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Abstract: A homogenization-based five-step multi-scale finite element (FsMsFE) simulation frame-
work is developed to describe the time-temperature-dependent viscoelastic behavior of 3D braided
four-directional composites. The current analysis was performed via three-scale finite element
models, the fiber/matrix (microscopic) representative unit cell (RUC) model, the yarn/matrix (meso-
scopic) representative unit cell model, and the macroscopic solid model with homogeneous property.
Coupling the time-temperature equivalence principle, multi-phase finite element approach, Laplace
transformation and Prony series fitting technology, the character of the stress relaxation behaviors at
three scales subject to variation in temperature is investigated, and the equivalent time-dependent
thermal expansion coefficients (TTEC), the equivalent time-dependent thermal relaxation modulus
(TTRM) under micro-scale and meso-scale were predicted. Furthermore, the impacts of temperature,
structural parameters and relaxation time on the time-dependent thermo-viscoelastic properties of
3D braided four-directional composites were studied.

Keywords: temperature; braided composite; three-scale; thermo-viscoelastic behavior

1. Introduction

Three-dimensional (3D) braided composites are increasingly being used in the manu-
facturing of structural parts due to their incomparable advantages compared with tradi-
tional laminated composites in recent years. In order to ensure the safety and reliability in
use of the 3D braided composite, the mesoscopic configuration modeling and mechanical
performance prediction under multiple working conditions [1–6] of 3D braided composites
have recently received considerable attention by many scholars. It is well known that
the main body of the braided composites is matrix material, and polymer as matrix ma-
terials shows obvious viscoelasticity in composites. Hence, the braided composites will
also exhibit considerable viscoelastic behavior. With the rapid development of science
and technology, various approaches [7–17] have been devised to deal with the viscoelas-
tic problems of 3D braided composites. Liu et al. [7] and Li et al. [8] studied the creep
behavior of resin-based 3D braided composites by tensile creep test, and discussed the
influence of braided structure and fiber volume fraction on the creep behavior of materials.
Priyank et al. [9] set up a three-dimensional micromechanical analytical model based on
the classical laminate theory, and studied the equivalent elastic and viscoelastic proper-
ties of a 3D braided composites. In addition, the multi-scale method was extensively to
predict the viscoelastic behaviors of 3D braided composites. Yuan et al. [10] used the
multi-scale method to study the viscoelastic properties of 3D braided composites, and
gave the variation law of viscoelastic properties with process parameters. Cai et al. [11]
studied the viscoelasticity of 3D braided composites based on the interior cell model and
yarn model, and discussed the influence of braiding parameters on the viscoelasticity
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behavior. Mourid et al. [12] developed an analytical homogenization technique to predict
the viscoelastic behavior of 3D braided composites by extending the elastic homogenization
frame and coupling the Laplace–Carson transforms. Zhou et al. [13] studied the elastic
constants and creep performance by a multiple scale viscoelastic model for the 3D braided
composites. Liu et al. [14] studied the viscoelastic behaviors of 3D braided composites
based on a yarn solid model and mechanics of structure genome plate model. Jia et al. [15]
analyzed the nonlinear viscoelastic responses and damage mechanisms of 3D orthogonal
composite under quasi-static tensile loading based on a micro/meso-scale repeated unit
cells model. Tate et al. [16] presented the viscoelastic effects on fatigue behavior of 3D
carbon/epoxy braided composites based on the experimental methods. Zhai et al. [17] pro-
posed a multi-scale calculation method to study the stress relaxation response of 3D braided
composites at three scales, and characterized the viscoelastic properties at different scales.

Thermoviscoelasticity is an important thermo mechanical property for failure and
failure of resin matrix composites, which is often used in the long-term and variable
temperature environment. Hwang et al. [18] predicted the stress and deformation histories
of notchless and notched graphite/epoxy composites under mechanical and thermal loads
based on finite-element formula. Muddasani et al. [19] presented some experimental works
and finite element analyses of nonlinear thermo-viscoelastic behaviors for multilayered
composites. Li et al. [20] established a 3D incremental viscoelastic constitutive model, the
residual stresses and the curing deformation of T-shaped composite structures during
curing studied. Similarly, it is particularly significant to study the thermo-viscoelastic
behaviors before the 3D resin-based braided composite can be confidently used in the
primary structures. Seifert et al. [21] studied the time-temperature dependent material
properties of 3D braided composite material based on experimental and numerical methods.
Hirsekorn et al. [22] obtained the viscoelastic behavior of 3D braided composites from
the dependence of component on temperature and degree of cure by a homogenization
strategy. Cai et al. [23] reported the thermo-viscoelastic properties of 3D braided composites
in different temperature states based on the three-cell model. Sun et al. [24] predicted the
dynamic thermo-viscoelasticity response of 3D braided composites to alternating stress
load at room temperature, and studied the relationship between the complex compliance
and angular frequency based on the mesoscopic representative unit cell (RUC).

These great results are of great significance to explore the thermo-viscoelastic perfor-
mance of 3D braided composites, but the research on the thermo-viscoelasticity behavior of
3D braided composites are mostly based on the meso-scale RUC and the time-temperature-
dependent stress distributions have not received special attention. The time-temperature-
dependent mechanical behavior correlation at different scales is not clear, some alternative
numerical methods are necessary. To address this drawback, this paper presented a
homogenization-based five-step multi-scale finite element (FsMsFE) framework for han-
dling the thermo-viscoelasticity behaviors of 3D braided four-directional composites based
on the correspondence principle and time-temperature equivalence principle. In the
micro-scale, each kind of fiber and matrix is modeled separately. In the meso-scale, the
reinforcement structure is modeled and yarns composed of several thousand of fibers
are regarded as homogeneous material. In the macro-scale, the structure is modeled as
homogeneous material. Based upon the Prony series fitting, the characters of the ther-
mal stress relaxation at three scales subject to variation in temperature are investigated,
and the equivalent time-dependent thermal expansion coefficients (TTEC), the equivalent
time-dependent thermal relaxation modulus (TTRM) in micro/meso-scale were predicted.
Furthermore, the effects of braiding parameters, relaxation time and temperature on the
time-dependent thermo-viscoelastic properties of 3D braided four-directional composites
were analyzed. This research could also be extended to the study of thermo-viscoelasticity
behaviors of 3D multidirectional polymer-based braided composites or the inhomogeneous
materials with periodic structures.
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2. Multi-Scale Coupling for 3D Braided Composites

In fact, the change of material properties at a lower scale plays an important role in the
failure process of macro-structure, but it is often difficult to capture the mechanical response
of materials from the perspective of calculation. According to the periodical characteristic of
3D four-directional braided architecture, the numerical models and thermo-viscoelasticity
behavior analysis of 3D four-directional braided composites are carried out on three-scales,
such as the fiber/matrix scale, the fiber tow/matrix scale, and the homogeneous 3D braided
composites scale. As shown in Figure 1, the scheme for the multi-scale modeling framework
of 3D braided four-directional composites is firstly presented. The coupling technique for
the multi-scale thermo-viscoelasticity behaviors prediction of 3D braided four-directional
composites is given as following.
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Figure 1. Multiscale model decomposition of 3D four-directional braided composites.

2.1. Association of Multiple Scales

The homogenization method is usually regarded as an effective method to solve
multi-scale problems of composite materials with periodic microstructures [25–27], the
multi-scale thermo-viscoelastic problem of 3D braided composites is solved based on the
homogenization method. Since characterization of the resin-based 3D braided composites
requires scale transitions between more than two scales, different models were defined. On
the macro scale, the meso-scale RUC is assumed periodic. Similar to the macro-scale model,
meso-scale RUC is composed of yarns and matrix, yarns are assumed to be formed from
micro scale fiber bundle RUC. Let x, y, z denote the coordinate system of the macro-scale,
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the meso-scale and the micro-scale, respectively. They are related to one another scale by
the positive real parameters ε and ω (0 < ε << 1, 0 < ω << 1) as follows.

y =
x
ω

, z =
y
ε

. (1)

2.2. Equations for the Micro-Scale, Meso-Scale and Macro-Scale

When the yarn of meso-scale RUC is regarded as an in-homogeneous viscoelastic
medium with periodical structure, the static thermo-viscoelastic problem in equilibrium
condition can be effectively expressed in y and z coordinate systems as follows [28].∫

Ωε

{∫ t
0 Gijkl(T, y, z, t− τ) ∂

∂τ

[
∂uε

k(y,τ)
∂yl

]
dτ − Gijkl(T, y, z, t)αklTε(y)

}
∂vi
∂yj

dΩ

−
∫

Ωε fividΩ−
∫

Γ tividΓ = 0
(2)

where uε
k is displacement components, αkl is thermal expansion coefficient, Tε is tempera-

ture increment, fi, ti are body force and traction force, vi is virtual displacement, Ωε, Γ are
the yarn solid part and the boundary of domain. Gijkl is the static relaxation tensor at T of
the component materials, which can be calculated by translating along the time axis based
on the time-temperature equivalence principle [23], as shown in Figure 2. αT is obtained by
the Williams-Landel-Ferry equation and C1, C2 are the material constants.

Materials 2021, 14, x FOR PEER REVIEW 4 of 20 
 

 

scale, the meso-scale and the micro-scale, respectively. They are related to one another 

scale by the positive real parameters ε and   (0 < ε << 1, 0 <   << 1) as follows. 

yx
y = , z =

ω ε
. (1) 

2.2. Equations for the Micro-Scale, Meso-Scale and Macro-Scale 

When the yarn of meso-scale RUC is regarded as an in-homogeneous viscoelastic 

medium with periodical structure, the static thermo-viscoelastic problem in equilibrium 

condition can be effectively expressed in y and z coordinate systems as follows [28]. 

ε

ε

ε
t

εk i
ijkl ijkl kl

Ω 0
l j

i i i i
Ω Γ

u (y,τ) v
G (T,y,z,t τ) dτ G (T,y,z,t)α T (y) dΩ

τ y y

f v dΩ- t v dΓ =

    
   

      



 

  0

 (2) 

where ku  is displacement components, kl  is thermal expansion coefficient, T  is tem-

perature increment, if , it  are body force and traction force, iv  is virtual displacement, 

 ,   are the yarn solid part and the boundary of domain. ijklG  is the static relaxation 

tensor at T of the component materials, which can be calculated by translating along the 

time axis based on the time-temperature equivalence principle [23], as shown in Figure 2. 

T  is obtained by the Williams-Landel-Ferry equation and 
1C , 

2C  are the material con-

stants. 

 

Figure 2. Time-temperature equivalence principle. 

According to the homogenization method [29], the yarn displacements in the ε-space 

are asymptotically expanded into Equation (3). The terms 0( N )n
iu n  are z-periodic 

functions called correctors of order n of the displacement field, and 0 ( , )iu y t  is the effec-

tive displacement only depending on the meso-scopic coordinates y . 

0

1

( , ) ( , ) ( , , )
n

i i iu y t u y t u y z t  






   (3) 

The stress-strain relationship for a static thermo-viscoelastic material can be written 

as [28]. 

0

( )
( , , ) ( , , , ) ( , , , ) ( )

t
kl

ij ijkl ijkl kl

d
T y t G T y z t d G T y z t T y

d
  

   


    (4) 

G(t) 

log t 
o 

T0 T= T0 + Tε 

log aT 

G(t, T) = G(t/aT, T0), log aT = −C1 Tε/(C2 + Tε) 

 

Figure 2. Time-temperature equivalence principle.

According to the homogenization method [29], the yarn displacements in the ε-space
are asymptotically expanded into Equation (3). The terms ui

n(n ∈ N0) are z-periodic
functions called correctors of order n of the displacement field, and u0

i (y, t) is the effective
displacement only depending on the meso-scopic coordinates y.

uε
i (y, t) = u0

i (y, t) +
n

∑
λ=1

ελuλ
i (y, z, t) (3)

The stress-strain relationship for a static thermo-viscoelastic material can be writ-
ten as [28].

σε
ij(T, y, t) =

∫ t

0
Gijkl(T, y, z, t− τ)

dεkl(τ)

dτ
dτ − Gijkl(T, y, z, t)αklTε(y) (4)

The correspondence principle [30] and Laplace transformation is used to Equations (2)–(4).
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∫
Ωε

[
sG̃ijkl(T, y, z, s)

∂ũε
k(y, s)
∂yl

− G̃ijkl(T, y, z, s)αklTε(y)
]

∂vi
∂yj

dΩ−
∫

Ωε
f̃ividΩ−

∫
Γ

p̃ividΓ = 0 (5)

σ̃ε
ij(T, y, s) = sG̃ijkl(T, y, z, s)

∂ũε
k(y, s)
∂yl

− G̃ijkl(T, y, z, s)αklTε(y) (6)

where variables with the mark ~ show that they are Laplace transformed, s is the Laplace
transformed parameter.

Laplace transform is used to Equation (3) and take it into Equation (5), equating the
terms with the same power of ε, the following expressions can be obtained.

1
ε

∫
Y1

sG̃ijkl(T, y, z, s)

{[
∂ũ0

k(y, s)
∂yl

+
∂ũ1

k(y, z, s)
∂zl

]
− αkl T̃ε(y)

}
∂vi
∂zj

dY1 = 0 (7)

ε0
∫

Ωε

{
1
|Y1|
∫

Y1
sG̃ijkl(T, y, z, s)

[
∂ũ0

k(y,s)
∂yl

+
∂ũ1

k(y,z,s)
∂zl

− αkl T̃ε(y)
]

∂vi
∂yj

}
dY1dΩ

=
∫

Ωε f̃ividΩ +
∫

Γ p̃ividΓ
(8)

As Equation (7) is linear with respect to ũ0
k , its solution ũ1

k can be expressed in terms
of ũ0

k as

ũ1
i (y, z, s) = −χ̃kl

i (z, s)
∂ũ0

k(y, s)
∂yl

+ Φ̃i(z, s)T̃ε(y), (9)

where χ̃kl
i and Φ̃ represent the z-periodic characteristic displacement for viscoelasticity and

thermo-viscoelasticity problem.
Replacing Equation (9) in Equation (7), the following equations can be obtained

∫
Y1

G̃ijkl(T, y, z, s)
∂vi
∂zj

dY1 −
∫

Y1

G̃ijmn(T, y, z, s)
∂χ̃kl

m(z, s)
∂zn

∂vi
∂zj

dY1 = 0 (10)

∫
Y1

G̃ijkl(T, y, z, s)α̃kl
∂vi
∂zj

dY1 −
∫

Y1

G̃ijkl(T, y, z, s)
∂Φ̃k(z, s)

∂zl

∂vi
∂zj

dY1 = 0 (11)

Then, functions χ̃kl
i and Φ̃i can be obtained according to Equations (10) and (11).

According to Equation (9), Equation (4) can be written as

σ̃0
ij(T, y, z, s) = s

[
G̃ijkl(T, y, z, s)− G̃ijmn(T, y, z, s) ∂χ̃kl

m(z,s)
∂zn

]
∂ũ0

k(y,s)
∂yl

−
[

G̃ijkl(T, y, z, s)αkl − G̃ijkl(T, y, z, s) ∂Φ̃k(z,s)
∂zl

]
T̃ε(y)

(12)

where σ̃0
ij(T, y, z, s) is the approximation of the micro-scale stress field in Laplace trans-

formed domain.
Considering Equations (8) and (9) and taking the volume average by f̃ H = 1

|Y|
∫

Y f̃ dy,
the following result is obtained∫

Ωε

{
1
|Y1|
∫

Y1
s
[

G̃ijkl(T, y, z, s)− G̃ijmn(T, y, z, s) ∂χ̃kl
m(z,s)
∂zn

]
∂ũ0

k(y,s)
∂yl

dY1

}
∂vi
∂yj

dΩ−∫
Ωε

{
1
|Y1|
∫

Y1

[
G̃ijkl(T, y, z, s)αkl − G̃ijkl(T, y, z, s) ∂Φ̃k(z,s)

∂zl

]
dY1∆T

}
∂vi
∂yj

dΩ =
∫

Ωε f̃ividΩ +
∫

Γ p̃ividΓ
(13)

Comparing with Equation (5) and according to Equations (10) and (11), the Laplace
transformation of equivalent relaxation modulus of yarns G̃H1

ijkl and equivalent TTRM of

yarns β̃H1
ij can be written as

G̃H1
ijkl(T, y, s) =

1
|Y1|

∫
Y1

[
G̃ijkl(T, y, z, s)− G̃ijmn(T, y, z, s)

∂χ̃kl
m(z, s)
∂zn

]
dY1 (14)
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β̃H1
ij (T, y, s) = 1

|Y1|
∫

Y1

[
G̃ijkl(T, y, z, s)αkl − G̃ijkl(T, y, z, s) ∂Φ̃k(z,s)

∂zl

]
dY1

= 1
|Y1|
∫

Y1

[
G̃ijkl(T, y, z, s)αkl − G̃ijkl(T, y, z, s)αkl

∂χ̃kl
m(z,s)
∂zn

]
dY1

(15)

Thus, the equivalent stress of the yarn composites in Laplace domain can be written as

σ̃H1
ij (T, y, s) = sG̃H1

ijkl(T, y, s)
∂ũ0

k(y, s)
∂yl

− β̃H1
ij (T, y, s)T̃ε(y) (16)

Under small deformation assumption and according to Liu et al. [28], the linear
viscoelastic behavior of the yarn composite can be described in terms of the strain–stress
relation by the Laplace inverse transformation for Equation (16).

σH1
ij (T, y, t) =

∫ t

0
GH1

ijkl(T, y, t− τ)
∂

∂τ

∂u0
k(y, τ)

∂yl
dτ − βH1

ij (T, y, t)Tε(y). (17)

Hence, Equation (17) can be seen as the equivalent constitutive equation of thermal
stress relaxation for viscoelastic composites.

Although the constitutive equation of viscoelastic composites is similar to that of
single-phase material expressed by Equation (4), the thermal stress relaxation law of the
two materials is different. The thermal stress relaxation law of single-phase materials is
the same as that caused by the instantaneous thermal strain αklTε, but the thermal stress
relaxation law of viscoelastic composites is different. To further illustrate, parameter αH1

kl is
introduced and the equivalent TTRM β̃H1

ij can be written as

β̃H1
ij (T, y, t) = G̃H1

ijkl(T, y, t) αH1
kl (18)

Therefore, the following form of parameter αH1
kl can be obtained and it can be found

that the parameter αH1
kl is time-dependent. At the same time, it can also be known that the

strain caused by initial temperature increment has a development process, which cannot
be completed instantaneously for viscoelastic composites.

αH1
kl (t) =

[
GH1

ijkl(T, y, t)
]−1

βH1
ij (T, y, t) (19)

Replacing Equation (17) by Equation (19), the following result is given and the param-
eter αH1

kl (t) can be defined as equivalent TTEC by comparing with Equation (4).

σH1
ij (T, y, t) =

∫ t

0
GH1

ijkl(T, y, t− τ)
∂

∂τ

∂u0
k(y, τ)

∂yl
dτ − GH1

ijkl(T, y, t)αH1
kl (t)Tε(y) (20)

When the 3D braided composites of macro-scale is regarded as an in-homogeneous
viscoelastic medium with periodical meso-scale RUC, the static thermo-viscoelastic prob-
lem in equilibrium condition can be effectively expressed in x and y coordinate systems
as follows.∫

_
Ω

ω

{∫ t
0 Gijkl(T, x, y, t− τ) ∂

∂τ

[
∂uω

k (x,τ)
∂xl

]
dτ − Gijkl(T, x, y, t)αkl(t)Tε(x)

}
∂vi
∂xj

d
_
Ω

=
∫
_
Ω

ω

_
f ivid

_
Ω +

∫
Γ
_
p ivid

_
Γ

(21)

where
_
f i is body force,

_
p i, vi are traction force and virtual displacement, Gijkl is the static

relaxation tensor of the component materials. uω
k is the displacement, αkl(t) is the time-

dependent thermal expansion coefficient,
_
Ω ω,

_
Γ are the macro-scale solid part and the

boundary of the domain.
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Based on the homogenization method, a perturbation of the macro-scale displacement
vector u0

i (x, t) is performed with respect to the meso-scale coordinate system y.

uω
i (x, t) = u0

i (x, t) + ωu1
i (x, y, t) + ω2

i u2
i (x, y, t) + . . . (22)

Applying the correspondence principle to thermo-viscoelastic analysis of macro-scale
and meso-scale, Laplace transform is made to Equations (21) and (22). By substituting
Equation (22) into Equation (21) and sorting out the items about ω. Considering the
coefficient of ω−1 and ω0, the following equations can be obtained according to the homog-
enization theory [28].

∫
Y2

sG̃ijkl(T, x, y, s)

{[
∂ũ0

k(x, s)
∂xl

+
∂ũ1

k(x, y, s)
∂yl

]
− α̃kl(s)T̃ε(x)

}
∂vi
∂zj

dY2 = 0 (23)

∫
_
Ω

ω

{
1
|Y2|
∫

Y2
sG̃ijkl(T, x, y, s)

[
∂ũ0

k(x,s)
∂xl

+
∂ũ1

k(x,y,s)
∂yl

− α̃kl(s)T̃ε(x)
]

∂vi
∂yj

}
dY2d

_
Ω

=
∫
_
Ω

ω

_̃
f ivid

_
Ω +

∫
Γ
_̃
p ivid

_
Γ

(24)

The separation variable method is used to solve Equation (23), ũ1
k(x, y, s) can be

expressed in terms of ũ0
k(x, s) as

ũ1
i (x, y, s) = −X̃kl

i (y, s)
∂ũ0

k(x, s)
∂xl

+ Ψ̃i(y, s)T̃ε(x) (25)

where X̃kl
m and Ψ̃k represent the y-periodic characteristic displacement for viscoelasticity

and thermo-viscoelasticity problem, respectively.
Replacing Equation (25) by Equation (23), the characteristic displacement field vector

X̃kl
m and Ψ̃k are the solution of the following equations:

∫
Y2

[
G̃ijkl(T, x, y, s)− G̃ijmn(T, x, y, s)

∂X̃kl
m(y, s)
∂yn

]
∂vi
∂yj

dY2 = 0 (26)

∫
Y2

[
G̃ijkl(T, x, y, s)

∂Ψ̃k(y, s)
∂yl

− G̃ijkl(T, x, y, s)α̃kl(s)

]
∂vi
∂yj

dY2 = 0 (27)

Replacing Equation (24) in Equation (25), the Laplace transformation of equivalent
relaxation modulus G̃H2

ijkl , equivalent TTRM β̃H2
ij and equivalent TTEC α̃H2

ij for the meso-
scale RUC can be similarly expressed as:

G̃H2
ijkl(T, x, s) =

1
|Y2|

∫
Y2

[
G̃ijkl(T, x, y, s)− G̃ijmn(T, x, y, s)

∂X̃kl
m(y, s)
∂yn

]
dY2 (28)

β̃H2
ij (T, x, s) = 1

|Y2|
∫

Y2

[
G̃ijkl(T, x, y, s)α̃kl(s)− G̃ijkl(T, x, y, s) ∂Ψ̃k(y,s)

∂yl

]
dY2

= 1
|Y2|
∫

Y2

[
G̃ijkl(T, x, y, s)α̃kl(s)− G̃ijmn(T, x, y, s)α̃kl(s)

∂X̃kl
m (y,s)
∂yn

]
dY2

(29)

α̃H2
ij (s) =

[
G̃H2

ijkl(T, x, s)
]−1

β̃H2
kl (T, x, s) (30)

According to Equations (21) and (22), the approximation of the meso-scale stress field
in Laplace transformed domain can be written as

σ̃0
ij(T, x, y, s) = s

[
G̃ijkl(T, x, y, s)− G̃ijmn(T, x, y, s) ∂X̃kl

m (y,s)
∂yn

]
∂ũ0

k(x,s)
∂xl

−
[

G̃ijkl(T, x, y, s)α̃kl(s)− G̃ijkl(T, x, y, s) ∂Ψ̃k(y,s)
∂yl

]
T̃ε(x)

(31)
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Based upon the above derivation, the macroscopic equivalent stress vector σ̃H2
ij can be

expressed as

σ̃H2
ij (T, x, s) = sG̃H2

ijkl(T, x, s)
∂ũ0

k(x, s)
∂xl

− β̃H2
ij (T, x, s)T̃ε(x) (32)

3. Analysis Procedure for 3D Braided Composites
3.1. Inverse Laplace Transformation

Based on the previous derivation, the Laplace transform of homogenized viscoelastic
behavior is solved by using the commonly used homogenization technique of elastic
materials in the transformation space. In order to obtain this result, the inverse Laplace
transform is needed to calculated the homogenized thermal-viscoelastic behavior in the
time domain.

Assuming that the viscoelastic properties of 3D braided composites satisfy the fol-
lowing three-parameter model [31], the viscoelastic functions can be represented by the
n-order Prony series expressed as follows

G(t) = G∞ +
n

∑
i=1

Gie
− t

τi , (33)

where the G∞, Gi, τi are the long-term modulus, Prony coefficients and relaxation times,
respectively.

In the Laplace transformed domain, the viscoelastic functions can be expressed as

G̃(s) =
G∞

s
+

n

∑
i=1

Gi

s + 1
τi

, (34)

where the non-linear least square method [32] is used to calculate the coefficients G∞, Gi,
τi. Then, the equivalent thermo-relaxation response in the time domain can be considered
as Equation (33).

3.2. Computation of the Effective Properties for Micro-Scale and Meso-Scale

In order to analyze the thermo-viscoelastic behavior of 3D braided composites, the
details of the FE method for computing the micro-scale characteristic functions χ̃kl

i and
meso-scale characteristic function X̃kl

i are necessary.
The FE discretized form of Equations (10) and (26) would be written as [

K̃z
]

[0]

[0]
[
K̃y
]  { [

φ̃
][

ϑ̃
] } =

{
[Fz]
[Fy]

}
(35)

where
K̃z =

∫
Z

BTG̃
z
BdZ (36)

K̃y =
∫

Y
BTG̃

y
BdY (37)

F̃z =
∫

Z
BTG̃zdZ (38)

F̃y =
∫

Y
BTG̃ydY, (39)

where B is the shape function derivative matrix. G̃q(q = z, y) is the Laplace transformed
relaxation tensor matrix of the micro or meso-scale [13]. φ̃ and ϑ̃ are the discretized form of
the corrector χ̃ and X̃. The right term of Equation (35) is a matrix F̃q(q = z, y).
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To obtain the matrix φ̃ and ϑ̃ in Equation (35), the multi-phase finite element (MPFE)
method [33] was employed. A micro-scale RUC and a meso-scale RUC are composed of
six kinds of 20-node rectangular isoparametric elements in Figure 1. Based on the MPFE
method, the Gauss quadrature formulae are employed to calculate all element integrals
in Equations (36)–(39). In addition, 27 Gauss integral points are selected in each kind of
element in this work.

K̃L =
N

∑
n=1

(
3

∑
ii=1

3

∑
jj=1

3

∑
kk=1

WiiW jjWkk

(
[B]T

[
G̃α

]
[B]det[J]

)
ξ=ξii , η=ηjj , ζ=ζkk

)
, L = z, y (40)

F̃L =
N

∑
n=1

(
3

∑
ii=1

3

∑
jj=1

3

∑
kk=1

WiiW jjWkk

(
[B]T

[
G̃α

]
det[J]

)
ξ=ξii , η=ηjj , ζ=ζkk

)
, α = f i, ma, mix1, mix2 (41)

where N is the number of 20-node rectangular isoparametric elements of micro-scale
RUC or meso-scale RUC, respectively. G̃α is the material property matrix of components,
Wii, W jj, Wkk is the corresponding weights. J is the Jacobian matrix.

On the premise of fine mesh generation and convergence of finite element results, the
matrix φ̃ and the homogenized effective thermo-viscoelastic properties of the yarns can
be obtained firstly. Similarly, once the matrix ϑ̃ has been determined, the homogenized
effective thermo-viscoelastic properties of the meso-scale RUC can be obtained.

3.3. FsMsFE Analysis Sequence

In the following, a detailed description of the proposed five-step multi-scale strategy
for determining the thermo-viscoelastic behaviors of 3D braided composites will be given.

(1) Establish a micro-scale RUC model. Then, Equation (35) is solved to obtain the
characteristic function φ̃. Thereafter, the equivalent thermo-viscoelastic properties
α̃H1

kl and β̃H1
ij of the yarns are computed by Equations (15) and (19).

(2) Establish a meso-scale RUC model of 3D four-directional braided composites. The
characteristic function ϑ̃ for the meso-scale unit cell of 3D braided four-directional
composites can be obtained similar to that of micro-scale RUC. Then the equivalent
TTRM β̃H2

ij and equivalent TTEC α̃H2
ij of the meso-scale RUC can be calculated by

means of Equations (29) and (30).
(3) Establish a macroscopic model with uniform mechanical properties, which was calcu-

lated from homogenization analysis of meso-scale RUC. Based on a certain boundary
condition, the homogenization displacement ũ0

k(x, s) can be obtained.
(4) Calculate the meso-scale stress field inside the basic RUC belonging to the macroscopic

location by Equation (31).
(5) Calculate the micro-scale stress field related to the yarn by Equation (12).

4. Results and Discussion
4.1. Numerical Models and Verification

In this section, the thermo-viscoelastic behaviors of 3D four-directional braided com-
posites are studied based on the FsMsFE method presented in this paper. The reinforced
fiber is T300 carbon and the matrix is epoxy resin ED-6, respectively. The material parame-
ters of the carbon fiber and resin are shown in Table 1. In this work, the time-dependent
thermo-viscoelastic response of the 3D braided composite clamped-free beam with an
instantaneous temperature increment Tε and a certain forced displacement at the free edge
are studied. As shown in Figure 3, the dimension of the beam is 90 × 20 × 6 mm3, the
temperature increment is Tε and the forced displacement at the free edge is d = 0.1 mm.
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Table 1. Component material parameters of 3D braided composites in room temperature [23].

Phase Parameters Value

Reinforced fiber

Transverse modulus Ef1 (GPa) 13.8
Longitudinal modulus Ef3 (GPa) 220

Shear modulus Gf13 (GPa) 9.0
Shear modulus Gf12 (GPa) 5.52

Longitudinal poisson’s ratio γf12 0.25
Transverse poisson’s ratio γf31 0.3

Longitudinal thermal expansion coefficient α11 (10−6/K) −0.3
Transverse thermal expansion coefficient α22 (10−6/K) 8.0

Matrix

Elastic coefficient G1 (GPa) 3.2
Elastic coefficient G2 (GPa) 1.8

Viscosity coefficient η2 (GPa·h) 300
Volume modulus K (GPa) 5.56

Thermal expansion coefficient αm (10−6/K) 54
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When the fiber volume fraction of the yarn is 0.28, the microscale RUC consisted of
3024 20-node rectangular isoparametric elements is used to calculate the effective relaxation
modulus of the yarn and verify the accuracy of the present FsMsFE method. To obtain the
effective relaxation modulus of the yarn by Equation (14), it is necessary to calculate the
corrector χ̃ via Equation (35). In this work, it is assumed that the reinforcement phase is
considered as elastic transversely isotropic material. The volume deformation of the matrix
is considered to be linear elastic and the shear deformation conforms to the three-parameter
solid model. Therefore, the material property matrix Gfi and Gma for reinforcement fiber
and matrix can be written as

[
G f i

]
=



1
E1

− γ21
E1

− γ13
E3

0 0 0
− γ21

E1
1

E1
− γ13

E3
0 0 0

− γ13
E3

− γ13
E3

1
E3

0 0 0
0 0 0 1

G12
0 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G13



−1

(42)
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[Gma] =



K + 4
3 Y(t) K− 2

3 Y(t) K− 2
3 Y(t) 0 0 0

K− 2
3 Y(t) K + 4

3 Y(t) K− 2
3 Y(t) 0 0 0

K− 2
3 Y(t) K− 2

3 Y(t) K + 4
3 Y(t) 0 0 0

0 0 0 Y(t) 0 0
0 0 0 0 Y(t) 0
0 0 0 0 0 Y(t)

 (43)

Y(t) = 2

(
G1G1

G1 + G2
+

G2
1

G1 + G2
e−t/( η2

G1+G2
)

)
, (44)

where K, Y(t) are volume modulus and shear modulus, respectively. G1, G2, η2 are the
viscoelastic parameters of matrix. E1, E3, γ21, γ13, G12 and G13 are the elastic parameters of
reinforcement phase.

In fof a beam under thermo-mec [34] are put forward to solve the micro-scale prob-
lem. When the corrector χ̃ based on the microscale RUC is obtained, Figure 4 shows the
comparison between equivalent viscoelastic properties of the yarns obtained by FsMsFE
method and that evaluated by conventional FE method [35]. It is found that the present
results are in good agreement with the existing data in the literature and the differences
caused by different discretization methods is kept in a small range.
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Figure 4. Comparison of the homogenized effective relaxation modulus of yarns calculated via
five-step multi-scale finite element (FsMsFE) method with conventional FE method transverse (a) the
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3333.

4.2. Effective Thermo-Viscoelastic Properties

As mentioned in Section 2, to obtain thermo-viscoelastic response of 3D four-directional
braided composites, the effective thermo-viscoelastic properties of the yarn and meso-scale
RUC should be firstly evaluated. Owing to the thermo-viscoelastic properties for com-
posites are temperature dependent, the effective TTRM βH1

ij , βH2
ij and effective TTEC

αH1
kl , αH2

11 of different scales at room temperature 25 ◦C (ground state) are presented in
Figures 5 and 6.

In Figure 5a,b, the yarns are considering the unidirectional reinforced composite with
a constant fiber volume fraction 0.722, 0.850 and 0.866, the transverse equivalent TTRM βH1

11
increases monotonically while the longitudinal equivalent TTRM βH1

33 decreases monotoni-
cally with the increasing of the time, the transverse equivalent TTRM βH1

11 and longitudinal
equivalent TTRM βH1

33 show a downward trend with increasing fiber volume fraction. A
similar scenario of effective thermal expansion coefficients αH1

kl in both transverse and
longitudinal is shown in Figure 5c,d and they will be reached a steady state. As shown in
Figure 6, the effective thermo-viscoelastic properties of the meso-scale RUC under different
braiding angles (20◦, 30◦, 40◦) and fiber volume fraction 0.37 are calculated. It can be
seen that both the transverse and longitudinal equivalent TTRM βH2

ij are firstly decrease
and then increase when the braiding angle increases and the transverse effective TTEC
αH2

11 decrease monotonically with the increasing of the braiding angle when the longitu-
dinal effective TTEC αH2

33 firstly increase and then decrease. Additionally, Figures 5 and 6
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show that the different fiber fraction and braiding angle in the ground state will affect the
thermo-viscoelastic properties of composite in time domain.
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Figure 5. Equivalent time-dependent thermal relaxation modulus and equivalent time-dependent
thermal expansion coefficients of yarns versus time for different fiber volume content (ground state)
(a) the transverse TTRM βH1

11 ; (b) the longitudinal TTRM βH1
33 ; (c) the transverse TTEC αH1

11 ; (d) the
longitudinal TTEC αH1

33 .
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Figure 6. Equivalent time-dependent thermal relaxation modulus and equivalent time-dependent
thermal expansion coefficients of mesoscale RUC2 versus time for different braiding angles (Ground
state) (a) the transverse TTRM βH2

11 ; (b) the longitudinal TTRM βH2
33 ; (c) the transverse TTEC αH2

11 ; (d)
the longitudinal TTEC αH2

33 .
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In order to observe the effects of temperature on the thermo-viscoelastic properties
of 3D four directional braided composites, the analysis results of yarns (Vf = 0.85) and
meso-scale RUC2 (Vf = 0.37, ϕ = 30◦) at different temperatures (25 ◦C, 35 ◦C, 45 ◦C) are
shown in Figures 7 and 8. It can be found that the influence of temperature on thermo-
viscoelastic properties of 3D four directional braided composites is very obvious and higher
the temperature the shorter the time required for the effective TTRM and effective TTEC
to stabilize. This phenomenon is similar to the effect of temperature on the viscoelastic
properties of 3D composites reported by Seifert et al. [21].
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Figure 7. Equivalent time-dependent thermal relaxation modulus and equivalent time-dependent thermal expansion
coefficients of yarns versus time for different temperatures (Vf = 0.85) (a) the transverse TTRM βH1

11 ; (b) the longitudinal
TTRM βH1

33 ; (c) the transverse TTEC αH1
11 ; (d) the longitudinal TTEC αH1

33 .
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Figure 8. Equivalent time-dependent thermal relaxation modulus and equivalent time-dependent thermal expansion
coefficients of mesoscale RUC2 versus time for different temperatures (Vf = 0.37, ϕ = 30◦) (a) the transverse TTRM βH2

11 ; (b)
the longitudinal TTRM βH2

33 ; (c) the transverse TTEC αH2
11 ; (d) the longitudinal TTEC αH2

33 .

4.3. Time-Dependent Multiscale Stress Field Distributions

The initial damage of 3D braided composites is commonly attributed to the destruc-
tion of different scales, therefore a multiscale stress relaxation analysis is given in this
section. Based on the different thermal and mechanical loading boundary conditions, the
macro/meso/micro-scale time-dependent stresses can be obtained by using the FsMsFE
analysis method presented in the Sections 2.2 and 3.1.

When the braiding parameters are determined (Vf = 0.37, ϕ = 30◦) and the tempera-
ture is 45 ◦C, Figure 9 presents the macro-scale stress σz of position A, the meso-scale stress
σz on the plane (Z = 0.5H) of a RUC and the micro-scale stress σ3 (fiber direction) belong to
the region B of the mesoscopic yarn. It can be noted that the stress relaxation response of
3D four-directional braided composites consists of a shorter relaxation stage and a longer
steady stage. At the same moment, the smaller the selected scale the greater the stresses.
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Figure 9. Multi-scale stress σz of a 3D braided composite beam in time domain at 45 ◦C.

In order to determine the influence of temperature changes on the multi-scale stress of
3D braided composites, the initial and stable state stress distributions of different scales at
different temperatures (25 ◦C, 35 ◦C, 45 ◦C) are presented in Figures 10–12.
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Figure 11. Comparison of the meso-scale stress σz before and after stabilization on the plane Z = H/2
for a unit cell at different temperatures. (a) Ground state; (b) 35 ◦C; (c) 45 ◦C.
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5. Conclusions 

This article presents a novel FsMsFE calculation procedure for simulating the 

thermo-viscoelastic response of 3D braided four-directional composites. The integration 

of FE calculation programs is more flexible and the dependence on the microstructure 

type is less through the developed Fortran calculation procedure. The five-step homoge-

nization is carried out at micro-scale, meso-scale and macro-scale and the equivalent 
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relaxation stage of 3D braided composites and aggravate the material failure. It shows 
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Figure 12. Comparison of the micro-scale stress σ3 for a yarn before and after stabilization at different temperatures. (a)
Ground state; (b) 35 ◦C; (c) 45 ◦C.

In Figure 10, it is shown that the macroscopic stress peak value change is small,
the temperature rise causes the macroscopic stress stabilization time to be significantly
reduced. Simultaneously, it can be observed that the time-dependent stress under the fixed
displacement boundary condition at ground state is consistent with the trend described by
Tate et al. [16]. From Figure 11, it is found that both meso-scale stress increases significantly
before and after stabilization under the influence of temperature changes and the tensile
load is mainly shared by the braided yarns. As shown in Figure 12, it can be observed that
there is a more obvious micro-scale stress change for matrix than the fiber region under the
influence of temperature changes. Based on the above phenomenon, it can be noted that
the initial damage probability of 3D braided composites will increase and the viscoelastic
effect in the micro-scale fiber/matrix model cannot be neglected when the temperature
increment is considered.
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5. Conclusions

This article presents a novel FsMsFE calculation procedure for simulating the thermo-
viscoelastic response of 3D braided four-directional composites. The integration of FE
calculation programs is more flexible and the dependence on the microstructure type is
less through the developed Fortran calculation procedure. The five-step homogenization
is carried out at micro-scale, meso-scale and macro-scale and the equivalent thermo-
viscoelastic properties and stress relaxation at three scales for 3D braided composite subject
to temperature increment and forced displacement are investigated, respectively. The
thermo-viscoelastic properties of the 3D braided composites are obviously anisotropic and
time-temperature-dependent. The stress relaxation behavior of 3D braided composites
is greatly affected by temperature and temperature increment will shorten the relaxation
stage of 3D braided composites and aggravate the material failure. It shows obvious non-
uniformity for the stress distribution of micro-scale RUC and mesoscale RUC, especially
at the interfaces of the fiber/matrix or yarn/matrix. This method can be used for the
structural design of braided composite materials when the viscoelasticity and temperature
rise of the material are considered.
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