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Abstract: Probabilistic procedures considering the durability with respect to corrosion of reinforce-
ment caused by aggressive substances are widely applied; however, they are based on narrow
assumptions. The aspects need to be evaluated both in terms of the search for suitable application of
the various experimental results and in terms of their impact on the result of the stochastic assessment
itself. In this article, sensitivity analysis was used as an ideal tool to prove how input parameters
affect the results of the evaluation, with consideration of different types of concrete (ordinary or
self-compacting with and without fibres). These concretes may be used in aggressive environments,
as an industrial floor or as a part of the load-bearing bridge structure. An example of a reinforced
concrete bridge deck was selected as the solved structure. The results show that in the case of a classic
evaluation, a larger amount of fibre reports a lower resistance of concrete, which contradicts the
assumptions. The sensitivity analysis then shows that self-compacting concrete is more sensitive to
the values of the diffusion coefficient, and with the consideration of fibres, the effect is even greater.

Keywords: concrete; fibres; stochastic analysis; sensitivity analysis; self-compacting concrete

1. Introduction

The driving force behind the research on new concrete-based composite materials
is the reduction of greenhouse gases and the increasing of sustainability of load-bearing
and other structures [1]. The improvement of the individual components’ properties [2],
replacement by more environmentally friendly types of material [3–5], reduction of the
utilised amount of reinforcing steel [6] or the application of chemical additives [7] are just
a few types of the many ways of how to effectively reduce the environmental impact of
concrete structures.

One of the many possibilities is self-compacting concrete (SCC), which is often used
in buildings as a cover for industrial floors thanks to its very good workability [8]. The
basic properties and advantages of self-compacting concrete have already been described
by many researchers, e.g., in [9–11]. It has been proven in [12] that fibre-reinforced concrete
(FRC) can also be used for the creation of load-bearing structures thanks to the lower
formation of cracks on the concrete surface. Whenever there is a need for increased
strength, lower thickness and/or lower shrinkage of the concrete structure, it may be
suitable to apply steel fibres, because they are able to increase the concrete tensile strength
and the resistance of the concrete cover [13–15]. The combination of the advantages of SCC
and FRC creates the so-called self-compacting steel fibre-reinforced concrete (SCC-SFR).
This type of concrete has undeniable advantages when used as a top layer, especially
for industrial floors, and also as a cover layer of the load-bearing parts of RC bridges
exposed to aggressive substances [16,17]. The selection of the amount and type of fibre
depends mainly on the purpose of the application, and this problem has been the main
subject of extensive research [10,18,19]. The effect of various chemicals occurring in the
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industry or close to the bridges causes the degradation of the concrete and thus reduces
the durability of the concrete layer. Therefore, the service life of the structure is affected
as well. Long-term research related to the concrete attacked by chloride compounds has
been directed towards transport structures [20], structures adjacent to the sea [21], but also
industrial buildings with aggressive environments.

There are analytical and numerical approaches to calculate the durability and service
life of the structure. Many of them use the finite element method (FEM) in combination
with probabilistic methods. Probabilistic calculations of the durability of concrete structures
influenced by the aggressive substances play an important role [22–24]. The probabilistic
FEM solution is quite common for the assessment of static properties of civil engineering
structures [25–27]; however, it is not very common to extend it to the durability area,
and therefore many questions remain open in this field of science. These solutions can
be based on the simple Monte Carlo method [28,29] or one of its improved variants,
which were presented, for example, in [30,31]. In the case of the larger number of input
data, a sensitivity analysis is also desirable because it shows how much influence the
individual parameters have on the result [32]. A widespread problem in the case of steel
fibre-reinforced concrete (SFRC) has been the inappropriate dispersion and orientation of
the fibre. These problems have already been addressed by many researchers [10,33–35].

This paper aims to provide an analysis of the durability of the concrete in an aggressive
environment and subsequent sensitivity analysis of the individual input parameters. The
material parameters are based on a published study of SCC with different amounts of
fibres [16]. Other parameters are based on available variances and experiments [36–38].
It is not necessary to take the presented example from the point of view of a specified
construction, but the main goal is to point out the influence of parameters on the result of
stochastic assessment through sensitivity analysis. The presented results will help with
the effort of acceleration of stochastic durability calculations of RF structures with respect
to chloride-induced degradation. The results allow to simplify the previously presented
models, and, in the case of the low influence of an input parameter, they can be neglected
or introduced in a simplified way.

2. Material

The compositions of the mixtures are presented in Table 1 and correspond to previously
published research papers [16,39–41].

Table 1. Components of concrete mixtures [39].

Mixture No. OPC SCC 0% SCC 1% SCC 2%

Cement type I
42.5 R 313 kg/m3 490 kg/m3 490 kg/m3 490 kg/m3

Water 164 kg/m3 201 kg/m3 201 kg/m3 201 kg/m3

Sand 387 kg/m3 807 kg/m3 807 kg/m3 807 kg/m3

River gravel 1546 kg/m3 807 kg/m3 807 kg/m3 807 kg/m3

Super-
plastificator - 12.25 kg/m3 12.25 kg/m3 12.25 kg/m3

Stabilizer - 1.96 kg/m3 1.96 kg/m3 1.96 kg/m3

Steel fibres - 0 kg/m3 80 kg/m3 160 kg/m3

Water/cement
ratio (W/C) 0.52 0.41 0.41 0.41

The concretes were prepared with the cooperation of the laboratories of the Silesian
University in Gliwice and the VSB Technical University of Ostrava. Concrete mixtures from
a comprehensive project dealing with the durability of concrete structures were selected
for the study. The reference concrete was made of ordinary Portland cement (OPC). Self-
compacting concrete (SCC) was prepared without fibres and also with fibres in amounts of
1% and 2% by weight of mass in the mixtures. The fibres are made of steel, KE20/1.7 type.
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The same specific production procedures were followed. A concrete collapse test
was performed on all concretes, and it was proven that all mixtures belong to the same
consistency class. All investigated concretes have a cylinder strength in 28 days of about 40
to 50 MPa and, therefore, could be used in a bridge structure.

A previous study [16] showed that 2% of the fibres in concrete have a negative effect
on the results, and this percentage amount of fibre is not ideal; however, for stochastic
evaluation, this type of concrete was also included. For durability analysis, it was necessary
to obtain other parameters, such as the diffusion coefficient, the coefficient of variation
related to the variance of the values during the measurement and the ageing factor, which
shows how the diffusion coefficient changes over time based on the maturation of concrete.
The diffusion parameter was determined using three methods, which are described in
detail in [16]. The ageing coefficient was determined using the least-squares method, which
is described in detail, for example, in [42,43]. The material properties necessary for the
stochastic calculation are listed in Table 2.

Table 2. Diffusion properties.

Mixture No. Diffusion Coefficient
(m2/s × 10−11)

Coefficient of
Variation (-) Ageing Factor (-)

OPC 1.0723 0.035 0.1344
SCC 0% 1.1575 0.107 0.2779
SCC 1% 1.7311 0.036 0.1157
SCC 2% 2.1111 0.104 0.0932

3. Stochastic and Sensitivity Analysis

The numerical model for the calculation of corrosion initiation based on the finite
element method was introduced earlier in [44,45]. It allows for probabilistic analysis of
the reinforced concrete structure with respect to the effect of chloride ions. The structure
examined in this example is a reinforced concrete slab exposed to the ingress of chlorides,
and the cross-sectional dimensions are 1.0 m in width and 0.20 m high. All inputs are
summarised in Table 3.

Table 3. Input variable parameter data for the analyses.

Parameter Unit
Probabilistic Approach

Range/Value Function

Variation coefficient, cvRV - −1.00–1.00 Constant
Width of the investigated cross-section, b m 1.00 Constant
Height of the investigated cross-sectional surface, h m 0.20 Constant
Depth of reinforcement, Z m 0.04–0.11 Histogram [36]
Chloride threshold for corrosion initiation, Cth % weight of cement 0.09–0.51 Histogram [37]
Concentration of chloride at the surface, C0 % weight of cement 0.21–1.63 Histogram [46]
Initial concentration of chloride in the cross-section, Cb % weight of cement 0 Constant
Monitored life span, t years 100 Constant
Number of simulations - 100,000 Constant

The numerical example was performed using a probabilistic approach with a number
of 100,000 simulations. The Monte Carlo probabilistic solution was applied in each step of
the simulation. The durability analysis was based on a comparison of the actual chloride
concentration at the reinforcement level and the chloride threshold value. When the
chloride threshold is exceeded, a situation arises where corrosion of the reinforcement can
be initiated. The stochastic approach evaluates this at each simulation step and uses the
quantity function to evaluate an estimate of the probability of failure. Probability levels of
5%, 10% and 25% were selected.

The objective of the sensitivity analysis of the model is to quantify the relative im-
portance of the individual input parameters. This type of analysis is important mainly to
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reduce the space of random variables for stochastic calculation. An overview of available
methods is provided in many review articles, e.g., [32,47–49]. A fundamentally simple
system of correlation was chosen between the results of the stochastic calculation and the
input values [50]. Thus, in the first instance, a linear correlation is sought that shows a high
dependence (+1) of the result on the input or a low dependence (−1). The next step is to
sort the correlation coefficients for each input variable into a 100% summation to determine
the degree between them.

4. Results and Discussion

As the monitored results, the probability quantile function, the correlation coefficients
between the random variables and the resulting values of the reliability function and the
significance analysis of the input variables on each other were selected.

4.1. Probability of Corrosion Initiation

The problem studied is the probability of corrosion initiation. The quantile function of
corrosion initiation for all four investigated concretes is shown in Figure 1.
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Figure 1. Probability of corrosion initiation is viewed as a quantity function: (a) OPC, (b) SCC 0%, (c) SCC 1%, (d) SCC 2%. 
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Corrosion initiation represents a period when chloride penetrates the cover layer of
concrete, but corrosion has not yet started in any place in the reinforcement [51,52]. As
a default result, probability levels of 5%, 10% and 25% are used based on the selected
design life from 0 to 100 years. It should be noted that the numerical nonstationary model
was used to analyse the first 100 years of the structure’s life. If corrosion initiation is not
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detected, the time to exceed the limit is longer than 100 years. This is the reason why
the probability values are vertical on the graphs. Table 4 summarises the results of the
individual limiting probabilities and the corresponding years.

Table 4. Period to the initiation of corrosion, ti (years), for a selected probability of the initiation
of corrosion.

Mixture No.
Probability of Corrosion Initiation Pf (%)

5 10 25

OPC 6.60 7.78 13.43
SCC 0% 10.15 12.61 25.76
SCC 1% 4.15 4.79 7.90
SCC 2% 3.31 3.82 6.28

Based on the probability results, one should notice that the possibility of corrosion
occurs earlier for self-compacting concrete with fibres, for both the 1% and 2% mixes.
On the contrary, the probability of failure is observed to be the latest for self-compacting
concrete without fibres. Standard concrete (OPC) is then worse than SCC without fibres but
better than SCC with steel fibres. SCC, in general, may exhibit better diffusion properties,
but conversely, fibres may increase the area bond between the concrete parts and thus
negatively affect diffusion [10,53].

4.2. Coefficients of Correlation

Figures 2 and 3 reveal a relationship between the chloride threshold for the initiation
of corrosion (Cth), the chloride concentration on the surface (C0), the depth of reinforce-
ment (Z) and the diffusion coefficient (D) as inputs on one side, and the results of the
reliability function on the other side. The chloride threshold for corrosion initiation has a
significant correlation factor with the reliability function values in the case of all results.
With increasing the chloride threshold, the reliability function decreases, and vice versa.
For the chloride concentration at the surface, the opposite linear correlation occurs, i.e.,
positive and also significantly high. The concrete cover thickness and diffusion coefficient
have a low correlation, and it is not possible to estimate what effect they have on the result.
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4.3. Significance Analysis

The last results are from the significance analysis, which is shown in Figures 4 and 5.
It can be seen that the results were different for each concrete. OPC was influenced to a
similar extent by the chloride threshold and surface concentration. The thickness of the
concrete cover had a smaller influence, and the diffusion coefficient affected the result
the least. For SCC without fibres, the results were quite different, and all variable inputs
influenced the results relatively.
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The opposite trend was then observed for SCC with 1% and 2% fibres, where the
influence of reinforcement depth and diffusion coefficient was reduced, and even for the
last mixture with 2% fibres, it is the thickness of the cover that had the least influence.

A global view of all results showed that OPC and SCC did not differ much in the
evaluation of input sensitivity and significance analysis. However, the inclusion of fibres in
the concrete affects the outcome differently and, therefore, needs to be taken into account
in the case of other probabilistic analyses.

5. Conclusions

This paper provided new insights into sensitivity analysis, which is the ideal tool for
demonstrating which input parameters influence or do not influence the design outcome
of reinforcement failure probability with respect to aggressive environments.

The current study was limited to plain ordinary concrete and self-compacting concrete
with and without fibres. This concrete can be used as a part of the load-bearing structures in
aggressive environments, such as road bridges. The present findings may help to solve the
problem of having to use more simulations when applying the Monte Carlo method, and
therefore lower the computational power requirements. The appropriate determination of
input parameters, that do not highly affect the results, may also significantly speed up the
calculation. The reported results provide further evidence that different concretes and their
different properties affect probabilistic analyses, and therefore, the sensitivity analysis must
be an integral part of any calculation. Furthermore, the assumption that SCC reports better
chloride diffusion protection properties has been confirmed and, on the contrary, fibres can
negate such positive properties. Similar conclusions and hypotheses may be applied to
other structural components and models. Therefore, this aspect needs to be analysed by
more extensive preparation of sensitivity analysis with different concrete fibres.
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