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Abstract: Wettablity is one of the important characteristics defining a given surface. Here we show
that the effective interface potential method of determining the wetting temperature, originally
proposed by MacDowell and Müller for the surfaces exhibiting the first order wetting transition, can
also be used to estimate the wetting temperature of the second order (continuous) wetting transition.
Some selected other methods of determination of the wetting temperature are also discussed.

Keywords: wetting; computer simulation; Ising model

1. Introduction

Understanding and controlling wetting properties of materials are some of the most
important factors in many industrial applications including oil recovery [1], mineral
flotation [2] and design of superamphiphobic surfaces [3].

Wetting transition is a surface-induced transition in which the contact angle of a liquid
deposited on a surface drops to zero from a non-zero value upon increasing temperature.
This transition has been the subject of many theoretical and experimental studies [4–12].
The wetting transition can be either first order or continuous (second-order). In the case of
the first-order wetting transition there is additional prewetting (thin-thick film) transition,
which occurs off-coexistence and the prewetting line joins the binodal exactly at the wetting
point. The critical (second-order) wetting transition is not accompanied by prewetting.

The nature of the wetting transition and its universality class depends on (among
others) the dimensionality of the system and the range of interparticle interactions. While in
most cases the nature of the wetting transition has been well established and documented,
it turns out that the case of 3-dimensional critical wetting transition for short-ranged forces
(i.e., decaying exponentially, or faster) posed significant problems.

One of the important early discoveries was that the critical wetting transition for
short-range forces is nonuniversal. Using renormalization-group calculations based on an
effective interfacial Hamiltonian Brezin et al. [8] predicted that the critical exponent for
this transition depends on a dimensionless parameter

ω =
kBT

4πΣξ2 (1)

where T is the temperature, ξ is the correlation length of the bulk wetting phase and Σ is
the interfacial stiffness. Capillary-wave-like fluctuations give rise to a diverging transverse
correlation length ξ‖ and the relevant exponent is believed to behave

ν‖ =


(1−ω)−1 for 0 < ω < 1/2
(
√

2−
√

ω)−2 for 1/2 < ω < 2
∞ for ω > 2 .

(2)
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Unfortunately, subsequent Monte Carlo calculations carried out for the Ising
model [13–15] revealed that while the general features regarding the wetting transition for
the Ising model do agree with theoretical predictions [9], the critical wetting transition is
only very weakly nonuniversal. This disagreement has been the subject of ever-lasting
efforts in order to bridge the gap between the theory and simulations. Using nonlocal effec-
tive interfacial Hamiltonian Parry et al. [16] argued that the spectrum of the interfacial fluc-
tuations has a lower cutoff due to appearance of a new length scale ξNL =

√
lξ ∝

√
ln ξ‖.

This gives rise to an effective wetting parameter, ωe f f , of the form

ωe f f = ω−
√

2ω3 ln(κl)
κl

(3)

where κ = ξ−1, and l denotes film thickness. This leads to lowering of the value of the
effective wetting parameter and yields lower effective critical exponent.

On the simulational front Albano and Binder [17] suggested that anisotropic finite
size scaling (AFSS) theory should be suitable for studying wetting transitions. Using this
approach Bryk and Binder [18] were able to recalculate the location of the wetting transition
and confirm non-mean field character of critical wetting in 3D.

The main obstacle that hampered progress in our understanding of the nature of
the critical wetting transition could be traced back to difficulties in accurate locating the
critical wetting point from simulation. In the present work we discuss three methods of
locating critical wetting from simulations. We show that the effective interface method
can be used for locating the critical wetting transition. Two other alternative methods are
also discussed.

2. Materials and Methods

Our model consists of cubic lattice of dimensions L× L× D with two free boundary
layers L× L located at z = 1 and z = D, and periodic boundary conditions in the remaining
directions. The pseudospin variable at a lattice site i takes values si = ±1. The Hamiltonian
for the system is

H = −J ∑
bulk

sisj − Js ∑
sur f

sisk − H ∑
bulk

si − H1 ∑
k∈z=1

sk − HD ∑
k∈z=D

sk . (4)

In the two free surface layers the exchange constant is Js, otherwise the exchange
constant is J throughout. The bulk field is H, and the surface fields acting on the first
and last layer are H1 and HD, respectively. We consider three different types of systems,
namely the symmetric systems with H1 = HD, non-symmetric systems with H1 6= HD,
HD = 0, and the anti-symmetric systems with H1 = −HD. Throughout this study we
restrict ourselves to the case Js = J .

The systems were simulated using fast multispin coding algorithm [19]. In order to
achieve better statistics we used the preferential sampling technique, so that, on average, 9
out of 10 samplings occurred in the region of interest (in the vicinity of the walls).

When simulating systems close to the critical wetting point the so-called critical
slowing down hampers the statistics of the accumulated data. In order to overcome this
drawback we applied hyper-parallel tempering technique [20] and simulated many systems
at the same time. The swaps of spins between the systems m and n were accepted with
the probability

Pnm = min[1, exp(−∆β∆E)− ∆(βH1)∆m1 − ∆(βHD)∆mD − ∆(βH)∆m] (5)

where
∆β =

1
kBTn

− 1
kBTm

, ∆E = En − Em (6)
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∆(βH1) =
1

kBTn
H(n)

1 − 1
kBTm

H(m)
1 , ∆m1 = m(n)

1 −m(m)
1 (7)

∆(βHD) =
1

kBTn
H(n)

D − 1
kBTm

H(m)
D , ∆mD = m(n)

D −m(m)
D (8)

∆(βH) =
1

kBTn
H(n) − 1

kBTm
H(m) , ∆m = m(n) −m(m) . (9)

In the above En and Tn are the energy and the temperature of the system n. kB is the
Boltzmann constant. Among other quantities of interest accumulated during a simulation
were the magnetization in the surface layer

m1 = (2L2)−1 ∑
k∈sur f 1

< sk > , (10)

total magnetization
m = (L2D)−1 ∑

i
< si > , (11)

and “mixed” surface layer susceptibility

χ1 =
∂m1

∂H
= L2D(< m1m > − < m1 >< m >)/kBT . (12)

3. The Effective Interface Potential Method

Tracking down the critical wetting transition point from computer simulation proved
to be a challenge. MacDowell and Müller (MM), proposed a method [21,22] (hereinafter
referred to as the effective interface potential (EIP) method) that relies on determining the
distribution probability of magnetization from which the effective interface potential can
be determined. We implemented this method with slight modifications. The key quantity
is the probability P(mp) of finding a system with magnetization mp defined as

mp = (DrL2)−1
Dr

∑
k=1

< sk > , (13)

where Dr denotes the range of interest, D/2 ≤ Dr ≤ D. We considered the non-symmetric
system with HD = 0. Following [21,22] we split the calculations of the order parameter
distribution in windows and applied the successive sampling technique but with windows
on mp rather than on m. Since we used hyper-parallel tempering two or three windows
were deemed sufficient. From the order parameter distribution we obtained the effective
interaction potential (up to a constant) via

Ve f f (mp)/kBT = −ln(P(mp)) . (14)

In our work, we used P(mp), while MacDowell and Müller [21,22] calculated the
adsorption distribution P(Γ). However the two distributions are closely related as one can
recover the adsorption from mp by subtracting bulk magnetization.

It is important to note that the effective interface potential employed by us Ve f f (mp)
differs from that used traditionally in the literature [4,5,8]. Those authors considered Ve f f (l)
where l is a distance of the interface from the wall, a local quantity. Ve f f (mp) makes use of
mp—a global measure which translates into the mean distance from the wall only within
mean field description. In other words our effective interface potential approach includes
all the fluctuation effects, like interface overhangs and droplet excitations, which are not
included in the local description. Since our interface potential carries a bulk term it cannot
be directly used as an interface potential in conventional interface Hamiltonians. In such a
case one can use a method proposed in [23].
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MacDowell and Müller (and others [24–30]) have applied the outlined above approach
to the long-range substrate potentials exhibiting the first-order wetting transition, where
one expects the mean-field effective interface potential to be sufficient. It is natural to ask
whether this approach works at all beyond mean-field. In order to answer this question we
first carried out MC calculations for the 2D Ising model with short-range boundary fields.
It is well established that for short-range forces in 2D wetting is completely dominated by
the fluctuation effects [4]. An advantage of this procedure is that the simulational results
can be compared with the exact solution for the wetting ordering field by Abraham [7]

exp(2J/kBT)[cosh(2J/kBT)− cosh(2H1c/kBT)] = sinh(2J/kBT) . (15)

These calculations provide a clear-cut, stringent test of the proposed approach.
Figures 1–3 show the EIPs calculated for three system sizes, L = 210, 630 and 1260

at J/kBT = 1.0. For smaller absolute values of the surface fields we observe a deep local
minimum indicating that the system is in the partial wetting state. For these state points
the successive sampling technique is particularly useful as it would be very difficult to
obtain smooth effective interface potentials only from one simulation. As H1 becomes more
negative this minimum gradually becomes shallower and finally disappears completely
indicating the critical wetting point for a system with the size L.
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V
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B
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1
/J=-0.955

H
1
/J=-0.915

Figure 1. The effective interface potentials calculated for the 2D non-symmetric system at
J/kBT = 1.0 and for L = 210, D = 210. The potentials are calculated for the surface fields
H1/J = −0.915, −0.92, −0.925, −0.93, −0.935, −0.94, −0.942, −0.945, −0.948, −0.950, and −0.955.
The thick line corresponding to H1/J = −0.955 denotes the effective interface potential with no
detectable local minimum.

Figure 4 shows extrapolation of the critical surface field to the thermodynamic limit
L→ ∞. We note, that the simulational value of H1c(∞)/J = −0.935 agrees very well with
the exact result, −0.927. Another important observation is that the critical surface field
H1c(L) depends quite visibly on L, indicating that finite size corrections are important.
This is in line with theoretical predictions of 2D critical wetting [4], i.e., the interfacial
fluctuations in 2D renormalize the temperature (or alternatively the critical surface field) of
the critical wetting transition.
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Figure 2. The effective interface potentials calculated for the 2D non-symmetric system at
J/kBT = 1.0 and for L = 630, D = 210. The potentials are calculated for the surface fields
H1/J = −0.910, −0.912, −0.915, −0.918, −0.920, −0.922, −0.925, −0.928, −0.930, −0.932, −0.935,
−0.938, and −0.942. The thick line corresponding to H1/J = −0.942 denotes the effective interface
potential with no detectable local minimum.
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Figure 3. The effective interface potentials calculated for the 2D non-symmetric system at
J/kBT = 1.0 and for L = 1260, D = 210. The potentials are calculated for the surface fields
H1/J = −0.910, −0.912, −0.915, −0.918, −0.920, −0.925, −0.928, −0.930, −0.932, −0.935, and
−0.938. The thick line corresponding to H1/J = −0.938 denotes the effective interface potential with
no detectable local minimum.
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Figure 4. The estimate of the wetting surface field for the 2D system at J/kBT = 1.0 Circles
correspond to the surface critical fields obtained from simulations. The straight line denotes a
regression fit. The black diamond denotes the exact result [7].

It is instructive to see how accurate is the EIP method at higher temperatures (re-
call, that the inverse bulk critical temperature J/kBTc = ln(1 +

√
2)/2 ≈ 0.440687).

Figure 5 shows extrapolation of the critical surface field to the thermodynamic limit at
J/kBT = 0.625 (the relevant effective potentials are not shown, for the sake of brevity).
We observe that the simulational result H1c/J = −0.735 now differs from the exact result
(−0.71717) by almost 2.5%. This deterioration in accuracy can be traced back to the fact
that in 2D (unlike in 3D) bulk fluctuations persist down to quite low temperatures. Since
these fluctuations lead to broadening of P(mp) it is inevitable that the method becomes less
robust as the temperature gets closer to the bulk critical temperature. Hence, one important
restriction of the EIP method is that it is applicable to systems with well separated bulk
and interfacial fluctuations.

Let us turn to the 3D Ising systems. Figures 6–8 show the effective interface potentials
calculated for J/kBT = 0.35, D = 60, and for L = 63, 126, and 252. We notice that even for
the smallest system, L = 63 (cf. Figure 6), the system with the surface field H1/J = −0.89
is still in the partial wetting regime as there is a well visible minimum (as a side comment,
this value was quoted as the critical surface field in Refs. [13–15]). We estimate that the
wetting transition is located at H1/J = −0.908± 0.002. Interestingly, for the larger systems
(cf. Figures 7 and 8) the transition is located also at H1/J = −0.908± 0.002, i.e., there are
no discernible finite-size effects.

We find similar behaviour of the EIPs for J/kBT = 0.25. Independent of the system
size we estimate the critical surface field H1c/J = −0.608± 0.004 (the EIPs for the largest
considered system size, L = 256 are presented in. Figure 9). This is again in line with our
knowledge about the critical wetting transition, i.e., in 3D the interfacial fluctuations do
not renormalize the temperature of the wetting transition [8].
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Figure 5. The estimate of the wetting surface field for the 2D system at J/kBT = 0.625 Circles
correspond to the surface critical fields obtained from simulations. The straight line denotes a
regression fit. The black diamond denotes the exact result [7].
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Figure 6. The effective interface potentials calculated for the 3D non-symmetric system at
J/kBT = 0.35 and for L = 63, D = 60. The potentials are calculated for surface fields from
H1/J = −0.89, −0.891, −0.892, −0.893, −0.894, −0.895, −0.896, −0.898, −0.90, −0.902, −0.904,
−0.906, and −0.908. The thick line corresponding to H1/J = −0.908 denotes the effective interface
potential with no detectable local minimum.
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Figure 7. The effective interface potentials calculated for the 3D non-symmetric system at
J/kBT = 0.35 and for L = 126, D = 60. The potentials are calculated for surface fields H1/J = −0.89,
−0.891, −0.892, −0.893, −0.894, −0.895, −0.896, −0.898, −0.90, −0.902, −0.904, −0.906, and −0.908.
The thick line corresponding to H1/J = −0.908 denotes the effective interface potential with no
detectable local minimum.
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Figure 8. The effective interface potentials calculated for the 3D non-symmetric system at
J/kBT = 0.35 and for L = 252, D = 60. The potentials are calculated for surface fields H1/J = −0.89,
−0.891, −0.892, −0.893, −0.894, −0.895, −0.896, −0.898, −0.90, −0.902, −0.904, −0.906, and −0.908.
The thick line corresponding to H1/J = −0.908 denotes the effective interface potential with no
detectable local minimum.
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Figure 9. The effective interface potentials calculated for the non-symmetric system at J/kBT = 0.25
and for L = 252, D = 80. The potentials are calculated for surface fields from top H1/J = −0.5565,
−0.557, −0.558, −0.559, −0.560, −0.561, −0.562, −0.563, −0.564, −0.565, −0.568, −0.570, −0.575,
−0.582, −0.588, −0.592, −0.596, −0.600, −0.604, and −0.608. The thick line corresponding to
H1/J = −0.608 denotes the effective interface potential with no detectable local minimum.

4. Other Methods of Determination of the Critical Surface Field
4.1. Determination of the Critical Surface Field by Thermodynamic Integration

A new method for determination of the contact angle has been proposed in Refs. [31,32].
This technique can be interpreted as a variant of the thermodynamic integration method
(TIN), whereby a series of calculations is carried out for anti-symmetric fields, H1 < 0,
HD = −H1, starting from H1 = 0. The contact angle can be determined from the relation

cos(θ) = −
∫ HD

0

mD + m1

γlv
dH′D , (16)

where γlv is the surface tension [33,34]. The advantage of this approach is that the system
that has to be simulated does not undergo a critical wetting transition. Consequently there
are no diverging length scales and no critical fluctuations. The downside is that for critical
wetting the contact angle goes to 0 tangentially,

1− cos(θ) ∼ t2−αs , (17)

where αs is the surface critical exponent for specific heat, t = H1c−HD
H1c

. This makes the
finite-size analysis a delicate issue.

The calculational procedure consists of a series of calculations for the anti-symmetric
systems with varying surface field with ∆H1 = 0.001. We carried out calculations for
J/kBT = 0.25 and 0.35. The integrand of the right-hand-side of Equation (16) depends
quite strongly on the system size close to the critical surface field, despite the fact that
there is no wetting transition in the system. Therefore we carried out calculations for
D = 160 and L = 189 for surface fields H1/J = 0 up to H1/J = −0.511, while for the
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stronger surface fields H1/J < −0.511 the calculations were carried out for L = 189, 252
and 504. Similar to previous calculations hyper-parallel tempering was used with up to
120 systems simulated at the same time. The averages were accumulated over 107 spin
flips per site. Figures 10 and 11 show the sum of the surface magnetizations divided by
the surface tension, i.e., the integrand of Equation (16). We see that close to the critical
surface field the integrand develops finite-size dependence. The insets of Figures 12 and 13
show the cosine of the contact angle vs. the surface field. We see that the cosine goes to 1
tangentially. However, it is difficult to pinpoint exactly the tangential point. Moreover, the
integral depends on the accuracy of the numerical values of the surface tension. Hence we
adopt the following strategy. First we calculated numerically the derivative of the cosine
of the contact angle with respect to the surface field (cf. main plots of Figures 12 and 13).
The derivative should be zero at the critical surface field, H1c(L). In order arrive at an
estimate of H1c(L) we plotted two parallel lines cos θ′ = c1 and cos θ′ = c2 and constructed
tangential lines via finite difference. Extrapolation of these straight lines give H1(L)
satisfying cos θ′ = 0. Finally from the plots of H1(L) vs. 1/L the thermodynamic limit
is reached via extrapolation (cf. Figure 14). The final values of the critical surface fields
estimated using this method are H1c/J = −0.905 for J/kBT = 0.35, and H1c/J = −0.604
for J/kBT = 0.25.
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Figure 10. The integrand of Equation (16) vs. the surface field for J/kBT = 0.25 and for three system
sizes L listed in Figure. The inset shows zoom-out of the main Figure.

4.2. BLK Method for Symmetric Surface Fields Revisited

The original idea of Binder, Landau, and coworkers [13,14] (hereinafter referred to as
the BLK method) was to consider the symmetric system, H1 = HD. After setting H = 0 the
location of the critical wetting transition can be estimated out by varying H1 at a constant
temperature. The maximum of χ1 as a function of H1 indicates the location of the critical
surface field H1c at which the critical wetting transition occurs. First simulations were
carried out for symmetric field at J/kBT = 0.35, in order to directly compare with [15].
We assumed that D = 60 and L =126, 252, 315, 378, and 504. The statistical effort was
10 × 106 spin flips per site (not counting extra gains due to the preferential sampling
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technique). A total of 16 systems, each at different H1 were simulated at once using
hyper-parallel tempering technique.
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Figure 11. The integrand of Equation (16) vs. the surface field for J/kBT = 0.35 and for three system
sizes L listed in Figure. The inset shows zoom-out of the main Figure.
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Figure 12. ∂ cos(θ)/∂H1 vs. the surface field for J/kBT = 0.25 and for three system sizes L listed in
Figure. The inset shows full dependence of cos(θ) vs. H1/J.
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Figure 13. ∂ cos(θ)/∂H1 vs. the surface field for J/kBT = 0.35 and for three system sizes L listed in
Figure. The inset shows full dependence of cos(θ) vs. H1/J.
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Figure 14. Symbols denote the estimate of the surface field for which ∂ cos(θ)/∂H1 = 0 at a given L.
Thick lines denote the linear regression extrapolating L → ∞. Panel (a) is for J/kBT = 0.35 while
panel (b) is for J/kBT = 0.25.

Figure 15 shows the results of the simulations. Its clear that the statistics is much
improved, when compared to the earlier efforts.
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Figure 15. χ1 for five different system sizes L, evaluated at J/kBT = 0.35 for the symmetric
surface fields, H1 = HD. The big black circle with error bars denotes the simulational result of
Binder et al. [15].

The data for L = 126 can be compared with that from Ref. [15]. We note that the posi-
tion of the maximum of H1c(L = 126)/J = −0.889± 0.0005 agrees very well with earlier
study (H1c(L = 128)/J = −0.89± 0.004). However, there is a considerable shift for larger
systems. This indicates that H1c(L = ∞) is lower. This is confirmed in Figure 16, where we
show extrapolation L → ∞, and find, that the estimated value H1c(L = ∞)/J = −0.905.
In making this extrapolation we did not include data for L = 126 due to considerable
deviations from the rest of the data.

Figure 17 shows the results calculated for J/kBT = 0.25. Since this temperature is
closer to the bulk critical temperature the correlation length is greater. For this reason we
carried out calculations for somewhat larger systems with D = 120 and L =252, 315, 378,
and 504. The overall result are similar to those obtained at J/kBT = 0.35. The extrapolation
to L = ∞ reveals (cf. Figure 18), that that the estimated value H1c(L = ∞)/J = −0.606.
This is again, noticeably lower than previous estimates calculated using much smaller
system sizes (H1c(L = ∞)/J = −0.555 [13,14]).

As the careful Reader noticed, there is one vexing feature of the results presented in
Figures 15 and 17. Namely the maxima of χ1 get smaller and smaller as the linear system
size increases. This means that in the thermodynamic limit this peak disappears and this
transition does not exist! We recall that the simulated system is not semi-infinite but forms
a slit-like pore. In such systems the only phase transition that remains stable is capillary
condensation. It’s clear that the large statistical effort and hyper-parallel tempering tech-
nique must give the correct result, i.e., that the critical wetting transition studied in this
simulational setup is not a stable transition in the thermodynamic limit. However, we
argue that in this particular case one can still trust the positions of the maxima of the plots
of χ1 even if their magnitudes decrease with increasing system size. This situation can
be interpreted in terms of finite size scaling at the first order transition, as formulated
by Binder and Landau [35]. One can approximate the probability distribution of the
magnetization of an Ising system by two Gaussians for the two phases that would coexist at
the capillary condensation transition. At zero bulk field, the phase with the magnetization
oppositely oriented to the surface fields is not the stable one. It still gives a signal in a finite
system, which ultimately-in the thermodynamic limit - will be exponentially suppressed.
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However, for the surface susceptibility, the stable phase (magnetization parallel to the
surface field) gives only a small background contribution. Hence one can still detect the
developing singular behaviour of the surface layer susceptibility even though the magni-
tude of the signal decreases with increasing system size. If the sampling is insufficient to
reach full equilibrium, one may get the wrong amplitude of the signal, but it will be still
possible to detect the location of the anomaly [36]. To conclude this subsection, the BLK
method yields the critical surface fields H1c(L = ∞)/J = −0.905 for J/kBT = 0.35 and
H1c(L = ∞)/J = −0.606 for J/kBT = 0.25.
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Figure 16. Estimation of H1c(L = ∞) from simulational data presented in Figure 15, evaluated at
J/kBT = 0.35 for the symmetric surface fields.

-0.6 -0.59 -0.58 -0.57

H
1
/J

500

1000

1500

2000

χ
1

L=252
L=315

L=378

L=504

J/k
B
T=0.25, D=120

Figure 17. χ1 for different system sizes, evaluated at J/kBT = 0.25 for the symmetric surface fields.
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Figure 18. Estimation of H1c(L = ∞) from simulational data presented in Figure 17, evaluated at
J/kBT = 0.25 for the symmetric surface fields.

5. Discussion

The results showed in the previous Sections are summarized in Table 1.

Table 1. Critical surface field H1c/J obtained from various methods.

J/kBT AFSS ([18]) EIP (This Work) TIN (This Work) BLK (This Work) BLK ([13,15])

0.25 −0.616 −0.608 −0.604 −0.606 −0.555
0.35 −0.909 −0.908 −0.905 −0.905 −0.89

We note that all three methods considered in this work yield results consistent with
the AFSS method. At the same time there is a huge difference between the results of the
original BLK method and the rest of the results. This is however to be expected, since at the
time of carrying out the calculations in [13,15], it was technically impossible to go beyond
the system sizes considered in those papers. Each of the presented here methods has some
advantages and drawbacks. The TIN method while very promising proves to be tricky
due to the lack of proper finite-size analysis. The BLK method requires calculations for
progressively large system sizes. The EIP method requires the bulk fluctuations to be small
(relative to the capillary wave fluctuations), hence it is not suitable for determination of the
critical wetting transition close to the bulk critical point.

In terms of the computational effort the TIN method is least demanding. This is due
to the fact that the interfacial fluctuations associated with critical wetting are absent, when
using this route. Hence the statistical effort measured as the number of attempted spin flips
per site can be two orders of magnitude smaller. The other methods are computationally
more involving. The EIP method seems to be slightly less demanding than the BLK method
due to the fact that there is no need to consider very large system sizes.

6. Conclusions

We have studied three methods of determination of the critical wetting transition. Our
findings can be summarized as follows:
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• The effective interface potential method can be used to determine the location of the
critical wetting transition. The limitation of this method is that its accuracy decreases
if the bulk fluctuations become important.

• The thermodynamic integration method can be used to estimate the location of the
critical wetting transition. Extrapolation to the thermodynamic limit is non-trivial.

• The Binder–Landau–Kroll method of determination of the critical wetting transition
also leads to reasonable results if sufficiently big system sizes are considered.

Recently Evans et al. showed [37] that the Nakanishi and Fisher [9] topology of the
global surface phase diagram is not complete. Their study unveils novel classes of the
surface phase diagram which are not present for lattice models. We hope that our work
will be useful in establishing simulational tools that will help in better understanding of
the origin of the differences between the atomistic and lattice models. In our opinion the
results of the wetting behaviour for the simple lattice models have to be revisited as well,
since the old estimates were computed for small system sizes. Some of these issues are
being currently considered.
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