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Abstract: The effect of superplasticiser, borax and the water-to-cement ratio on BYF hydration and
mechanical strengths has been studied. Two laboratory-scale BYF cements—st-BYF (with β-C2S
and orthorhombic C4A3 S) and borax-activated B-BYF (with α’H-C2S and pseudo-cubic C4A3 S)—
have been used, and both show similar particle size distribution. The addition of superplasticiser
and externally added borax to BYF pastes has been optimised through rheological measurements.
Optimised superplasticiser contents (0.3, 0.4 and 0.1 wt % for st-BYF, B-BYF and st-BYF with externally
added 0.25 wt % B2O3, respectively) result in low viscosities yielding homogeneous mortars. The
calorimetric study revealed that st-BYF is more reactive than B-BYF, as the values of heat released are
300–370 J/g and 190–210 J/g, respectively, after 7 days of hydration; this fact is independent of the
water-to-cement ratio. These findings agree with the higher degree of hydration at 28 days of β-C2S
in st-BYF (from 45 to 60%) than α’H-C2S in B-BYF (~20 to 30%). The phase assemblage evolution has
been determined by LXRPD coupled with the Rietveld method and MAS-NMR. The formation of
stratlingite is favoured by increasing the w/c ratio in both systems. Finally, the optimisation of fresh
BYF pastes jointly with the reduction of water-to-cement ratio to 0.40 have allowed the achieving
of mortars with compressive strengths over 40 MPa at 7 days in all systems. Moreover, the st-BYF
mortar, where borax was externally added, achieved more than 70 MPa after 28 days. The main
conclusion of this work does not support Lafarge’s approach of adding boron/borax to the raw meal
of BYF cements. This procedure stabilises the alpha belite polymorph, but its reactivity, in these
systems, is lower and the associated mechanical strengths poorer.

Keywords: belite; calcium sulphoaluminate; rheology; superplasticisers; Rietveld method; degree of
hydration; mechanical strengths

1. Introduction

The need of reducing the environmental impact of the cement industry is a hot
topic [1,2]. Belite-ye’elimite-ferrite (BYF) cements are considered as green materials due to
the low energy demand and low CO2 emissions of their production process [3,4] compared
to Portland cement (PC). The production of these materials is feasible [5] and the use of
alternative raw materials is a step forward in sustainability [6–8]. However, belite-rich
cements are still a challenge [9] due to their lower reactivity rate with water and the conse-
quent lower early mechanical strengths development. Additionally, these cements have a
lower degree of grindability, requiring higher amounts of energy for a targeted fineness [10].
One of the approaches to enhance the reactivity of BYF has been the stabilisation of high
temperature polymorphs of belite, i.e., α-forms, at room temperature by the inclusions of
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minor elements such as sodium, potassium or sulphur [11,12] or boron [13–15]. There is
another activation route consisting of reducing the particle size by milling or increasing the
defects/strains in the particles by rapid cooling rates during clinkering [16,17].

The hydration mechanisms of these types of materials have been studied in the past
years. The kinetic of hydration of the ye’elimite phase is very fast and almost independent
of the amount of anhydrite or water-to-cement ratio [18] but it can be influenced by the
presence of other aluminates [19]. In addition, the sulphate content and type affect the
kinetic of silicates in general [20,21], and belite in particular [18,22], by retarding their
hydration with the increase in sulphate dissolution. The decrease of water-to-cement
(w/c) ratio is a positive strategy to enhance mechanical strengths [23,24] but its effect on
hydration kinetics is still not fully understood, especially the effect on phase assemblage
and microstructural development [25]. Moreover, the relationship among the complex
phase assemblage, the microstructure and the mechanical properties is still a challenge in
common systems [26,27], and even more in BYF.

Furthermore, mortars with optimised performances can be prepared through the
control of the physical–chemical properties involved in fresh cementitious systems. The
required homogeneity (and workability) of fresh cementitious systems can be achieved
through the addition of admixtures such as superplasticisers (SPs), which is a common
practice in the building industry. SPs are usually adsorbed onto the surface of the ce-
ment particles, helping the dispersion of the particles through electrostatic and/or steric
repulsions. The effectiveness of the SP depends on the properties of the materials (cement
composition, specific surface area, size, shape of particles and type of SP), the amount of
added SP, and the preparation of the paste (order of addition, time passed since the end of
mixing, temperature and so on). SPs based on polycarboxylate show important advantages
in the dispersion of cement particles over others, such as lignosulfonate, melamine or
naphthalene-based SPs [28]. Thus, SPs allow the preparation of mortars with low w/c
ratios with competitive or even enhanced performances since they help the dispersion of
the cement particles and reduce viscosity, can also modify the setting time, and will affect
the strength development (and durability) of final mortars and concretes [29]. Hence, the
optimisation of the amount (and type) of this chemical admixture is key to achieve the
objective of improving the performances of the final mortars [30].

In this article, two BYF materials, one with β-C2S and another one with α’H-C2S
have been characterised with the objective to unravel the influence of admixtures, i.e.,
superplasticiser and borax, and the water-to-cement ratio on the hydration mechanisms
and mechanical strengths. Rheological studies have been performed to understand the
fresh state of these materials. Calorimetric measurements, X-ray diffraction (with Rietveld
analysis) and MAS-NMR studies have been performed to understand the role of admixtures
and water on the heat evolved and phase assemblage. Moreover, mechanical strengths of
some selected mortars have been tested and correlated with the phase development.

Cement nomenclature will be used hereafter: C = CaO, S = SiO2, F = Fe2O3, A = Al2O3,
S = SO3 and H = H2O.

2. Materials and Methods
2.1. Cement Preparation

Two kilograms of two BYF clinkers, standard and activated, were prepared as reported
elsewhere [31]. The former, without activation, was called st-BYF, and the latter, called
B-BYF, was prepared by adding borax in the clinkering step. The elemental compositions
of the clinkers are given in Table 1.
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Table 1. Elemental compositions determined by XRF, expressed in weight percentage of oxides for both BYF clinkers,
including loss on ignition (LOI).

Clinker CaO SiO2 SO3 Al2O3 Fe2O3 MgO TiO2 K2O Na2O B2O3 LOI

st-BYF 51.8 17.0 3.5 18.6 6.4 1.0 0.6 0.3 - - 0.8
B-BYF 51.7 15.1 5.3 16.6 6.0 1.0 0.5 0.3 0.9 * 2.0 * 0.6

* Nominally added as borax.

Both clinkers were grinded with 10 wt % of anhydrite to prepare the cements [22].
The anhydrite was prepared by heating commercial basanite (BELITH S.P.R.L., Mouscron,
Belgium) at 700 ◦C for 60 min. Air permeability values of the final cements were 5650 and
5260 cm2/g for st-BYF and B-BYF, respectively. Figure S1, provided as supplementary
information, shows the particle size distribution measured by laser diffraction (Mastersizer
3000, Malvern, UK). The equipment was provided with a wet module with ethanol and
is located in Servicios Centrales de Apoyo a la Investigación (SCAI) at Universidad de
Malaga (UMA) (Malaga, Spain). Dv,10, Dv,50 and Dv,90 values were 2.0, 7.4 and 27.5 µm,
and 2.7, 8.3 and 30.4 µm, for st-BYF and B-BYF, respectively.

2.2. Paste Preparation

Cement pastes were prepared with deionised water (w/c = 0.40 and 0.50) by me-
chanical stirring at a fixed speed of 800 rpm during 90 s twice with a 30 s resting time
in between.

To assure homogeneity of the pastes, a commercial polycarboxylate-based superplasti-
ciser (SP), with a 25 wt % of active matter (Floadis 1623 marketed by Adex Polymer S.L.,
Madrid, Spain) was added when appropriate. The amount of the added superplasticiser
was always shown as active matter of the SP referred to cement content, and the extra
water added was considered for w/c calculations. SP was always added to the water prior
to the cement addition. Borax, as admixture, was also used with selected st-BYF pastes
with w/c = 0.40, by adding it to the water (after the addition of SP) until total dissolution
(named hereafter as st-BYF-B2O3).

The pastes were poured into polytetrafluoroethylene (PTFE) cylindrical moulds that
were hermetically closed and rotated (16 rpm) during the first 24 h at 20 ± 1 ◦C. Then,
the cylinders were demoulded and placed into a bath of water at 20 ± 1 ◦C to be used
at the selected hydration ages (7, 28 and 120 days). The hydration of the samples was
arrested before characterisation by manually grinding and washing powders twice with
isopropanol and once with diethyl ether, and finally they were dried at 40 ◦C for 24 h in
a stove.

2.3. Laboratory X-ray Powder Diffraction (LXRPD) and Data Analysis

Anhydrous cements and arrested-hydration pastes were analysed by LXRPD collected
on an X’Pert MPD PRO PANalytical diffractometer with copper radiation with a Johansson
Ge(111) primary monochromator that yields monochromatic CuKα1 (λ = 1.5406 Å). The
diffractometer is located at SCAI at UMA (Malaga, Spain). Data were collected on reflection
geometry from 5◦ to 70◦ (2θ) with a measuring time of 2.5 h by using a rotating sample-
holder (16 rpm).

The patterns were analysed by the Rietveld method using the GSAS software pack-
age [32], using a pseudo-Voigt peak shape function with the asymmetry correction in-
cluded [33,34] to obtain RQPA (Rietveld quantitative phase analysis). The refined overall
parameters were: background coefficients, zero-shift error, phase scale factors, unit cell
parameters, peak shape parameters and preferred orientation coefficient, if needed. The
structure descriptions of crystalline anhydrous and hydrated phases used are given else-
where [35,36]. The determination of amorphous and crystalline non-quantified (ACn) was
performed by the internal standard methodology [37], mixing the samples with ~20 wt %
of crystalline quartz.
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2.4. Thermogravimetric Analysis

The free water (i.e., non-chemically combined water) content of all pastes at all ages
was calculated by analysing the thermogravimetric traces of all arrested-hydration pastes.
An SDT-Q600 analyser (TA Instruments, New Castle, DE, USA) was used to perform these
analyses. Some milligrams of arrested-hydration pastes were placed in open platinum
crucibles under air flow and heated from room temperature (RT) to 1000 ◦C (at 10 ◦C/min).
The free water was calculated as detailed in [38] by considering the weighed loss from RT
to 600 ◦C as chemically bounded water and the one from 600 to 1000 ◦C as CO2.

2.5. Rheological Behaviour of Cement Pastes

st-BYF, B-BYF and st-BYF-B2O3 (the latter with 0.25 wt % B2O3, referred to dry cement)
pastes with different SP contents (from 0.0 to 0.5 wt %) at w/c = 0.40 were rheologically
characterised.

The rheological characterisation was performed in a viscometer (Model VT550, Thermo
Haake, Karlsruhe, Germany) with a serrated coaxial cylinder sensor, SV2P, which was
provided with a lid to reduce evaporation. Two different measurements were performed:
(i) flow curves, at controlled rate, from 2 to 350 s−1, for a total of 12 ramps (up-curve),
with ramp times of 6 s. A further decrease from 350 to 2 s−1 shear rate was performed by
following the same ramp times (down-curve). Pastes were pre-sheared at 350 s−1 for 30 s
and held at 0 s−1 for 5 s before the measurement. Data were acquired after 8 min since the
cement powder was added to water; (ii) viscosity vs. time measurements at the fixed shear
rate of 5 s−1.

2.6. Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) Study
29Si MAS-NMR spectra of all samples were recorded at room temperature on a

Bruker AVIII HD 600 NMR spectrometer(Karlsruhe, Germany) (field strength of 14.1 T)
at 119.8 MHz with a 2.5 mm triple-resonance DVT probe using zirconia rotors at 15 kHz
spinning rate, located in SCAI at UMA (Spain). The experiments were performed with
1H decoupling by applying single-pulse excitation with a π/2 pulse of 5 us, 30 s relax-
ation delay and 10,800 scans. The chemical shift was referenced to an external solution of
tetramethylsilane (TMS).

27Al MAS-NMR spectra were recorded in the same spectrometer at 156.4 MHz and
the rotors operated at 20 kHz. The experiments were performed with and without 1H
decoupling (cw sequence) by applying a single pulse (π/12), an excitation pulse of 1 µs
and 5.0 s relaxation delay and 200 scans. The chemical shift was referenced to an external
solution of 1 M of Al(NO3)3.

2.7. Isothermal Calorimetry

The isothermal calorimetric measurements were performed in an eight channel Ther-
mal Activity Monitor, of TA Instruments (New Castle, DE, USA), using glass ampoules of
20 mL. Firstly, ~8 g of anhydrous cements was manually mixed with the corresponding
amount of water (and superplasticiser) for 1 min followed by an extra minute of stirring
with a vortex mixer. Then, the paste was placed in the ampoule (~6 g). Water was used as
reference [39]. The heat flow data were collected for up to 7 days at 20 ◦C. The first 45 min
after inserting the ampoules in the equipment were not recorded as this time was needed
for its stabilisation.

2.8. Mortar Preparation

Mortars were prepared according to UNE-EN196-1 at the cement/sand mass ratio of
1/3 and w/c ratios of 0.40 for all the samples, and additionally, 0.50 for B-BYF. Mortars
were prepared with selected amounts of superplasticiser (0.3, 0.4 and 0.1 wt % referred to
cement, for st-BYF, B-BYF and st-BYF-B2O3, respectively). The compression strengths were
measured on mortar cubes (3 × 3 × 3 cm3), cast and cured at 20 ± 1 ◦C and 99% relative
humidity (RH) for 24 h. The cubes were demoulded and kept in a water bath (20 ± 1 ◦C)
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for 7, 28 and 120 days of hydration. Three cubic mortars were tested at each hydration
age and the value given is the average value with the corresponding standard deviation
(UNE-EN196-1). The values given in this study are the result of applying a correction factor
(1.78) to compare them with the values obtained with standard prisms (4 × 4 × 16 cm3).
Mortars prepared with Portland cement (PC type I 42.5R from Financiera y Minera S.A
(Malaga, Spain) which belongs to Heidelberg Cement Group) are also shown for the sake
of comparison.

3. Results and Discussions
3.1. Rheological Study

The amount of admixtures, SP and externally added borax was optimised in st-BYF
and B-BYF pastes prepared with w/c of 0.40. Figure 1a,b shows the flow curves of st-BYF
and B-BYF pastes, respectively, prepared with different SP contents. As expected, the
shear stress, and consequently, the viscosity of both families decreases by increasing the SP
content up to a certain point, which corresponds to the “saturation point”. In the case of
st-BYF pastes, minimum values of viscosity, and hence better homogenisation, are achieved
with the addition of 0.3 wt % SP; when the SP content was increased to 0.4 wt %, similar
viscosity values were achieved, so the value of 0.3 wt % was selected as the optimum one.
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Figure 1. Flow curves of (a) st-BYF and (b) B-BYF pastes prepared at w/c = 0.40 and different superplasticiser (SP) contents.
Inset of (b) shows the evolution of the viscosity with time of B-BYF pastes (w/c = 0.40) and different amounts of SP at a shear
rate of 5 s−1. Numbers close to each curve stand for the amount of SP (wt %) of active matter referred to cement content.

B-BYF pastes show higher viscosity values than the corresponding st-BYF pastes for
the same SP contents and need higher contents of SP to improve its workability. As the
particle size is similar in both cases (Figure S1), and the same procedure was followed in
the preparation of both families, the difference is attributed to the nature and composition
of the powders. Here, the paste with 0.5 wt % SP shows lower viscosity than the paste
with 0.4 wt %. No higher amounts of SP were studied because polycarboxylate-based
superplasticisers act also as retarders [5,38,40], and the viscosity of the paste was low
enough to prepare homogeneous specimens. To further investigate this effect, the evolution
of the viscosity with time was studied at the shear rate of 5 s−1 (inset Figure 1b). This
shear rate was selected as it is high enough to obtain accurate data, and low enough for not
altering considerably the structure of the pastes [38,40]. In all cases, the viscosity increases
with time but that rising is delayed by the addition of SP, as mentioned before. As the
addition of 0.5 wt % delays considerably the evolution of viscosity, the amount of 0.4 wt %
of SP was selected for further studies, and no extra additions were studied.

The effect of B2O3, added as borax to st-BYF, was studied in order to unravel if the
external addition is a feasible strategy of activation. The first attempt was to add the same
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amount of boron as B-BYF contains (i.e., 2.0 wt % of B2O3) but, as expected [15], the pastes
did not set even after 1 day of hydration. Consequently, the addition of 0.5 wt % of B2O3 in
the paste was tested, with the optimised amount of SP, 0.3 wt % SP; however, pastes were
still fluid 24 h later, even when lower amounts of SP were added. Thus, the amount of
B2O3 had to be reduced to 0.25 wt %, and the amount of SP was optimised for this system.
Figure 2 shows the flow curves of the st-BYF-0.25B2O3 paste with different SP contents
(from 0.0 to 0.3 wt %). The addition of a small amount of SP, 0.1 wt %, reduces considerably
the viscosity, and higher additions, 0.2 and 0.3 wt %, do not have an important improvement
to the viscosity. Thus, the amount of 0.1 wt % SP was selected for further studies.
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Figure 2. Flow curves of st-BYF with 0.25 wt % of B2O3 externally added as borax with w/c = 0.40
and different superplasticiser (SP) contents.

It is important to prepare homogeneous pastes and mortars with low initial vis-
cosity, but also with a controlled rising in viscosity to have enough open time to set in
place homogeneous pastes and mortars that set at an economically feasible range of time.
Because of that, the evolution of the viscosity with time of the three selected families
(st-BYF_wc040_03SP, st-BYF_wc040_01SP_0.25B2O3 and B-BYF_wc040_04SP) is shown in
Figure 3, where the viscosity of all pastes rises with time. Although the initial viscosity of
the optimised st-BYF paste (0.3 wt % SP) is lower than the selected B-BYF paste (0.4 wt %
SP) (Figure 1), the viscosity of the former increases more quickly during the first 55 min
(Figure 3).

In addition, the st-BYF paste suffers a decreasing in viscosity, from 28 to 32 min of
hydration, which is attributed to a stable zone where the aggregates are being broken by
shear [41]; after that, viscosity increases again due to the evolution of the hydration. The
rise in viscosity of st-BYF-0.25B2O3 paste is slower than the corresponding one for st-BYF
paste, even with a lower amount of SP, very likely due to the retarder effect of borax [15].

3.2. Calorimetric Study

Figure 4 shows the calorimetric curves of all the studied cements with different w/c
ratios. Pastes were prepared with the optimised amount of superplasticiser determined in
the previous section. In both families, st-BYF and B-BYF, there are intense signals in the
first 24 h, corresponding to the dissolution of ye’elimite and anhydrite and the precipitation
mainly of ettringite [25]. These results have to be discussed according to different variables:
(i) effect of mineralogy of st-BYF and B-BYF, (ii) effect of w/c ratio in each family and (iii)
effect of admixtures: superplasticiser and borax.



Materials 2021, 14, 4862 7 of 19Materials 2021, 14, x FOR PEER REVIEW 7 of 20 
 

 

 

Figure 3. Evolution of the viscosity with time of st-BYF_wc040_03SP, st-BYF_wc040_01SP_0.25B2O3 

and B-BYF_wc040_04SP pastes at a shear rate of 5 s−1. 

In addition, the st-BYF paste suffers a decreasing in viscosity, from 28 to 32 min of 

hydration, which is attributed to a stable zone where the aggregates are being broken by 

shear [41]; after that, viscosity increases again due to the evolution of the hydration. The 

rise in viscosity of st-BYF-0.25B2O3 paste is slower than the corresponding one for st-BYF 

paste, even with a lower amount of SP, very likely due to the retarder effect of borax [15]. 

3.2. Calorimetric Study 

Figure 4 shows the calorimetric curves of all the studied cements with different w/c 

ratios. Pastes were prepared with the optimised amount of superplasticiser determined in 

the previous section. In both families, st-BYF and B-BYF, there are intense signals in the 

first 24 h, corresponding to the dissolution of ye’elimite and anhydrite and the 

precipitation mainly of ettringite [25]. These results have to be discussed according to 

different variables: (i) effect of mineralogy of st-BYF and B-BYF, (ii) effect of w/c ratio in 

each family and (iii) effect of admixtures: superplasticiser and borax. 

(i). Mineralogy effect: The most significant effect, which is mainly due to the different 

mineralogy, is the total heat released after 7 days, being well over 300 J/g in all st-BYF 

pastes and close to 200 J/g in all the B-BYF pastes. This means that st-BYF is more 

reactive than B-BYF at early ages. To detail this discussion, both pastes with w/c of 

0.60 pastes were compared, because with this amount of water, superplasticiser was 

not required. The heat released by both st-BYF-wc060 and B-BYF-wc060 is ~150 J/g 

after 12 h of hydration (Figure 4b,d), indicating that the dissolution of ye’elimite and 

anhydrite in both families have taken place at the very same pace. However, st-BYF 

presented an increase on heat released after 24 h of hydration. This effect is usually 

related to the formation of AFm [25,42] but in these systems, it is mainly due to the 

precipitation of calcium aluminosilicate hydrates such as stratlingite or iron-siliceous 

hydrogarnet [43,44] from the dissolution of β-C2S [45], as will be discussed later. 

(ii). Effect of w/c: On the one hand, st-BYF-wc050 and st-BYF-wc060 present four signals 

before 12 h of hydration, almost coincidentally (Figure 4a). For Portland cements, it 

has been described that the increase of w/c ratio slightly delays the very early 

hydration [46]. In these systems, after 3 h of hydration, the heat released has been 

43.9 and 39.7 J/g for w/c of 0.50 and 0.60, respectively, confirming the slight 

retardation also for this BYF system. This could be due to the higher alkaline contents 

in the pore solution for lower w/c ratios. Moreover, the values of the total heat 

0

2

4

6

8

10

0 10 20 30 40 50 60 70

V
is

co
si

ty
 (

P
a·

s)

Time (min)

st-BYF_wc04_03SP

st-BYF_wc04_01SP_0.25B2O3

B-BYF_wc04_04SP

st-BYF_wc040_03SP

st-BYF_wc040_01SP_0.25B2O3

st-BYF_wc040_04SP

Figure 3. Evolution of the viscosity with time of st-BYF_wc040_03SP, st-BYF_wc040_01SP_0.25B2O3

and B-BYF_wc040_04SP pastes at a shear rate of 5 s−1.

Materials 2021, 14, x FOR PEER REVIEW 8 of 20 
 

 

released after 7 days are 353 and 363 J/g, respectively; this is also in agreement with 

the slightly higher hydration degree at later ages by increasing the w/c ratio. 

However, compared to st-BYF_wc040_03SP, with w/c 0.40, the total heat released 

after 7 days is ~14% smaller, indicating the lower degree of hydration. This may be 

due to the lower w/c ratio [46]. On the other hand, B-BYF with w/c of 0.40, 0.50 and 

0.60 released almost the same heat after 7 days of hydration; on average 200(6) J/g, 

indicating that the w/c ratio has little impact in this system at these intermediate ages. 

(iii). Effect of admixtures: The addition of superplasticiser retards the hydration in all 

cases as expected [47,48] (Figure 4). The first signal of all calorimetric curves is 

assigned to the precipitation of AFt, which has been delayed from 1.4 h in st-BYF 

pastes without any SP to ~14 h for the sample st-BYF_wc040_03SP (vertical bars in 

Figure 4a). The addition of SP to B-BYF pastes has also delayed the hydration (Figure 

4b). 

  

(a) (b) 

  

(c) (d) 

Figure 4. Calorimetric curves for (a) and (b) st-BYF and (c) and (d) B-BYF, with different w/c ratios. Vertical bars in (a) and 

(c) indicate the heat evolved due to the precipitation of AFt. 

St-BYF_wc040 was also hydrated with borax as admixture to test its effect on 

hydration. This sample also needs SPs due to the low w/c ratio of 0.40. However, as 

detailed in the previous section, the amount of SP was reduced from 0.3 wt % (that was 

added to st-BYF with w/c of 0.40 without borax) to 0.1 wt % SP for the paste with 0.25 wt 

% B2O3. As expected, the addition of boron (with SP) has retarded the hydration [15] by 

separating the dissolution/precipitation phenomena into two signals, one centred at ~3.8 

0 1 2 3 4 5 6 7

0

2

4

6

8

10

N
o

rm
a

liz
e

d
 h

e
a

t 
flo

w
 (

m
W

/g
)

Time (days)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

0

2

4

6

8

10

N
o

rm
a

liz
e

d
 h

e
a

t 
flo

w
 (

m
W

/g
)

Time (days)

Time (days)

Time (days)

N
o

rm
a

lis
e

d
 h

e
a
t 
fl
o

w
 (

m
W

/g
)

0 1 2 3 4 5 6 7

0

100

200

300

400

N
o
rm

a
liz

e
d
 H

e
a
t 
(J

/g
)

Time (days)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

0

1

2

3

4

5

6

7

8  st-BYF_wc040_03SP

 st-BYF_wc050

 st-BYF_wc060

 st-BYF_wc040_01SP_0.25B2O3

N
o

rm
a

liz
e

d
 h

e
a

t 
fl
o

w
 (

m
W

/g
)

Time (days)

Time (days)

N
o

rm
a

lis
e

d
 h

e
a

t 
(J

/g
)

0 1 2 3 4 5 6 7

0

2

4

6

8

10

N
o
rm

a
liz

e
d
 h

e
a
t 
flo

w
 (

m
W

/g
)

Time (days)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

0

2

4

6

8

10

 B-BYF_wc04_04SP

 B-BYF_wc05_03SP

 B_BYF_wc06

N
o

rm
a

liz
e

d
 h

e
a

t 
flo

w
 (

m
W

/g
)

Time (days)

Time (days)

Time (days)

N
o

rm
a

lis
e

d
 h

e
a

t 
fl
o

w
 (
m

W
/g

)

0 1 2 3 4 5 6 7

0

100

200

300

400

N
o
rm

a
liz

e
d
 H

e
a
t 
(J

/g
)

Time (days)

0 1 2 3 4 5 6 7

0

2

4

6

8

10

 B-BYF_wc040_04SP

 B-BYF_wc050_03SP

 B-BYF_wc060

N
o

rm
a

liz
e

d
 h

e
a

t 
fl
o

w
 (

m
W

/g
)

Time (days)

Time (days)

N
o
rm

a
lis

e
d
 h

e
a
t 
(J

/g
)

Figure 4. Calorimetric curves for (a) and (b) st-BYF and (c) and (d) B-BYF, with different w/c ratios. Vertical bars in (a) and
(c) indicate the heat evolved due to the precipitation of AFt.



Materials 2021, 14, 4862 8 of 19

(i). Mineralogy effect: The most significant effect, which is mainly due to the different
mineralogy, is the total heat released after 7 days, being well over 300 J/g in all st-BYF
pastes and close to 200 J/g in all the B-BYF pastes. This means that st-BYF is more
reactive than B-BYF at early ages. To detail this discussion, both pastes with w/c of
0.60 pastes were compared, because with this amount of water, superplasticiser was
not required. The heat released by both st-BYF-wc060 and B-BYF-wc060 is ~150 J/g
after 12 h of hydration (Figure 4b,d), indicating that the dissolution of ye’elimite and
anhydrite in both families have taken place at the very same pace. However, st-BYF
presented an increase on heat released after 24 h of hydration. This effect is usually
related to the formation of AFm [25,42] but in these systems, it is mainly due to the
precipitation of calcium aluminosilicate hydrates such as stratlingite or iron-siliceous
hydrogarnet [43,44] from the dissolution of β-C2S [45], as will be discussed later.

(ii). Effect of w/c: On the one hand, st-BYF-wc050 and st-BYF-wc060 present four signals
before 12 h of hydration, almost coincidentally (Figure 4a). For Portland cements,
it has been described that the increase of w/c ratio slightly delays the very early
hydration [46]. In these systems, after 3 h of hydration, the heat released has been 43.9
and 39.7 J/g for w/c of 0.50 and 0.60, respectively, confirming the slight retardation
also for this BYF system. This could be due to the higher alkaline contents in the pore
solution for lower w/c ratios. Moreover, the values of the total heat released after
7 days are 353 and 363 J/g, respectively; this is also in agreement with the slightly
higher hydration degree at later ages by increasing the w/c ratio. However, compared
to st-BYF_wc040_03SP, with w/c 0.40, the total heat released after 7 days is ~14%
smaller, indicating the lower degree of hydration. This may be due to the lower w/c
ratio [46]. On the other hand, B-BYF with w/c of 0.40, 0.50 and 0.60 released almost
the same heat after 7 days of hydration; on average 200(6) J/g, indicating that the w/c
ratio has little impact in this system at these intermediate ages.

(iii). Effect of admixtures: The addition of superplasticiser retards the hydration in all cases
as expected [47,48] (Figure 4). The first signal of all calorimetric curves is assigned to
the precipitation of AFt, which has been delayed from 1.4 h in st-BYF pastes without
any SP to ~14 h for the sample st-BYF_wc040_03SP (vertical bars in Figure 4a). The
addition of SP to B-BYF pastes has also delayed the hydration (Figure 4b).

St-BYF_wc040 was also hydrated with borax as admixture to test its effect on hydration.
This sample also needs SPs due to the low w/c ratio of 0.40. However, as detailed in the
previous section, the amount of SP was reduced from 0.3 wt % (that was added to st-BYF
with w/c of 0.40 without borax) to 0.1 wt % SP for the paste with 0.25 wt % B2O3. As
expected, the addition of boron (with SP) has retarded the hydration [15] by separating the
dissolution/precipitation phenomena into two signals, one centred at ~3.8 h and the other
one at ~14.6 h. The former may be mainly related to the precipitation of AFt and the latter
to the dissolution and precipitation of silicon-bearing phases; this deserves in situ research
that will be published elsewhere. This future research will help to understand the specific
role of admixtures by disentangling the effect on each individual hydration phenomena.

3.3. Mineralogical Evolution with Time: LXRPD and MAS-NMR Study

Figures S2–S8 give the raw LXRPD patterns of all pastes at all studied hydration
ages. Figures S9–S11 give the Rietveld plots of selected pastes as representative examples.
Tables 2–8 give RQPA results of all pastes for all the studied ages, expressed in weight
per 100 g of dry cement. These tables also include the ACn content, and the free water
calculated from the thermal analysis as detailed in Section 2.
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Table 2. RQPA, including ACn and free water (FW) of st-BYF with w/c = 0.40 and 0.3 wt % of SP
(st-BYF-wc040_03SP), per 100 g of anhydrous cement. Density of all phases and stratlingite/katoite
ratio are also included.

Phase t0 7 Days 28 Days 120 Days ρ (cm3/g)

β-C2S 28.1 19.8 12.3 11.1 3.29
γ-C2S 4.1 2.3 2.7 3.5 2.97

o-C4A3 S 14.8 – – – 2.60
C4AF 13.5 1.2 1.3 1.5 3.73
C2AS 2.4 1.7 1.9 2.0 3.01

CS 8.3 – – – 2.98
Ettringite – 16.2 15.2 18.2 1.78
Katoite – 9.5 10.4 13.0 2.70

Stratlingite – 10.2 8.5 7.4 1.86
AFm – 0.7 0.7 0.6 1.77
ACn 28.8 72.7 84.7 82.6 3.25 #/2.00
FW 40.0 5.6 3.0 0.0 1.00

Strat/Kat 0.0 1.1 0.8 0.6
# Value used for the initial ACn of t0 column.

Table 3. RQPA, including ACn and FW of st-BYF with w/c = 0.40, 0.1 wt % of SP and 0.25 wt %
of B2O3 added as borax (st-BYF-wc040_01SP_0.25B2O3), per 100 g of anhydrous cement. Stratlin-
gite/katoite ratio is also included.

Phase t0 7 Days 28 Days 120 Days

β-C2S 28.1 24.7 14.6 12.4
γ-C2S 4.1 2.9 2.5 2.9

o-C4A3 S 14.8 – – –
C4AF 13.5 2.4 0.7 1.0
C2AS 2.4 1.8 1.9 2.3

CS 8.3 1.6 1.0 1.2
Ettringite – 16.3 19.4 18.3
Katoite – 8.4 14.9 18.2

Stratlingite – 8.1 10.1 9.0
ACn 28.8 69.0 74.8 74.7
FW 40.0 4.8 0.1 0.0

Strat/Kat 0.0 1.0 0.7 0.5

Table 4. RQPA, including ACn and FW of st-BYF with w/c = 0.50 (st-BYF-wc050), per 100 g of
anhydrous cement. Stratlingite/katoite ratio is also included.

Phase t0 7 Days 28 Days 120 Days

β-C2S 28.1 16.1 11.6 6.3
γ-C2S 4.1 3.5 3.9 4.0

o-C4A3 S 14.8 – – –
C4AF 13.5 2.4 1.6 1.3
C2AS 2.4 2.0 2.2 1.9

CS 8.3 – – –
Ettringite 0.0 13.1 12.3 16.7
Katoite 0.0 7.9 8.7 10.0

Stratlingite 0.0 9.1 8.7 6.2
AFm 0.0 1.2 2.3 2.5
ACn 28.8 82.0 86.8 95.5
FW 50.0 12.7 12.0 5.7

Strat/Kat 0.0 1.2 1.0 0.6
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Table 5. RQPA, including ACn and FW of st-BYF with w/c = 0.60 (st-BYF-wc060), per 100 g of
anhydrous cement. Stratlingite/katoite ratio is also included.

Phase t0 7 Days 28 Days 120 Days

β-C2S 28.1 15.5 12.4 8.2
γ-C2S 4.1 2.9 3.0 3.1

o-C4A3 S 14.8 – – –
C4AF 13.5 1.7 1.2 1.0
C2AS 2.4 2.0 1.6 1.7

CS 8.3 – – –
Ettringite – 6.7 17.4 16.4
Katoite – 5.4 7.5 9.9

Stratlingite – 10.0 9.6 6.8
AFm – 1.8 3.5 4.4
ACn 28.8 89.2 83.4 93.1
FW 60.0 24.8 20.5 15.6

Strat/Kat 0.0 1.9 1.3 0.7

Table 6. RQPA, including ACn and FW of B-BYF with w/c = 0.40 and 0.4 wt % of SP (B-BYF-
wc040_04SP), per 100 g of anhydrous cement. Density of all phases and stratlingite/katoite ratio are
also included.

Phase t0 7 Days 28 Days 120 Days ρ (cm3/g)

α’H-C2S 29.4 23.2 23.7 14.7 3.21
γ-C2S 0.4 0.5 0.6 0.4 2.97

cub-C4A3 S 17.0 1.7 1.7 1.1 2.60
C4AF 15.0 11.6 12.2 8.6 3.73
C2AS 0.7 – – – 3.01

CS 8.0 – – – 2.98
Ettringite – 22.8 25.9 30.8 1.78
Katoite – 0.8 0.7 3.5 2.70

Stratlingite – – – – 1.86
ACn 29.5 67.3 65.7 81.0 3.25 #/2.00
FW 40.0 12.1 9.5 0.0 1.00

Strat/Kat 0.0 0.0 0.0 0.0
# Value used for the initial ACn of t0 column.

Table 7. RQPA, including ACn and FW of B-BYF with w/c = 0.50 and 0.3 wt % of SP (B-BYF-
wc050_03SP), per 100 g of anhydrous cement. Stratlingite/katoite ratio is also included.

Phase t0 7 Days 28 Days 120 Days

α’H-C2S 29.4 25.1 21.6 13.3
γ-C2S 0.4 0.5 0.4 0.7

cub-C4A3 S 17.0 1.5 0.9 0.5
C4AF 15.0 12.0 10.8 8.6
C2AS 0.7 – – –

CS 8.0 – – –
Ettringite – 21.8 24.9 29.9
Katoite – – – –

Stratlingite – 0.0 2.5 3.6
CNS ** – 0.8 – –

Hc $ – – – 0.3
AFm – – 0.6 0.6
ACn 29.5 66.7 72.7 87.4
FW 50.0 21.7 15.6 5.2

Strat/Kat – – – –

** Ca0.857Na0.285(SO4)(H2O)0.473; $ hemicarboaluminate.
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Table 8. RQPA, including ACn and FW of B-BYF with w/c = 0.60 (B-BYF-wc060), per 100 g of
anhydrous cement. Stratlingite/katoite ratio is also included.

Phase t0 7 Days 28 Days 120 Days

α’H-C2S 29.4 25.6 21.3 17.2
γ-C2S 0.4 0.7 0.7 0.4

cub-C4A3 S 17.0 0.5 – –
C4AF 15.0 13.3 12.4 12.8
C2AS 0.7 – – –

CS 8.0 – – –
Ettringite – 21.6 27.3 33.4
Katoite – – 0.8 1.2

Stratlingite – 0.5 4.2 5.0
CNS ** – 2.4 0.8 0.6
AFm – 0.5 1.0 0.5
ACn 29.5 64.7 65.6 68.5
FW 60.0 30.2 25.8 20.4

Strat/Kat 0.0 – 5.1 4.3
** Ca0.857Na0.285(SO4)(H2O)0.473.

In all samples, ye’elimite has completely reacted after 7 days. However, none of the
pastes have reached the theoretical amount of ettringite according to reaction (1) [49,50],
being 30.5 and 35.0 g/100 g of dry cement for st-BYF and B-BYF, respectively, independently
of the amount of water (with the limiting phase being ye’elimite). In fact, all the pastes with
w/c 0.50 and 0.60 contain a certain amount of free water, i.e., non-reacted water, meaning
that the availability of water was not the reason of not reaching the theoretical amount of
crystalline ettringite.

C4A3S + 2CS + (38 + 2x)H → C6AS3H32 + 2AH3·xH, (1)

This fact means that the amorphous/nanocrystalline fraction (ACn content) contains
not only the aluminium hydroxide gel but also nano-crystalline sulphate-bearing phases.
The average amount of crystalline AFt after 28 days is 13.1(3.9) and 22.1(0.5) g/100 g of
dry cement for st-BYF and B-BYF families, respectively. These values mean only ~40%
and ~63% of the theoretical amount of AFt that could precipitate are present as crystalline
components. After 120 days, the mean crystalline ettringite has increased up to 17.4(0.9)
and 31.4(1.5) g/100 g of dry cement for st-BYF and B-BYF families, respectively, being
~57% and ~90% of the theoretical amount of AFt that could precipitate since ye’elimite was
dissolved completely.

Figure 5 displays 27Al MAS-NMR spectra for st-BYF pastes with w/c 0.40 and 0.60 as
a function of time as illustrative examples of the effect of w/c ratio on phase assemblage.
After 7 days of hydration, the characteristic resonance bands of octahedrally coordinated
Al at ~13 and ~5 ppm of AFt and AH3-gel or “third aluminate hydrate” [50], respectively,
are present in all the spectra. A recent study of Portland cement with calcined clays has
determined that the latter signal is mainly due to bridging Al(VI) species which behave
as network formers in C-A-S-H gel [51]. However, in these aluminate rich systems the
presence of ill-crystallised AH3 has been confirmed [52]. The signal due to this AH3-gel
in the systems with higher w/c ratio are more intense and broader (see dashed lines in
Figure 5). It has been demonstrated [25] that the kinetic of hydration of ye’elimite is
not modified by the variation of the w/c ratio, and here what we are observing is that
the increase of the w/c ratio has affected the precipitation of crystalline phases, with
the amorphous component being higher at 7 days (Table 2; Table 5). Interestingly, the
ratio of stratlingite/katoite increases by increasing the w/c ratio, meaning that at a low
w/c ratio the formation of stratlingite is impaired, as previously observed [25,53], but the
crystallisation of iron-bearing katoite is favoured (Tables 2–8).
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Moreover, the degree of reaction of both β-C2S and α’H-C2S, in all pastes, has been
calculated from data given in Tables 2–8, and is shown in Figure 6a. The latter is always
lower than the former for all pastes, in agreement with calorimetric results. Moreover, the
dissolution rate of C4AF is directly correlated with that of belite; consequently, the degree
of hydration of the ferrite phase in st-BYF is also higher at any w/c ratio (see Figure 6b).
The data obtained in a previous study [22] for pastes prepared with w/c of 0.55 are also
included for the sake of comparison and agree with the results reported here. The higher
hydration rate of β-C2S than α’H-C2S may be due to the higher volume of the former due to
the presence of sulphur [54,55], i.e., 347.4(1) Å3 compared to 345.8 Å3, which was stabilised
with 0.5 wt % of Cr2O3 [56]. Consequently, the approach of adding boron or borax reported
by Lafarge [57,58] to stabilise α’H-C2S, which is a-priori highly reactive, is not supported
by this study since these polymorphs present a lower hydration degree at any w/c ratio
or time.

The reactivity of β-C2S and ferrite can be described by reactions (2) and (3), being
the formation of stratlingite and iron-containing katoite or siliceous hydrogarnet [43],
respectively.

C2S + 2AH3 + 5H → C2ASH8, (2)

C2S +
1
2

C4AF + 5H → C3S(A,F)2H4 + CH, (3)

All st-BYF pastes, at any w/c ratio and any hydration time, present higher amounts
of both stratlingite and katoite due to the higher degree of reaction of belite and ferrite.
The presence of these phases has been confirmed also by NMR since stratlingite displays
a resonance located at ~60 ppm (asterisks in Figure 5; Figure 7a), which correspond to
the interlayer IV-coordinate-Al [59,60]; it enables us to clearly identify it by 27Al MAS-
NMR. The resonance centred at ~9.5 ppm is due to VI-coordinated-Al, which is present
in stratlingite, katoite and AFm phases. This signal is even larger than the AFt one after
7 days in st-BYF_wc060 (Figure 5b). Figure 7b also shows the 29Si MAS-NMR spectra
of selected pastes; concretely the ones that were tested by mechanical strengths, after
120 days of hydration. The most remarkable difference among these spectra is the signal
centred at approximately −86 ppm and approximately −82 ppm, labelled as # in Figure 7b,
corresponding to Q3(2Al) and Q2(1Al) of stratlingite [61], respectively, present mainly in
st-BYF pastes. The cohesive effect of stratlingite (and katoite) is still unknown, and further
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research is needed. Moreover, after 120 days of hydration, the signals due to C-S-H gel,
at approximately −77 ppm and approximately −85 ppm for Q1 and Q2, respectively, are
present in all the systems, labelled as 2 and 3 in Figure 7b. However, the broad resonance
due to the IV-coordinated aluminium present in the C-A-S-H gel [59,62], which is labelled
as 1 in Figure 7a, indicates that, only in the family of B-BYF, this gel contains a small amount
of aluminium. This is understandable, since reactions (2) and (3) in st-BYF systems have
taken place at a larger pace than in B-BYF systems, consuming aluminium. According to
these data, it cannot be stated that the formation of C-S-H or C-A-S-H gel is favoured in
st-BYF or in B-BYF, since 29Si MAS-NMR spectra are very similar.
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Figure 6. Degree of reaction of (a) β-C2S and α’H-C2S and (b) C4AF in all BYF pastes. Data calculated from [22] for w/c of
0.55 are also included.



Materials 2021, 14, 4862 14 of 19

Materials 2021, 14, x FOR PEER REVIEW 14 of 20 
 

 

The reactivity of β-C2S and ferrite can be described by reactions (2) and (3), being the 

formation of stratlingite and iron-containing katoite or siliceous hydrogarnet [43], 

respectively. 

C2S + 2AH3 + 5H     →    C2ASH8, (2) 

C2S + ½ C4AF + 5H     →    C3S(A,F)2H4 + CH, (3) 

All st-BYF pastes, at any w/c ratio and any hydration time, present higher amounts 

of both stratlingite and katoite due to the higher degree of reaction of belite and ferrite. 

The presence of these phases has been confirmed also by NMR since stratlingite displays 

a resonance located at ~60 ppm (asterisks in Figure 5; Figure 7a), which correspond to the 

interlayer IV-coordinate-Al [59,60]; it enables us to clearly identify it by 27Al MAS-NMR. 

The resonance centred at ~9.5 ppm is due to VI-coordinated-Al, which is present in 

stratlingite, katoite and AFm phases. This signal is even larger than the AFt one after 7 

days in st-BYF_wc060 (Figure 5b). Figure 7b also shows the 29Si MAS-NMR spectra of 

selected pastes; concretely the ones that were tested by mechanical strengths, after 120 

days of hydration. The most remarkable difference among these spectra is the signal 

centred at approximately −86 ppm and approximately −82 ppm, labelled as # in Figure 7b, 

corresponding to Q3(2Al) and Q2(1Al) of stratlingite [61], respectively, present mainly in 

st-BYF pastes. The cohesive effect of stratlingite (and katoite) is still unknown, and further 

research is needed. Moreover, after 120 days of hydration, the signals due to C-S-H gel, at 

approximately −77 ppm and approximately −85 ppm for Q1 and Q2, respectively, are 

present in all the systems, labelled as 2 and 3 in Figure 7b. However, the broad resonance 

due to the IV-coordinated aluminium present in the C-A-S-H gel [59,62], which is labelled 

as 1 in Figure 7a, indicates that, only in the family of B-BYF, this gel contains a small 

amount of aluminium. This is understandable, since reactions (2) and (3) in st-BYF systems 

have taken place at a larger pace than in B-BYF systems, consuming aluminium. 

According to these data, it cannot be stated that the formation of C-S-H or C-A-S-H gel is 

favoured in st-BYF or in B-BYF, since 29Si MAS-NMR spectra are very similar. 

  

(a) (b) 

Figure 7. (a) 27Al MAS-NMR and (b) 29Si MAS-NMR spectra for selected pastes after 120 days of hydration. Asterisk 

indicates the interlayer IVAl resonance due to stratlingite. # stands for Q3(2Al) and Q2(1Al) resonances of stratlingite. IVAl 

resonance in C-A-S-H gel is labelled as 1 in (a). Q1 and Q2 resonances due to C-S-H gel are labelled as 2 and 3 in (b). 

100 90 80 70 60 50 40 30 20 10 0 -10

Chemical shift (ppm)

27Al MAS−NMR @ 120d 

*

1

st−BYF_wc040_03SP

st−BYF_wc040_01SP_0.25B2O3

B−BYF_wc050_03SP

B−BYF_wc040_03SP

−100102030405060708090100 -60 -65 -70 -75 -80 -85 -90 -95 -100

29Si MAS−NMR @ 120d 

Chemical shift (ppm)

#
2 3

#

−100−95−90−85−80−75−70−65−60

Figure 7. (a) 27Al MAS-NMR and (b) 29Si MAS-NMR spectra for selected pastes after 120 days of hydration. Asterisk
indicates the interlayer IVAl resonance due to stratlingite. # stands for Q3(2Al) and Q2(1Al) resonances of stratlingite. IVAl
resonance in C-A-S-H gel is labelled as 1 in (a). Q1 and Q2 resonances due to C-S-H gel are labelled as 2 and 3 in (b).

The volume changes with hydration time may justify the mechanical performances.
Thus, Figure 8 shows the volume evolution of two selected pastes, st-BYF-wc040_03SP
and B-BYF-wc040_04SP as representative examples. The density values used to make
these calculations are included in Table 2; Table 6. The volume increase due to the for-
mation of crystalline ettringite, from 7 to 120 days, in both systems are 12.5 and 35.3%,
for st-BYF-wc040_03SP and B-BYF-wc040_04SP, respectively. These increments of crys-
talline ettringite may be described as a crystallisation or crystal growth process from
amorphous/nanocrystalline ettringite-like fraction to crystalline AFt. This crystal growth
has happened after setting and consequently, it may cause internal stress that up to a
certain level may enhance the mechanical properties [63], but if a threshold level is crossed
the mechanical properties may be negatively affected [64]; see below in the mechanical
strengths development. At this stage, more research is needed to develop quantitative
techniques [65,66] to unravel the evolution of the microstructure of hydrating materials at
the different length scales, from nano- to millimetres.

3.4. Mechanical Strengths

Figure 9 shows the compressive strength values of selected mortars of st-BYF and
B-BYF. The reader has to bear in mind that these are laboratory-prepared cements, and
consequently, not all the formulations could be tested by mechanical strengths. The water-
to-cement ratio of 0.40 was selected for all cements to be compared with those published
by our research group with w/c 0.55 [22]; in addition, B-BYF with w/c 0.50 was also tested.
The first important result is that the reduction of w/c ratio from 0.55 to 0.40 causes an
increase in the compressive strengths in both systems, st-BYF and B-BYF. The increase (in
percentage) referred to the corresponding mortars prepared at w/c = 0.55 [22] are also
included in Figure 9.
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Figure 8. Volume evolution with time for (a) st-BYF-wc040_03SP and (b) B-BYF-wc040_04SP. Dashed
vertical lines indicate 7 and 28 days of hydration.

The higher degree of hydration of st-BYF phases and the optimisation of fresh pastes
through rheological studies have caused the development of higher mechanical strengths
after 7 days for all the tested samples, being competitive with a PC type I 42.5R. The
workability at the fresh state of the mortars has a very important impact on the mechanical
strengths, in agreement with previous studies [38]. These results also indicate that the
mineralogical evolution with time, jointly with the degree of hydration of main phases,
are useful to predict the mechanical strengths. In this study, B-BYF based mortars, with
α’H-C2S, developed lower mechanical strengths than the optimised st-BYF mortars. These
results could be predicted by the lower degree of hydration of the main phases.
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of 0.55 from [22].

4. Conclusions

Two laboratory-prepared BYF clinkers, standard (st-BYF) and activated with borax
(B-BYF), were mixed with 10 wt % anhydrite to prepare BYF cements. As both clinkers
show similar particle size distribution, the main difference between them is related to the
belite and ye’elimite polymorphisms, where β-C2S and orthorhombic C4A3S are present
in the former, and α’H-C2S and pseudo-cubic C4A3S are the main phases in the activated
BYF. The external addition of borax to st-BYF pastes has also been studied. Homogeneous
pastes and mortars were prepared after the optimisation of the superplasticiser content
(0.3, 0.4 and 0.1 wt % for st-BYF, B-BYF and st-BYF with 0.25 wt % B2O3, respectively)
through rheological measurements. As the external addition of borax resulted in the delay
of hydration, the maximum amount of B2O3 that could be added was 0.25 wt % (pastes
with 0.5 wt % B2O3 were still fluid even after 24 h).

The calorimetric study revealed that st-BYF is more reactive than B-BYF after 7 days
of hydration. The hydration degree of the st-BYF paste slightly increased at later ages by
increasing the w/c ratio, although B-BYF pastes prepared at different w/c ratios released
almost coincident heat after 7 days of hydration.

The quantitative phase assemblage with time determined by LXRPD (and the Rietveld
method) has enabled us to determine the higher degree of hydration at 28 days of β-C2S
in st-BYF, from 45 to 60%, than α’H-C2S in B-BYF (~20 to 30%). Moreover, ye’elimite was
completely reacted after 7 days in all samples, although none of the pastes reached the the-
oretical amount of ettringite; thus, the amorphous/nanocrystalline fraction (ACn content)
contains not only the aluminium hydroxide gel but also nano-crystalline sulphate-bearing
phases. The increase of volume due to the crystallisation of AFt, from 7 to 120 days, is ~13%
in st-BYF and ~30% in B-BYF. This increase in volume might be one of the reasons for the
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lower mechanical strengths of B-BYF mortars, jointly with the lower degree of hydration
of main phases. The stratlingite/katoite ratio in both systems increases by increasing the
w/c ratio. However, the impact of these results on the evolution of the microstructure
of hydrating materials should be determined by quantitative characterisation techniques,
which have to be developed. It cannot be stated that the formation of C-S-H or C-A-S-H
gel is favoured in st-BYF or in B-BYF, since 29Si MAS-NMR spectra are very similar.

Finally, the higher degree of reaction of β-C2S in st-BYF and the optimisation of
processing, in terms of superplasticiser content, have resulted key to achieving competitive
compressive strengths. St-BYF mortars show compressive strength values >40 MPa at
7 days of hydration, and at 28 days, this value increases to >50 MPa for plain st-BYF and
>70 MPa for st-BYF with B2O3 as admixture. These values are comparable (or higher) to
mortars with type I 42.5R Portland cement.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14174862/s1. Figure S1: PSD of st-BYF and B-BYF, Figures S2–S8: LXRPD raw patterns of
hydrated pastes, Figures S9–S11: Rietveld plots of selected pastes hydrated at 7, 28 and 120 d.
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