
materials

Article

Durability Assessment and Microstructure of High-Strength
Performance Bricks Produced from PET Waste and
Foundry Sand

Frank Ikechukwu Aneke 1,* , Bankole Osita Awuzie 2 , Mohamed M. H. Mostafa 3 and Chikezirim Okorafor 4

����������
�������

Citation: Aneke, F.I.; Awuzie, B.O.;

Mostafa, M.M.H.; Okorafor, C.

Durability Assessment and

Microstructure of High-Strength

Performance Bricks Produced from

PET Waste and Foundry Sand.

Materials 2021, 14, 5635. https://

doi.org/10.3390/ma14195635

Academic Editors:

Nadezda Stevulova and

Adriana Estokova

Received: 11 August 2021

Accepted: 16 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Agriculture, Engineering and Science Howard College Campus, University of KwaZulu-Natal,
Durban 4004, South Africa

2 Department of Built Environment, Faculty of Engineering, Built Environment and Information Technology,
Central University of Technology, Free State (CUT), Bloemfontein 9300, South Africa; bawuzie@cut.ac.za

3 Sustainable Transportation Research Group (STRg), Civil Engineering, University of KwaZulu-Natal,
Durban 4004, South Africa; mostafam@ukzn.ac.za

4 Department of Construction Management and Quantity Surveying, Durban University of Technology,
Steve Biko Campus, Durban 4001, South Africa; chikezirimo@dut.ac.za

* Correspondence: anekef@ukzn.ac.za

Abstract: Fired clay brickwork in buildings is prone to cracks and deterioration upon exposure
to long-time acidic contamination and water absorption, hence decreasing the bearing capacity of
masonry walls. As its contribution toward resolving this challenge, this study assessed the durability
and morphological characteristics of high-strength performance bricks produced from a mixture
of PET waste (PW) and foundry sand (FS). The PET waste bricks (PWBs) were produced through
different proportioning (PW: FS) of 20%, 30%, and 40% of the dry mass of FS. The PWBs produced
were tested for durability and compressive and tensile strengths and compared to fired clay bricks to
evaluate their load-bearing capacity under compression and tension. Furthermore, scanning electron
microscopy (SEM) tests were employed to analyze the morphological structure of the bricks. The
test results revealed that the PWBs recorded an appreciable strength of 1.5–2 times that of fired clay
bricks, and lower water absorption whilst retaining their ultimate strengths after complete immersion
in water and acidic concentrations. The morphology of PWB possessed greater intercluster bonds on
the surface compared to clay bricks. The findings demonstrate a reasonable methodological approach
toward the production of masonry bricks using a mixture of PET waste and spent foundry sands.

Keywords: bricks; foundry sands; PET waste; durability; tensile strength; compressive strength

1. Introduction

Urban population growth has brought in its wake, an increase in the amount of
household and municipal wastes being generated therein. Society is currently grappling
with the management of these wastes, as a significant proportion of these end up in
landfills. This is especially the case with plastic waste, of which polyethylene terephthalate
(PET) forms a major part [1–3]. To buttress the debilitating impact of PET waste on the
environment, these scholars maintain that it takes an estimated 400 years to naturally
decompose. Scholars admit that PET waste continues to pose a challenge to developing
and developed countries alike [4]. According to Rhodes [5], countries in the Sub-Saharan
Africa (SSA) region have been responsible for generating an average of 180 million tons
of municipal waste daily with plastic waste contributing an estimated 17 million tons.
Based on the available literature, it could be concluded that various studies have been
published on the effective management and challenges of municipal solid wastes in South
Africa without investigating the effects of waste conversion to construction materials [6–8].
Aneke and Shabangu [9], in their study, concluded that municipal solid wastes, particularly
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scrap plastic waste and recycled crushed glass, could be used in the production of high-
performance masonry bricks with very low CO2 embodiment. Whilst decrying the lack of
effective waste management strategies and skillsets in SSA, the authors advocate material
recovery and reuse through waste conversion building construction, due to its economic
benefits [10,11]. South Africa is situated in SSA and is currently struggling with effective
waste management [12]. Resorting to landfilling and incineration as predominant waste
management methods in South Africa has been identified as having the potential to not
only undermine environmental sustainability but also pose as an enabler of climate change
through the emission of greenhouse gases (GHGs) into the atmosphere [13]. Although these
authors acknowledge the ongoing European-styled transformations in waste management
within the South African context over the past few decades, they maintain that based on
the publicly available data published in 2011, just 10% of these wastes are recycled as the
rest still end up either in landfills or incinerated.

Besides plastic wastes (PET), Aneke et al. [14] state that mining residues and power
generation waste constitute a major proportion of waste streams prevalent in South Africa.
Of significance among this category of wastes is waste foundry sand (WFS) [15]. This kind
of waste results from the metal casting and molding processes, which occur in foundries and
consist of a large percentage of high-quality uniformly sized silica sand was used by Aneke
and Shabangu [15] to produce high performance paving bricks without compromising the
environmental pollution standard. In South Africa, the WFS, which has been classified as a
hazardous waste material, is disposed of in landfills after several cycles of reuse, thereby,
posing a challenge to the nation’s environmental sustainability aspirations even in the face
of limited landfill spaces.

Recently, the linear approach to construction material management has been criticized
for making salient contributions to the unsustainable production and consumption patterns
being experienced in the industry. Studies have further pointed out that construction and
demolition waste (CDW) accounts for at least 30% of the total solid waste produced around
the world, and the percentage is expected to increase over the next few years, because
dumping these wastes in sanitary landfills has always been the traditional approach to
waste management, but this will not be feasible in the years to come. To significantly
reduce or eliminate the amount of CDW being dumped, the adoption of circular economy
principles has been recommended as a possible solution to the increasing amounts of
CDW [16–19]. The adoption of circular economy principles has been referred to as a
closed-loop system or industrial symbiosis, wherein the waste product from one industry
or industrial sector is deployed as a resource in another industry for production.

The construction industry’s leaning toward the adoption and implementation of
circular economy practices has been heralded as a step in the right trajectory. These practices
have shown potential to ameliorate the incidence of poor waste management through the
introduction of efficient material handling regimes that support material recovery, recycling,
and reuse for the housebuilding subsector. The extant literature is replete with reportage
of cases wherein PET waste has been used: for substituting aggregates in the concrete
mixture [20], improving the thermal response of unfired lightweight clay bricks with the
aid of high-density polyethylene (HDPE) plastic waste [21], as aggregate replacement in
blocks (plastic aggregate blocks, for the construction of (flexible) pavements [22,23], and as
aggregate replacement in asphalt concrete mixture [24]. Similarly, scholars have elucidated
instances wherein WFS has been utilized for the development of green-efficient masonry
bricks based on a mixture of scrap plastic waste (SPW) [15], for the production of sustainable
bricks, blocks, and paving stones. Alonso-Santurde et al. [25] concluded in their study that
spent foundry sand can be recycled into clay bricks and there are no relevant technological
drawbacks, but the feasibility strongly depends on the properties of the raw materials,
as spent foundry sand may be introduced into bricks up to 30% by weight to achieve
the desired strength and durability. In furtherance, waste such as crushed glass (CG) has
proven to be a replacement for coarse aggregate. Thus, the replacement of coarse aggregate
with CG in concrete has been reportedly sustainable, as this waste material enhances the
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strength of concrete paving blocks, with the replacement level ranging from 10% to 40%,
for all concrete paving blocks mixed with crushed glass, as higher strength and lower
water absorption were achieved within this mixed proportion with natural aggregates. At
a replacement level of crushed glass of 20%, the concrete paving blocks had the highest
compressive strength and the lowest water absorption. However, the tensile splitting
strength of concrete blocks mixed with crushed glass reached the maximum value when
the replacement level was 40%. As such, the highest performance of the block’s abrasion
resistance was observed when the replacement level of CG was 30% [26,27], as a durable
material for subgrade filling and pipe-embedding [28], as aggregate replacement in asphalt
concrete mixtures [29], and for strengthening conventional and dry-mix concretes [30].
In another study, Petri and Timo [31] explored the utility of recycled PET blends when
deployed alongside demolition wastes as a construction material. From the foregoing, the
utility of PET waste and WFS in facilitating industrial symbiosis within the construction
industry and beyond, in general, and in the housebuilding, sector is no longer in doubt as
it has been elucidated severally in the literature. However, its usefulness within the South
African context for curbing the incidence of acidic contamination and water absorption
in load-bearing walls of residential dwellings remains largely underexplored. Fired clay
bricks, which happen to be prevalent in the construction of residential dwellings, are
prone to cracks and deterioration upon exposure to long-time acidic contamination and
water absorption. These cracks and deterioration levels often culminate in a significant
decrease in the bearing capacity of a building’s walls, thereby, undermining the structural
integrity of such buildings. With the increasing agitation for sustainable innovative and
affordable housing across various country-contexts, South Africa inclusive [32], it has
become imperative to devise ways to deal with this kind of challenge. This is the gap
that this study seeks to contribute toward bridging. As its central objective, this study
assesses the utility of PET waste and waste foundry sand (WFS) reinforced bricks (PWBs)
in tackling the incidence of acidic contamination and deterioration of load-bearing walls in
residential dwellings. Furthermore, it carries out a comparison between the characteristics
of conventional fired bricks and the PWB through increasing the empirical evidence of
durability, strength, and microstructure as well as conversion of South African wastes
(i.e., PET waste and waste foundry sand) to green-efficient high-performance brick without
compromising non-replenishable natural materials as good balance is maintained between
economic, environmental, and social considerations by producing masonry bricks with
very low CO2 embodiment.

This manuscript is subdivided into three sections as such: Section 1 represents the
abstracts and literature. Section 2 deals with the methods used for material collection,
preparation, testing, and analysis. In Section 3, the results of the various tests conducted
are presented and discussed. Section 4 details the conclusion.

2. Materials and Methods

Plastics are one of the growing sources of municipal solid waste (MSW) as PET plastics
are found in all major MSW categories. However, PET has become an important commer-
cial polymer with its application spanning across fabrics, molded parts for automotive,
electronics, packaging, and many more. The PET waste was sampled from a landfill site in
Durban, following stern COVID-19 protocols. Subsequently, the waste was conveyed to
the laboratory as shown in Figure 1, followed by sanitizing and washing to eliminate any
form of a virus.

PET consists of long hydrocarbons chain with carbon, hydrogen, and oxygen (C10H8O4)n
as the dominant molecular elements. The molecular bond structure of the PET waste
is presented in Figure 2. The chemical constituents of the PET waste were evaluated
through an X-ray fluorescence (XRF) test. This test result revealed that the PET waste
herein consisted of butylene, ethylene, and propylene with its dry density varying within
910 and 913 kg/m3 in conformance with ASTM D792 [33] protocol.
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Foundry sand (FS) is the discarded sand from a metal casting company, this company
uses river sand in the building of casting formwork. However, this river sand is considered
a waste material after multiple usages. The grain size of the foundry sand used in this study
was between 0.01- and 2.5-mm ASTM D1140-17 [34] sieve sizes. The FS was subjected
to XRF testing to determine and evaluate the constituent chemicals available in the sand.
Based on the XRF test results, the dominant compound identified at the amorphous phase
of the FS was CaO, chromium (III) oxide (Cr2O3), iron (III) oxide (Fe2O3), and aluminum
oxide (Al2O3) making up to 40% of the FS, whereas silicon dioxide (SiO2) made up the
remaining 60% of the FS according to percentage dry mass.

2.1. Plastic Waste Brick Preparation

The preparation of plastic waste bricks started with the shredding of plastic to allow
for easy melting under a lesser temperature. Prior to melting of the plastic, a trial mix
design of waste plastic and FS was achieved using a mix ratio of 80%:20%, 70%:30%,
and 60%:40% of the dry mass of the FS and PW. The mixture of 80% foundry sand
and 20% plastic waste was coded to PWB-1, which stands for plastic waste bricks. The
ratios 70%:30% and 60%:40% were designated as PWB-2 and PWB-3, respectively. These
mixtures were kept separately to maintain consistency throughout the study. The waste
plastic was subjected to melting at a controlled temperature of 220 ◦C using a furnace
capable of producing 800 ◦C of heat. Subsequently, the gradual addition of foundry
sand with constant mixing commenced up to 5 min until a homogenous consistency of
paste-like viscosity was obtained. Then the homogenous blend was cast into a greased
mold of 222 mm length × 106 mm depth × 73 mm height to eliminate any form of
adherence to the walls of the mold. Immediately after casting the blend of paste-like
viscosity into the mold, compression stress of 200 kPa was applied to the casted bricks
in the mold to eliminate voids as well as to densify the bricks. The produced bricks
specimens were allowed to cool for 8 h before demolding commenced. As such, the bricks
were allowed to continue cooling under a constant temperature of 24 ◦C prior to strength
and durability testing. The flow process diagram for the production of the plastic waste
bricks is presented in Figure 3.
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Figure 3. Process flow diagram of SPW bricks making.

The commercially available fired clay used herein was supplied by a brick producing
company known as Corobrik. To maintain consistency with size, the fired clay brick
obtained from the brick company had uniform dimensions compared to that of plastic
waste produced for this study. The supplied clay bricks could be described as well burnt,
very hard, solid in texture, and sharp in shape and color. It was also observed that the clay
bricks could be easily broken under a free fall of 1.5 m.

The chemical constitution of commercially supplied bricks was determined using
an XRF equipment machine. The procedure commenced when some fractions of the clay
bricks were obtained using a hammer and rod. To maintain consistency during the XRF
testing, these fractions of bricks were taken from all sides of the brick sample. After which,
these fractions were pulverized using a ball milling machine following the commencement
of the XRF testing. After the testing, the test results of all the materials used herein are
presented in Figure 4.

1 
 

 
Figure 4. Pie chart of the chemical composition of the materials used (a) foundry sand, (b) clay brick.

2.2. Testing Methodology
2.2.1. Unconfined Compressive Strength (UCS) Test

The unconfined compressive strength test was conducted following the ASTM C67/
C67M-21 [35]. The crushing test was carried at a loading rate of 1.25 mm/min toward
the depth direction using a compression machine. The upper and lower surfaces of the
bricks were cleaned to remove any solid particles that influence the test result. The ultimate
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load at which the tested bricks failed with vertical deformation load was captured from
and stored in the electronic data logger with the corresponding display of the stress–
deformation curve.

2.2.2. Tensile Strength Test

The produced bricks were tested according to the ASTM C67/C67M-21 [35] protocol
for the testing of bricks under tension. At the bottom surface of the tensile strength testing
machine, steel of 4 mm thickness with 90 mm width and 190 mm length was placed in a
horizontal orientation to ensure even distribution of pressure during crushing. The same
loading rate used for the compressive strength test was applied for the tensile strength
testing, and the values of tensile strength were recorded using an average of two bricks for
each test with the mean value as the final value as obtained using Equation (1).

σt =
2P

π.D.T
(1)

The P cited in Equation (1) is equivalent to the maximum recorded load, while the
letter D as cited in Equation (1) is the width of the specimen. The T is equated to the length
of the specimen.

2.2.3. Durability Test

The durability test commenced 3 days after the PW bricks were produced; hence, the
testing was conducted in accordance with ASTM D559/D559M [36] testing procedures.
To determine the resistance capacity of the PWB in an acidic environment, the bricks
were completely soaked in a solution of tetraoxosulphate VI acids (H2SO4) with various
concentrations of 2.3 × 10−5 M, 5.2 × 10−4 M, 3.6 × 10−3 M, and 4.6 × 10−2 M, as shown
in Figure 5. A weighing balance capable of carrying 10 kg was used to measure the dry
densities of the bricks before and after 90 days. Following the soaking and weighing
process, the bricks were kept dry for 24 h, and the absorption rate capacity was measure as
the compressive and tensile strengths of the bricks were determined to evaluate the effects
of acid soaking on the strength of the bricks.
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The concentration of the H2SO4 was adjusted using water at different ratios, the
water was placed in a bath while the acid was gradually poured into the bath until the
concentration of the acid attenuated to the desired concentrations. This exercised was
performed at a controlled temperature of 18 ◦C due to the exothermic reaction of the H2SO4.
Subsequentially, the bricks were immersed in the acid. However, the concentration of acid
solutions with their corresponding pH values is presented in Table 1.
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Table 1. Acidic submersion of bricks.

Series Concentration (M) H3O+ pH Soaking Time (Days)

1 2.30 × 10−5 2.30 × 10−5 4.64 90

2 5.20 × 10−4 5.20 × 10−4 3.28 90

3 3.60 × 10−3 3.60 × 10−3 2.44 90

4 4.60 × 10−2 4.60 × 10−2 1.34 90

2.2.4. Initial Rate of Absorption (IRA)

The IRA is an important parameter for the durability performance of bricks in a
damp/moist environment. This test is usually performed following the ASTM C67/C67M-
21 [35] testing procedures. The IRA parameter of bricks is measured by first driving out
moisture from the brick voids through oven drying followed by recording the dry mass of
the brick specimens. A graduated cylinder was used to measure out 10 mL of water, which
was then poured into a pan followed by the partial submersion of the brick base to a height
of 7 mm. The submerged bricks were left in the water bath for one minute; subsequently,
the water was retrieved and placed back into the graduated cylinder. As such, the IRA of
the brick was calculated through the amount absorbed after 1 min of submersion.

2.2.5. Scanning Electron Microscopy (SEM)

The SEM test is an important procedure devoted to analyzing the morphology of the
composite matrix. The VEGA3 TESCAN-6480 machine was operated at a voltage of 20 kV
following the ASTM E986-04 [37] testing protocols. A representative sample of each brick
was placed in the SEM machine, as the microscope’s detection of 1 µm was used for the
identification of unknown particles as well as for revealing the microstructure of the brick
samples. The SEM test also provides the basis for the analysis of interactions between
substances and their corresponding substrates.

3. Results
3.1. Unconfined Compressive Strength of Bricks

The UCS of the plastic waste bricks was tested against compression and tension,
3 days after production alongside the strengths of fired clay bricks, as presented in Figure 6.
The strength of plastic waste bricks under compression was twice greater than that of
commercially supplied fired clay bricks. It is worthy to mention that the strength of a single
brick unit could significantly influence the brick prism for the design of masonry structure
as well as increase the flexural elastic modulus of the structure.

Remarkably, it is noted that the strength of the produced plastic waste bricks recorded
compressive strength values of 33.12, 36.18.01, and 28.40 MPa for PWB-1, -2, and -3,
respectively, as compared to the fired clay bricks that recorded 13.81 MPa on average.
Based on the compressive strength results, the strength rendered by PW bricks complies
with the South African standard (SANS 227:2007) [38] for clay bricks. The standard
stipulates that a minimum compressive strength of 17.0 MPa is required for face prism
bricks, whereas 12.5 MPa worth of strength is stipulated for a brick unit. However, the
commercially available bricks and PWBs comply with SANS. The standard stipulated
strength is valid for the load-bearing capacity of storied buildings with other retaining
load-bearing structures. In furtherance, the densities of 1784, 1887, 1828, and 1894 kg/m3

were obtained for PWB-1, -2, -3, and clay bricks, respectively. The developed high strength
rendered by PWB is mobilized by the morphology of the viscoelastic properties as the
plastic waste melts under high temperature (220 ◦C), thereby, forming a much stronger
matrix composite with foundry sand. It is also evident that the bricks produced with
70% foundry sand and 30% PET waste recorded the highest strength; beyond this mix
ratio, the strength dropped. This implies that the percentage of foundry sand significantly
influenced the strength of the PWBs. Other than the foundry sand’s influence on the plastic



Materials 2021, 14, 5635 8 of 18

bricks, the utilized precompression stress also mobilized the strength development by
reducing porosity through composite densification [39]. It was also noted that the tension
resistance of PWB-3, which contains 40% of PET plastic, is higher compared to that of the
rest of the bricks. The high tensile value rendered by this brick is mobilized by the ductile
and viscoelasticity of the melted PET plastic. Generally, the PWBs recorded an average
of 57% increase under compression as juxtaposed with the compressive strength of fired
clay-fired bricks used herein. The strength result produced in the study herein agrees with
the investigation reported by Gumaste et al., [40], which stated that incorporation of PET
in the production of composite bricks increased the compressive and tensile strength of the
composite and as such contributed to a significant decrease of 40% CO2 emissions without
using sand and cement.
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Figure 6. The qu and qt of studied bricks.

3.2. Effect of Acid Soaking on the qu and qt of the Bricks

Most of the clay bricks used for construction in an acidic environment deteriorate
within a short time frame, due to the interaction between clay minerals and the acidic
environment. Hence, the reaction will trigger the impairment of this structure, causing
it to not reach its service life. Under this context, the performance of the plastic waste
bricks produced in this study was compared with that of commercially obtained fired
clay bricks using acid soaking as the environmental index. Based on tested results as
presented in Figure 7a–d, the acidic soaking caused less than a 2% decrease in strength
for PWB-3, whereas the percentage decrease in strength for PWB-2 and -1 were 4.25%
and 6.12%, respectively. However, the decrease in strength has a great proportionality
between the percentages of the plastic waste used to produce each set of bricks. It is noted
that the bricks with a higher percentage of plastic waste portrayed higher resistance to
acidic soaking, while the bricks with lesser contents of plastic showcased lesser resistance
to acid attack. At the highest acid concentration, 4.6 × 10−2 M, PWB-3 portrayed more
hydrophobic performance due to its higher percentage content available in the bricks.
Generally, it was noted that the acidic soaking had slight effects on the plastic bricks due to
a higher hydrophobic tendency, unlike in the fired clay bricks, which recorded over 15.12%
decrease in strength due to 90 days of acidic soaking interactions. This decrease in strength
was mobilized by acid adsorption within the void spaces of the clay bricks triggering cation
exchange replacement through proton coupling with the diffusion within pores of the
bricks. The interaction between the fired clay bricks and H2SO4 acidic solution caused
the decrease of the brick’s alkalinity, therefore, leading to loss of stability and hydrolysis
through the destruction of the internal microstructure of the fired clay bricks leading to a
significant reduction in strength as reported elsewhere [38,40].
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Figure 7. (a) Effects of acid concentrations on tension and compression resistance of PWB-1. (b) Ef-
fects of acid concentrations on tension and compression resistance of PWB-2. (c) Effects of acid
concentrations on tension and compression resistance of PWB-3. (d) Effects of acid concentrations on
tension and compression resistance of clay brick.

The standard deviation of the plastic waste bricks was calculated in this study using
the compressive and tensile strength values of the produced bricks to determine how
closely the strength values were related, using an average of two bricks for each strength
test with the mean value as the final value. Equation (2) was used for the formulation and
determination of standard deviation value for the produced high-performance bricks.

S =

√
∑ (x − x)2

η − 1
(2)

where S is the standard deviation; x is equivalent to compressive and tensile strength
values, and η is the number of tested bricks.

The standard deviation result of the tested brick strength was obtained to be 13.32.
The obtained standard deviation is sufficiently far away from zero, and this implies that the
strength of the tested bricks was more spread out. Furthermore, the test pointed out that
the means obtained present a statistically significant difference between waste plastic bricks
and fired clay bricks. These analyses show that the compressive strength increases with
increase of PET waste up to 30% inclusion of PET, beyond which, the strength decreased.
Table 2 presents the summary of the mean and standard deviation values of the bricks.

Table 2. Standard deviation of the bricks.

Bricks Compressive Strength
(MPa)

Tensile Strength
(MPa) Mean

¯
x S=

√
∑ (x−¯

x )
2

η−1

- 1st trial 2nd trial 1st trial 2nd trial

15.56 13.32

PWB-1 32.58 31.84 4.03 3.28

PWB-2 37.00 35.00 7.88 6.32

PWB-3 25.22 28.88 8.32 9.60

CB 6.00 8.00 2.00 3.08

CB: clay bricks.
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3.3. Interdependence of the qu and qt of the Bricks

The basic structural design elements depend on the correlation between the compres-
sive and tensile strength values of the consistent material. The masonry-retaining structures
could be subjected to flexural stress. Under these circumstances, the combined effects of
compression and tension could trigger shear failure; therefore, reliance on the interdepen-
dence of compression and tension strength of the bricks produced here is required [41,42].
Therefore, the interdependence of compression and tension strength of the studied bricks
is presented in Figure 8a–d. The curves indicate a bi-linear relationship between tensile
and compressive strengths with a corresponding coefficient of determination (R2) of 0.94,
0.98, 0.93, and 0.88 for PWB-1, PWB-2, PWB-3, and clay bricks, respectively. The high R2

values are mobilized by the ratios of plastic waste and foundry with regard to apparent
porosity, which is dependent on strength. According to Wight and MacGregor [41] and
McCormac and Brown [42] the ratio of qt and qu of M20 grade concrete should be 10%;
hence, the ratio between qt and qu for the produced bricks was evaluated to be 12.17%, this
implies that the produced plastic bricks could sustain flexural stress.
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3.4. Load–Deformation Relationship and Failure Modes

The compression stress–strain response of the plastic waste and fired clay bricks is
shown in Figure 9. It is noted that the plastic waste bricks portrayed ductile failure type
of stiffness under compression compared to their counterpart the fired clay bricks that
exhibited significant brittle behavior. However, it was observed that the ductile behavior
was mobilized by the viscoelasticity properties of the melted plastic waste, whereas the
brittle response of the clay brick was due to a great proportionality between the clay
minerals and sintering temperature of heat used during the clay bricks production. At a
strain value of 4.12 mm, the PWB rendered significant ductile stiffness, with corresponding
stress relaxation between strain gauge values of 1.1 to 2.05 mm. The brittle failure response
of the clay bricks under compression was observed as a sudden drop after peak load. The
stress–strain behavior of all the bricks studied here is mobilized by the linear correlation
between the compression load and deformation to the strain gauge value of 3.6 mm; beyond
this value strain, hardening was observed only in the plastic waste brick while free fall
was recorded on the fired clay bricks as they were completely crushed at a strain gauge
value of 2.91 mm without residual strain resistance. The plastic waste bricks portrayed
multiple planes of failure intention prior to its final failure. As such, this confirmed that the
plastic waste bricks were reliably ductile, whereas the clay bricks investigated in the study
are brittle matrices. The presented test result in this study agrees with the investigation
published elsewhere by Gumaste et al. [40], Knutson [43]; and Ewing and Kowalsky [44].
The multiple planes of failure observed in plastic waste bricks could be attributed to
percentages of the melted plastic waste due to the viscoelasticity of the bricks that triggered
elongated deformation.
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3.5. Initial Rate of Absorption (IRA)

The IRA of both the plastic waste and fired clay bricks is presented in Figure 10. The
IRA test result for the fired clay bricks in this study was evaluated to be 32 g/m2/min. Sim-
ilarly, for PWB-1, -2, and -3 the rendered IRA values were 25.14, 17.57, and 10 g/m2/min,
respectively. However, for a brick to have good adhesion strength, the IRA values must
exceed 30 g/m2/min according to Yorkdale [45]; therefore, a study was adopted using
ASTM C67 [35]. In furtherance, an IRA value greater than 30 g/m2/min implies that the
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brick unit is highly absorptive and should be wetted prior to laying to achieve adequate
bond strength, though the IRA limit values were derived based on tests carried out on clay
bricks. Additionally, Knutson [43] reported that the IRA values for fly ash brick varied
from 35 to 50 g/m2/min with an average of 40 g/m2/min. Based on the obtained test
result, it could be concluded that bricks produced using plastic waste and foundry sand in
this study could completely be used as an alternative to clay brick, without influencing the
fundamental properties of the bricks as stipulated by the ASTM C67 [35]. However, it could
be understood that the value of IRA is found to be higher in fired clay bricks compared to
plastic waste bricks. Regardless of the bricks’ IRA values, an adequate bond between bricks
and mortar could be achieved with plastic waste bricks produced in this study since initial
absorption through wetting before laying is not required because their IRA values are
within the allowable limit. Thus, the IRA gives an insight into the pre-wetting time needed
and the bond strength of brick masonry. It was noted that the initial rate of absorption for
brick specimens incorporating plastic waste and foundry sand rendered lower IRA values
compared to that of fired clay bricks; as such, the produced fired clay bricks in this study
require pre-wetting for an adequate brick–mortar bond.
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3.6. Scanning Electron Microscopy (SEM)

The morphological comparative study was conducted on PW and fired clay brick
specimens, using an SEM apparatus VEGA3 TESCAN-6480 scanning electron microscope
operated at 20 kV. The morphology of PW bricks with different percentages of PET waste
as well as the microstructure of the fired clay bricks is presented in Figure 10. The mor-
phologies of the PWB-1, -2, and -3 are given in Figure 11a–c. It is noted that the bricks
with 20% of melted PET are grayish, the gray color gradually changed to black as the PET
content increased, as can be seen in the figures. The PW bricks portrayed viscous floccules
with foundry sand forming a tight matrix structure sealed within the surface and the inner
part of the bricks. The morphology showed traces of quartz as identified by the white spots
on micrographs, whereas the black and grayish patches with a glassy and unwrinkled
surface were identified as ethylene and propylene that serve as binders. The same chemi-
cal compounds were identified on PWB-2 and PWB-3 with more of a blackish shinning
microstructure. This was an indication of higher percentages of melted PET plastic used in
the production of the bricks. Significant, changes were observed on the PWB because of the
PET waste inclusion that coated and knitted the sand particles, as well as filling the pore
spaces within the matrix structure. The chemical composition identified on the surfaces of
the PW bricks was as follows: carbon C, hydrogen H, and oxygen O, which are rendered
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by PET plastics, while Si, Fe, and Al were the dominant elemental compound from foundry
sand. The inclusion of melted plastics in the PW bricks resulted in the reduction of pore
space within the bricks, and this observation is particularly pronounced in PWB-2 and -3.
The pore spaces in the bricks were minimized drastically causing them to relatively possess
greater strength.

In Figure 11c, the EDx of the fired clay bricks suggested the presents of aluminum,
silicon, magnesium, and calcium as the primary elements. The designated dark areas
are the partially burnt clay particles shown by irregular black porous parts. Whereas
the grayish identified areas are the mixture of calcium and silicon, which appeared to be
spherical with a small bulging of siliceous and aluminous glass. Generally, the pore spaces
in fired clay bricks were greater compared to those in the PW bricks that rendered more of
a knitted solid matrix structure within the bricks.
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3.7. Sustainability Analysis of PET Waste Bricks

The sustainability analysis was achieved through a CO2 emission comparison between
the fired clay and plastic waste bricks to quantify the CO2 embodiment of both the plastic
and clay bricks when used for the construction of two rooms. The mix formulation used
in the production of the bricks is presented in Section 2.1. However, it is presumed that
cost of extraction, sorting out and transportation of clay, plastic waste, and foundry sand
will be the same; therefore, these costs were not considered in this analysis. The cost of
producing energy invested in the process of producing these bricks for the construction of a
two-bedroom masonry structure was used for this analysis based on the CO2 embodiment.
Further, the same quantity of mortar will be required for the masonry construction for
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both the plastic and clay bricks; therefore, the energy cost of mortar was excluded in
this analysis.

According to Eskom [46], the cost of electricity for households and businesses, which
includes all components of the electricity bill such as the cost of power distribution and taxes
is ZAR 2.38 and ZAR 1.83 per kWh. This is equivalent to USD 0.145 and USD 0.070 per kWh.
Therefore, 1 kWh of electricity is equivalent to 1895.63 ◦C of heat. Based on the calculation
analysis performed in this study, 0.58 kWh will be required to generate 1100 ◦C worth of
heat to produce 1 fired clay brick unit, whereas 0.12 kWh will be required to generate 220 ◦C
worth of heat to produce 1 unit of plastic waste brick. Based on the energy production cost
for fired clay bricks, the cost for 1 brick unit is ZAR 1.38 (ZAR 2.38 × 0.58 kWh), while the
plastic waste brick will cost ZAR 0.286 (ZAR 2.38 × 0.12 kWh). To evaluate the quantities
of CO2 embodiment for both the production of fired clay and plastic waste bricks. In South
Africa, coal-based power plants emit an average of 915 g of carbon dioxide (CO2) per kilowatt-
hour of electricity produced. It has been calculated that 0.58 and 0.12 kWh of electricity are
required to produce 1 unit of both fired clay and plastic bricks, respectively. Therefore, to
calculate the quantities of CO2 emission for clay brick, (915 g × 0.58 kWh) 531 g of CO2
will be emitted into the environment, whereas (915 g × 0.12 kWh) 110 g of CO2 will be
discharged into the environment to produce plastic bricks. According to the calculated bill
of material quantity presented in this study, 23,534 pieces of bricks will be required for the
construction of a two-room masonry structure of 20 m in length, 3 m width, and 4 m height,
using double leaf wall with the exclusion of two doors and two windows spaces. Each brick
weighs an average of 3.3 kg; therefore, (23,543 × 3.3) 77,662.2 kg of clay would be required
to produce 23,534 pieces of clay bricks. Therefore, the total quantities of CO2 in kilograms
that will be discharged into the environment for the construction of a two-bedroom masonry
structure are (0.531 kg × 77,662.2 kg) 41,239 kg worth of CO2. To calculate the quantity of CO2
embodiment for the production of plastic bricks in kilogram, as known, 30% of plastic waste
inclusion rendered the ultimate strength, therefore, the quantities of material required for the
construction of a two-bedroom masonry structure will be 30% multiplied by the quantities of
material required for the construction multiplied by the quantity of CO2 emission required
for a single unit of plastic waste brick (0.3 × 77,662.2 kg × 0.11 kg), and this corresponds
to 2563 kg of CO2 emission. The summary of the estimation of the bricks’ quantity of CO2
emission is presented in Table 2. It is worth mentioning that the calculated CO2 emission
for both fired clay and plastic waste bricks is based on the kilograms of energy required and
CO2 embodiment cost to produce these bricks. Using the information provided in Table 3, it
follows that over (0.3 × 77,662.2 kg) 23,299 kg of plastic waste could be diverted from landfills,
compared to about 77,662.2 kg of clay required for the construction of a two-room structure,
with a consequent saving of 41,239 kg of carbon dioxide.

Table 3. Sustainable and embedded CO2 analysis of bricks.

Bricks Heat (◦C) Production Time Average Density (kg/m3) CO2 Emission (kg) Price/Energy Cost Sustainability

PWB-1 220 (Minutes) 1887 1373 ZAR 0.286/brick Favorable

PWB-2 220 10 1828 2060 ZAR 0.286/brick Favorable

PWB-3 220 10 1784 2746 ZAR 0.286/brick Favorable

Clay bricks 1100 10 1894 41,239 ZAR 1.34/brick Not
Favorable

4. Conclusions

In this research, the development of plastic waste brick was studied through the
indices of strength, durability, microstructure, as well CO2 embodiment. Based on the
findings of this study, the inclusion of scrap plastic in the production of masonry bricks
using blends of PET waste and foundry sand could be considered an effective way and
a cost-effective approach toward the conversion of dwindling natural clay to produce
sustainable and green-efficient masonry bricks.
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The utilization of PET waste and foundry as raw materials for the manufacturing of
masonry bricks is one of the rational ways of recycling abundant wastes, leading to the
conservation of space, water, and soil. The PET waste and foundry sand used in this study
were abundantly available waste materials, having a high contribution to environmental
pollution. Resistance against acidic attack is commendable for the PWB-1, -2, and -3,
indicating their suitability in a moist environment due to their high resistance capacity
because of their hydrophobic properties.

The utilization of plastic waste with varying percentages of foundry sand is proven in
this study as a resourceful option for load-bearing brick masonry. The bricks also portrayed
great potentiality against acidic attacks. It was observed that the blend of 30% PW and 70%
foundry sand of plastic bricks resulted in 36.18 MPa with approximately 60.31% increase in
strength compared to fired clay bricks. These compressive strength values of plastic bricks
satisfy the requirement of compressive strength specified by South African standard for
burnt clay masonry units (SANS 227, 2007), which requires nominal compressive strength
for face bricks to be greater than 17.0 MPa, with individual strengths greater than 12.5 MPa,
for burnt clay brick with a load-bearing capacity of retaining walls and storied buildings.

Furthermore, it was observed that the initial rate of absorption of the fired clay bricks
was higher compared to that of PWB-1, -2, and -3. It can be concluded that the plastic waste
content of plastic waste bricks triggered a decrease in water absorption and IRA. The fired
clay bricks showed the highest water absorption among all the produced bricks in this
study due to the high content of clay minerals and double-layer structure, which absorbs
more water to fill up the structure. The SEM revealed that the microstructure of PWB-1, -2,
and -3 were mobilized with lower porosity; therefore, the plastic waste bricks require no
form of pre-wetting before their use during masonry construction.
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