansion of the jet, which generates more random peaks
and valleys on the surface due to singular particles, thus making it unable to remove the
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material smoothly from the machining zone and producing a rough surface [9,24]. Thus,
it is desirable to have low Sd, which maintains the kinetic energy of the jet and produces
smoother surfaces.

Materials 2021, 14, x FOR PEER REVIEW 10 of 22 
 

 

impacting jet before impingement caused by an increased Sd can be attributed to the ob-
served phenomenon. At lower Sd, coherence of the abrasive jet is maintained, which en-
sures high kinetic energy at the jet impact region, thus removing the asperities from the 
surfaces properly. However, at high Sd, the jet becomes divergent resulting in a low den-
sity of abrasive particles due to the expansion of the jet, which generates more random 
peaks and valleys on the surface due to singular particles, thus making it unable to remove 
the material smoothly from the machining zone and producing a rough surface [9,24]. 
Thus, it is desirable to have low Sd, which maintains the kinetic energy of the jet and pro-
duces smoother surfaces. 

 
Figure 6. Effect of AWJM parameters on SR. 

3.3. Analysis of Kerf Taper Angle 
Table 6 shows the ANOVA results of the kerf taper angle to examine the influence of 

AWJM variables. The mathematical regression equation for the Kerf taper angle is devel-
oped using the backward elimination procedure as shown in Equation (5): θ = 4.615 −  0.00906 (Tv) −  0.0045333 (Af) −  1.058 (Sd) + 0.000045 (Tv ×  Tv)  +  0.1325 (Sd ×  Sd) +  0.001348 (Af ×  Sd)  

(5)

Table 6 shows the statistical results by ANOVA for the existing model of the kerf 
taper angle. The F-value of 111.22 along with a p-value of 0.000 of the model implies the 
developed model is significant. The linear model, square model, and two-way interaction 
terms were found to have a significant effect on the Kerf taper angle. The process param-
eters of Af, Sd along with the interaction terms of Tv × Tv, Sd × Sd, and Af × Sd had a signifi-
cant effect on the response value. ANOVA results of the kerf angle depict the kerf angle 
is highly influenced by variation in Af followed by Sd. The lack-of-fit value of 10.18 with a 
corresponding p-value of 0.092 implies an insignificant effect. An insignificant lack-of-fit 
suggests the adequacy and fitness of the proposed model [40]. The values of R-sq. and 
Adj. R-sq. were found to be 98.82% and 97.93%, respectively. An extremely close relation 
between these R-sq. values shows the adequacy and fitness of the existing model [38]. A 
standard deviation of 0.05 shows the existing model is well suited for the prediction of 
future outcomes with the least error. The normal probability plot of the Kerf taper angle 
is shown in Figure 7. It can be observed that all the residuals are positioned on a straight 

250200150

5.6

5.2

4.8

4.4

4.0

500400300 3.52.51.5

Nozzle traverse speed
M

ea
n

Abrasive flow rate Stand-off distance

Main Effects Plot for SR
Data Means

Figure 6. Effect of AWJM parameters on SR.

3.3. Analysis of Kerf Taper Angle

Table 6 shows the ANOVA results of the kerf taper angle to examine the influence
of AWJM variables. The mathematical regression equation for the Kerf taper angle is
developed using the backward elimination procedure as shown in Equation (5):

θ = 4.615− 0.00906 (Tv)− 0.0045333 (Af)− 1.058 (Sd) + 0.000045 (Tv × Tv) +

0.1325 (Sd × Sd) + 0.001348 (Af × Sd)
(5)

Table 6. ANOVA for Kerf taper angle.

Source DF Adj SS Adj MS F Value p-Value Significance

Model 6 2.04354 0.34059 111.22 0.000 Significant
Linear 3 0.15244 0.05081 16.59 0.001 Significant

Tv 1 0.01183 0.01183 3.86 0.085 Insignificant
Af 1 0.12179 0.12179 39.77 0.000 Significant
Sd 1 0.10307 0.10307 33.66 0.000 Significant

Square 2 0.10476 0.05238 17.11 0.001 Significant
Tv × Tv 1 0.04692 0.04692 15.32 0.004 Significant
Sd × Sd 1 0.06521 0.06521 21.29 0.002 Significant

2-way interaction 1 0.07268 0.07268 23.73 0.001 Significant
Af × Sd 1 0.07268 0.07268 23.73 0.001 Significant

Error 8 0.02450 0.00306
Lack of Fit 6 0.02372 0.00395 10.18 0.092 Insignificant
Pure Error 2 0.00078 0.00038

Total 14 2.06804

S = 0.0553, R-Sq. = 98.82%, R-Sq. (Adj.) = 97.93%
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Table 6 shows the statistical results by ANOVA for the existing model of the kerf taper
angle. The F-value of 111.22 along with a p-value of 0.000 of the model implies the devel-
oped model is significant. The linear model, square model, and two-way interaction terms
were found to have a significant effect on the Kerf taper angle. The process parameters of
Af, Sd along with the interaction terms of Tv × Tv, Sd × Sd, and Af × Sd had a significant
effect on the response value. ANOVA results of the kerf angle depict the kerf angle is
highly influenced by variation in Af followed by Sd. The lack-of-fit value of 10.18 with a
corresponding p-value of 0.092 implies an insignificant effect. An insignificant lack-of-fit
suggests the adequacy and fitness of the proposed model [40]. The values of R-sq. and
Adj. R-sq. were found to be 98.82% and 97.93%, respectively. An extremely close relation
between these R-sq. values shows the adequacy and fitness of the existing model [38]. A
standard deviation of 0.05 shows the existing model is well suited for the prediction of
future outcomes with the least error. The normal probability plot of the Kerf taper angle is
shown in Figure 7. It can be observed that all the residuals are positioned on a straight line.
The absence of residual clustering and a normal distribution of errors indicates the existing
model is very well suited to predicting the satisfactory effect of the response [9].
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Figure 7. Normal probability plot for Kerf taper angle.

The kerf taper angle is a measure of the straightness of the machined slot cross-section.
The main effect plot of the kerf taper angle as shown in Figure 8 indicated a positive
correlation between Tv and the Kerf taper angle. Increasing the Tv increases the kerf taper
angle. This can be attributed to insufficient broadening of the bottom kerf width by the jet
as Tv increases. The Af negatively affects the kerf angle. This can be explained by the fact
that at higher Af, the kerf width value increases, which increases the kerf taper angle [10].
The increase in Sd was found to increase the taper angle. This can be attributed to the fact
that at higher Sd, the jet is impacted by the flaring mode. Thus, eroding more material at
the top causes a higher top kerf width and lower bottom kerf width [46]. The results of
the effect of Af and Sd on the kerf taper angle obtained in the present study agree with the
results reported by Dumbhare et al. [44].

The ANOVA analysis of all three responses showed that developed mathematical
models are significant for predicting the responses. It indicates the experimental error is
very minimal and collected output data can be used for multi-objective optimization.
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Figure 8. Effect of AWJM parameters for Kerf taper angle.

3.4. Optimization Using HTS Algorithm

HTS is a population-based algorithm that mimics the thermal equilibrium behavior
between the system and surroundings [47]. The algorithm is initiated by defining the
population size, termination criteria, and upper and lower bounds of the design variable
followed by the random solution of the initial population. The best solution of the random
population is stored as the elite solution. Then the entire population undergoes any
one of the heat-transfer phases (i.e., conduction, convection, and radiation) based on the
probability parameter R to update the solution. The updated solution in the HTS algorithm
is accepted only if it has a better functional value. Subsequently, the worst solutions of
the population are replaced by the elite solutions. The updating mechanism of each of the
phases is described in detail in the subsection below.

3.4.1. Conduction Phase

Equations (6) and (7) are the equations that drive the update of solutions in the
conduction phase [48],

X′ji =

 Xk, i +
(
−R2Xk, i

)
, iff

(
Xj
)
> f (Xk)

Xj,i +
(
−R2Xj,i

)
, iff

(
Xj
)
< f (Xk)

; ifg ≤
gmax
CDF

(6)

X′j,i =
{

Xk, i + (−riXk, i), iff
(
Xj
)
> f (Xk)

Xj,i +
(
−riXj,i

)
, iff

(
Xj
)
< f (Xk)

; ifg >
gmax
CDF

(7)

where X′j,i is the updated solution; j = 1, 2, . . . , n; k is a randomly selected solution;
j 6= k; k ∈ (1, 2, . . . , n); i is a randomly selected design variable; i ∈ (1, 2, . . . , m); gmax
is the maximum number of generations specified; CDF is the conduction factor; R is the
probability variable; R ∈(0, 0.3333); ri ∈ (0, 1) is a uniformly distributed random number.

3.4.2. Convection Phase

The solutions are updated in the convection phase as per Equations (8) and (9) [48],

X′j,i = Xj,i + R× (Xs − Xms × TCF) (8)
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TCF =

{
abs(R− ri), ifg ≤ gmax

COF
round(1 + ri), ifg >

gmax
COF

(9)

where X′j,i is the updated solution; j = 1, 2, . . . , n; i = 1, 2, . . . , m. COF is the convection
factor; R is the probability variable; R ∈ (0.6666, 1); ri ∈ (0, 1) is a uniformly distributed
random number; Xs is the temperature of the surrounding and Xms is the mean temperature
of the system; TCF is a temperature change factor.

3.4.3. Radiation Phase

The solutions are updated in the radiation phase as per Equations (10) and (11) [48],

X′j,i =
{

Xj,i + R×
(
Xk, i − Xj,i

)
, iff

(
Xj
)
> f (Xk)

Xj,i + R×
(
Xj,i − Xk, i

)
, iff

(
Xj
)
< f (Xk)

; ifg ≤
gmax
RDF

(10)

X′j,i =
{

Xj,i + ri ×
(
Xk, i − Xj,i

)
, iff

(
Xj
)
> f (Xk)

Xj,i + ri ×
(
Xj,i − Xk, i

)
, iff

(
Xj
)
< f (Xk)

; ifg >
gmax
RDF

(11)

where X′j,i is the updated solution; j = 1, 2, . . . ,n; i = 1, 2, . . . ,m; j 6= k; k ∈ (1, 2, . . . , n) and k
is a randomly selected molecules; RDF is the radiation factor; R is the probability variable;
R ∈ (0.3333, 0.6666); ri ∈ (0, 1) is a uniformly distributed random number.

All the responses, such as MRR, SR, and the Kerf taper angle, were taken as positive
integers during the execution of the HTS algorithm. Following machining, limits were
used for AWJM process parameters during the execution of the algorithms.

Nozze Transverse Speed (Tv): 150 mm/min ≤ Tv ≥ 250 mm/min.
Abrasive Flow Rate (Af): 300 g/min ≤ Af ≥ 500 g/min.
Stand-off distance (Sd): 1.5 mm ≤ Sd ≥ 3.5 mm.
For each of the objectives (MRR, SR, and the kerf taper angle), Table 7 displays the

single-objective optimization using the HTS algorithm. If any objective reaches its ideal
value, then other objectives are far from the desired levels. For example, for the maximiza-
tion of MRR, corresponding values of SR and θwere not at their required levels. Similar
observations can be made for other studied objective functions. i.e., for the minimization of
SR and θ, the corresponding value of MRR was not at the required level of maximization.
Table 7 also highlights the combination of the input variables is different for the individual
objective functions. For the maximization of MRR, the input process parameters are Tv
of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm, while for the minimization of SR
and θ, the input process parameters are Tv of 150 mm/min, Af of 500 g/min, and Sd of
1.5 mm. This creates confusion for the manufacturer when finalizing the settings of the
process parameters on the machine. Pareto optimal points are the solution for such complex
problems. They provide a trade-off between output responses.

Table 7. Single-objective optimization of responses.

Objective
Function

Tv
(mm/min)

Af
(g/min)

Sd
(mm)

MRR
(g/min)

SR
(µm)

θ

(◦)

Maximum MRR 250 500 1.5 0.2304 4.71 2.61
Minimum SR 150 500 1.5 0.2009 2.99 1.72
Minimum θ 150 500 1.5 0.2009 2.99 1.72

The simultaneous optimization of MRR, SR, and the kerf angle has been carried out
by assigning equal weights of 0.33 to all the responses. Equation (12) shows the objective
function for simultaneous optimization.

Obj = w1·(MRR) + w2·(SR) + w3·(θ) (12)

The simultaneous optimization result yielded response values of MRR, SR, and kerf an-
gle of 0.2133 g/min, 3.50 µm, and 1.98, respectively at Tv of 192 mm/min, Af of 500 g/min,
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and Sd of 1.5 mm. If all the response variables are of equal importance for the user, then
this set of parameters of simultaneous optimization will be useful as they provide the
optimal levels.

The multi-objective heat transfer search (MOHTS) algorithm is an extended version of
the HTS algorithm, which can find the best optimal solution for the problems involving con-
flict between responses [49–52]. Initially, the MOHTS algorithm generates non-dominated
solutions and stores it in an external archive. The e-dominance-based updating approach
was used to check the solutions stored in the archive. The Pareto fronts are generated
with the help of non-dominated solutions stored in the external archive. The grid-based
approach with a fixed archive size is used in MOHTS for the archiving process. Every
generation of the archive with the HTS algorithm was updated by the ε-dominance method.
The space dimensions are presumed equal to the number of objective functions in the
optimization problem. The boxes of size ε to ε are created in the space by slicing each
dimension. The solutions that resulted during optimization are stored in these boxes.
Further, the dominating boxes are kept and those that were dominated are removed. That
is, the solution in those boxes were removed. Afterward, if the solution in the remaining
box is more than one, then the dominated solution among them is removed. Finally, the
non-dominated solution remains in the box and is retained in the archive.

For the multi-objective optimization of the present study, the MOHTS algorithm was
applied to find non-dominant Pareto optimal points. At the end of the 10,000-evolution
function, the Pareto optimal points are obtained. Forty-eight Pareto points were generated,
and each Pareto point provides a unique optimal solution. Table 8 shows the results
of eight Pareto points along with their AWJM process parameters. The obtained Pareto
optimal points were plotted in the 3D space as shown in Figure 9. In the 3D plot, the
X-, Y-, and Z-axis represent MRR, SR, and the Kerf taper angle, respectively. Each Pareto
point has its prediction for the studied responses and each prediction is a function of a
combination of input parameter settings. The selection of a particular Pareto point by the
operator depends on the specific requirement of the responses. The benefit of employing
the MOHTS algorithm is that the Pareto points are non-dominated solutions and can be
obtained in a single step. All the Pareto optimal points were obtained at the same values
of Af and Sd. This suggests the Af value of 500 g/min and Sd value of 1.5 mm provide
optimal solutions. Table 9 shows the four randomly selected confirmatory trials of Pareto
points along with their predicted values obtained from the MOHTS algorithm as well as
experimentally measured response values of MRR, SR, and the kerf angle. The developed
model and HTS algorithm can be considered capable as negligible variance was witnessed
amongst the predicted and measured values.

Table 8. Pareto optimal points obtained from HTS algorithm.

Sr. No. Tv
(mm/min)

Af
(g/min)

Sd
(mm)

MRR
(g/min)

SR
(µm)

θ

(◦)

1 250 500 1.5 0.2304 4.71 2.62

2 150 500 1.5 0.2009 3.00 1.72

3 219 500 1.5 0.2213 3.99 2.24

4 215 500 1.5 0.2201 3.91 2.20

5 247 500 1.5 0.2295 4.64 2.58

6 162 500 1.5 0.2044 3.11 1.78

7 232 500 1.5 0.2251 4.28 2.39

8 225 500 1.5 0.2230 4.12 2.31

9 222 500 1.5 0.2221 4.06 2.28

10 198 500 1.5 0.2151 3.60 2.04
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Table 8. Cont.

Sr. No. Tv
(mm/min)

Af
(g/min)

Sd
(mm)

MRR
(g/min)

SR
(µm)

θ

(◦)

11 195 500 1.5 0.2142 3.55 2.02

12 166 500 1.5 0.2056 3.15 1.81

13 228 500 1.5 0.2239 4.19 2.34

14 226 500 1.5 0.2233 4.14 2.32

15 156 500 1.5 0.2027 3.05 1.75

16 176 500 1.5 0.2086 3.28 1.87

17 172 500 1.5 0.2074 3.22 1.84

18 201 500 1.5 0.2159 3.65 2.07

19 229 500 1.5 0.2242 4.21 2.36

20 159 500 1.5 0.2036 3.08 1.77

21 153 500 1.5 0.2018 3.02 1.74

22 246 500 1.5 0.2292 4.61 2.57

23 181 500 1.5 0.2100 3.34 1.91

24 244 500 1.5 0.2286 4.56 2.54

25 242 500 1.5 0.2280 4.51 2.51

26 239 500 1.5 0.2272 4.44 2.48

27 238 500 1.5 0.2269 4.41 2.46

28 236 500 1.5 0.2263 4.37 2.44

29 235 500 1.5 0.2260 4.34 2.43

30 234 500 1.5 0.2257 4.32 2.41

31 233 500 1.5 0.2254 4.30 2.40

32 170 500 1.5 0.2068 3.20 1.83

33 169 500 1.5 0.2065 3.19 1.82

34 167 500 1.5 0.2059 3.17 1.81

35 220 500 1.5 0.2216 4.02 2.26

36 214 500 1.5 0.2198 3.89 2.19

37 213 500 1.5 0.2195 3.87 2.18

38 158 500 1.5 0.2033 3.07 1.76

39 210 500 1.5 0.2186 3.82 2.15

40 209 500 1.5 0.2183 3.80 2.14

41 203 500 1.5 0.2165 3.69 2.09

42 203 500 1.5 0.2165 3.69 2.09

43 186 500 1.5 0.2115 3.41 1.94

44 183 500 1.5 0.2106 3.37 1.92

45 199 500 1.5 0.2154 3.62 2.05

46 192 500 1.5 0.2133 3.51 1.99

47 191 500 1.5 0.2130 3.49 1.98

48 229 500 1.5 0.2242 4.21 2.36
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Table 9. Confirmatory trials.

Sr. No. Tv
(mm/min)

Af
(g/min)

Sd
(mm)

Predicted Values by HTS
Algorithm

Experimentally Measured
Values % Deviation

MRR SR θ MRR SR θ MRR SR θ

1 250 500 1.5 0.2304 4.71 2.61 0.2395 4.57 2.52 3.79 3.06 3.57

2 150 500 1.5 0.2009 2.99 1.72 0.2101 2.83 1.78 4.37 5.65 3.37

10 192 500 1.5 0.2133 3.50 1.98 0.2194 3.69 2.06 2.78 5.14 3.88

38 158 500 1.5 0.2033 3.07 1.76 0.1997 3.15 1.84 1.80 2.53 4.34

2D views of the Pareto points provide a better way to understand 3D Pareto points.
The 2D views of MRR vs. SR, MRR vs. Kerf taper angle, and SR vs. Kerf taper angle are
shown in Figure 10a–c, respectively. The point to note here is that these 2D views have
an effect on the third variable. As can be observed from Figure 10a for the Pareto view
of MRR vs. SR, the entire space is occupied by a discrete distribution of obtained Pareto
points. Figure 10a highlights the maximum and minimum desired values of the MRR and
SR as indicated by red points are 0.2304 g/min and 2.99 µm, respectively. The designer
could face conflicting phenomena while dealing with MRR and SR. With a higher MRR,
the SR would also be higher. Therefore, the designer must select the Pareto point that is a
trade-off between these two values.

A similar situation can be seen in Figure 10b of the 2D Pareto graph of MRR vs. the
Kerf taper angle. The maximum value of MRR and the minimum value of the Kerf taper
angle were observed to be 0.2304 g/min and 1.72, respectively. For the maximum MRR, the
kerf taper angle was also at the higher level and for the minimum kerf taper angle, MRR
was also obtained at the lowest value. So, while selecting these two objectives, it depends
on the user to select the Pareto points as per the requirement of response values.

Figure 10c shows the 2D Pareto graph of SR vs. the Kerf taper angle. As both responses
are of the lower-the-better category, the Pareto point shown in red in Figure 10a will be the
most useful for the industrial users as the lowest values of SR and the Kerf taper angle were
obtained at the same parameters giving values of 2.99 µm and 1.72, respectively. Pursuant
to this, the user selecting these two responses will obtain both the objectives at required
levels at parametric settings at Tv of 150 mm/min, Af of 500 g/min, and Sd of 1.5 mm.
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3.5. Surface Morphology of Machined Components

The surface morphology of machined surfaces observed under scanning electron
microscopy is shown in Figure 11. The SEM images were taken at the top of the machined
surface. The observed machined surfaces correspond to experiments performed with
process parameters obtained from single-objective optimization. Figure 11 shows the
machined surface obtained with process parameters Tv 250 mm/min, Af 500 g/min, and
Sd 1.5 mm. These parameters are obtained from the HTS algorithm when a single objective
of maximizing MRR was considered. It can be elucidated from Figure 11 that the cut
surface of the workpiece is strongly plowed. This is due to the shearing of the abrasive
particles. For the maximization of MRR, Tv and Af are at the highest level. This combination
causes higher particle disintegration and embedding of fractured abrasive particles in the
machined surface resulting in the higher impulse of abrasive particles [53]. As a result, a
ploughing-like pattern (separate wear track) can be seen on the cut surface as shown in
Figure 11. These patterns are longer and deeper indicating a rough surface [54]. Ploughing
is one of the primary material-removal mechanisms in AWJM where the impinging high-
velocity jet of water along with the abrasives scoop out the material along the flow direction
of the jet. Similar observations are reported by Hascalik et al. [55] while studying Ti6Al4V
alloy. They noticed that at a higher travel speed, the surface roughness also increases. This
is due to less overlap of machining action and fewer abrasive particles to impinge the
surface at a higher travel speed.
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1.5 mm.

Figure 12 presents the machined surface obtained with process parameters Tv 150 mm/min,
Af 500 g/min, and Sd 1.5 mm. These parameters are obtained from the HTS algorithm
when a single objective of minimizing SR was considered. These parameters produced
roughness of 2.82 µm. The same process parameter setting was obtained from the HTS
algorithm when a single objective of minimizing the kerf taper angle was considered.
The kerf taper angle of 1.95 was obtained with the aforementioned parameter settings.
Figure 12 reveals the reduced wear tracks on the machined surface. This may be due to
lower particle disintegration at a lower nozzle travel speed, which produces sufficient
kinetic energy during machining. This reduced abrasive contamination and produced a
smooth surface.

Figure 13 presents the machined surface obtained with process parameters Tv of 193 mm/min,
Af of 500 g/min, and Sd of 1.5 mm. These parameters are obtained from the HTS algorithm
when simultaneous optimization was considered. It can be observed from the figure that
the surface consists of shallow and deep ploughing marks. The above results coincide with
Figure 6 whereby SR is directly correlated with the nozzle travel speed.
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4. Conclusions

The present study investigated the effect of AWJM parameters (Tv, Af, and Sd) on
responses of MRR, SR, and the Kerf taper angle for Ti6Al4V. Based on the work, the
following important conclusions can be drawn:

• Mathematical regression models were generated using the RSM technique, and
ANOVA results have shown the adequacy of the developed models.

• Normal probability, the significance of model terms, and the insignificance of lack-of-
fit for all responses highlighted good prediction capabilities of the developed models
of MRR, SR, and the kerf taper angle.

• Single-objective optimization results yielded a maximum MRR of 0.2304 g/min (at Tv
of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm), a minimum SR of 2.99 µm, and a
minimum θ of 1.72 (both responses at Tv of 150 mm/min, Af of 500 g/min, and Sd of
1.5 mm). Simultaneous optimization results, by considering an equal weightage of
0.33 to all responses, yielded MRR, SR, and θ values of 0.2133 g/min, 3.50 µm, and
1.98, respectively at Tv of 193 mm/min, Af of 500 g/min, and Sd of 1.5 mm.

• 3D and 2D plots were plotted using Pareto optimal points, which highlighted the
non-dominant feasible solutions. Every single Pareto point gives a unique solution
and has a corresponding value of the input process parameter. Therefore, an operator
can select a suitable point by just observing their required values of MRR, SR, and the
kerf taper angle.

• The surface morphology revealed the material-removal mechanism in AWJM was due
to ploughing, particle disintegration, and embedding of fractured abrasive particles in
the machined surface.

• Different levels of input process parameters by varying the abrasives can be studied
in the future to check the optimal levels of the AWJM responses.
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