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Abstract: In order to investigate the effect of phase change materials on the frost resistance of concrete
in cold regions, hollow steel balls were used in this paper for the macroscopic encapsulation of the
phase change material to replace some of the coarse aggregates in the preparation of phase change
concrete. On the premise of ensuring reasonable mechanical properties, concrete mixed with different
contents and different surface treatments of grouting steel balls were tested for the compressive
strength and splitting tensile strength to determine the optimum content of phase change steel balls
and investigate the frost resistance of phase change concrete. At the same time, industrial CT was
used to explore the internal pore evolution pattern of concrete during the freeze–thaw period. The
test results show that the optimum content of steel balls is 75%; during the freeze–thaw process,
the mass loss, relative dynamic elastic modulus loss, and strength loss of phase change concrete are
all lower than those of ordinary concrete, and the increase in porosity of phase change concrete is
also significantly lower than that of ordinary concrete; the addition of phase change materials can
optimise the distribution of the internal pore in concrete, improve its internal pore structure, and
enhance its frost resistance.

Keywords: phase change concrete; macro-encapsulation; frost resistance; industrial CT; pore structure

1. Introduction

Phase change materials can make use of latent heat to store energy, and these materials
can store or emit large amounts of heat through changes in their phase state to regulate the
room temperature [1,2]. According to the form in which the phase change occurs, phase
change materials can be divided into four categories: liquid–gas, solid–gas, solid–liquid,
and solid–solid. Among them, solid–liquid phase change materials are easier to produce
and use in large quantities due to their characteristics, including a large temperature range,
a large amount of heat released during the phase change, the low production costs, and a
variety of types for selection and use. However, if the solid–liquid phase change material
is mixed directly with the building material without encapsulation, it is prone to leakage
during the energy conversion process, which affects its use and durability [3].

The encapsulation of phase change materials is generally carried out by physical
mixing methods, including macro-encapsulation and micro/nano-encapsulation, but the
latter is too expensive and may have a negative impact on the mechanical properties
of the corresponding structure, as well as building materials. In contrast, the macro-
encapsulation of phase change materials in carriers such as light aggregates, spheres, and
slabs, which are larger in volume, compared to micro/nano-encapsulated carriers, does
not have much impact on the structural function of the building and has the advantages of
simple production methods, low costs, the direct replacement of concrete aggregates, etc.
As a result, this technology has received widespread interest from various studies [4–11].
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In recent years, phase change materials have been used in buildings for energy ef-
ficiency, both for comfort and for reducing energy losses [12,13]. Hadjieva et al. [14]
evaluated the thermal storage properties, structural stability, and the practicality of a
PCM wallboard for heat storage made by applying thiosulphate pentahydrate to concrete.
Koschenz et al. [15] designed an energy-efficient ceiling for office and industrial buildings,
for which simulations and experimental validation were carried out. Karim et al. [16] used
the thermal storage capacity of paraffin wax to make a lightweight insulated energy-saving
flooring with light weight and heat preservation. Ryms et al. studied the application of
PCM in modifying building materials by using different carriers [17,18]. Mazzucco et al.
also studied the coupled behaviour of concrete modified by PCM particles employed as
solid energy storage media [19].

In terms of temperature control in mass concrete, the incorporation of phase change
materials can help to transfer the accumulated heat of hydration within mass concrete [20],
alleviating and improving the cracking of concrete caused by large temperature differences.
Kim et al. [21] mixed the barium salt phase change material into concrete to substantially
reduce the heat of hydration of concrete. Qian et al. [22] studied the cooling effect of phase
change materials instead of water as a coolant for concrete and pointed out that phase
change materials have an important role in regulating the temperature rise and fall caused
by cement hydration.

As icing on road surfaces has been difficult to tackle effectively in winter, especially in
cold regions, many scientists have conducted in-depth research in recent years on using
phase change materials to speed up ice and snow melting on pavements. Nayak et al. [23]
used finite elements to evaluate the effect of phase change materials on the thermal effect of
concrete pavements in winter, and the simulation results showed that the effect was better
after adding phase change materials. Bentz et al. [24] earlier proposed that phase change
materials can be mixed with cement-based materials to create a phase change functional
layer in the pavement structure, so as to prevent or delay the formation of ice and frost by
using the heat storage and exothermic properties of phase change materials. At present,
there is more research on phase change materials in certain areas, including energy saving
in buildings, temperature control in mass concrete, and snow melting in road surfaces, but
less on improving the frost resistance of concrete; therefore, there is an urgent need for
further work.

This research aims at studying the effect of PCM on the freeze–thaw resistance of
concrete by using macroscopic encapsulation of PCM. Hollow steel balls containing phase
change material were used to replace some of the coarse aggregates to modify concrete
with guaranteed mechanical properties and the maximum amount of PCM added. On
the premise of ensuring reasonable mechanical properties, concrete mixed with different
contents and different surface treatments of grouting steel balls were tested for mechanical
properties to determine the optimum admixture of phase change steel balls. Furthermore,
rapid freeze–thaw tests were conducted on phase change concrete, and its freeze-resistance
performance was studied by comparing and analysing the loss of mass, relative dynamic
elastic modulus, and mechanical properties during freeze–thaw. In addition, industrial CT
was used for nondestructive testing of concrete, and an in-depth analysis of the effect of
phase change concrete on internal pore evolution and pore distribution during freeze–thaw
was carried out.

2. Materials and Methods
2.1. Raw Materials

PO42.5 ordinary silicate cement was used, its chemical composition and related basic
properties are shown in Tables 1 and 2, respectively. The grade of fly ash used was class
I, and its chemical composition and physical properties are shown in Tables 1 and 3,
respectively. The water reducing agent and air-entraining agent produced by Subote New
Materials Co. Ltd. (Jiangsu, China) were used as admixtures. The water used for the test
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was ordinary tap water. The size of the gravel with continuous grading was 5~30 mm. The
fine aggregate was river sand, with a fineness modulus of 2.58.

Table 1. Chemical composition of cement (%).

Type CaO SiO2 Al2O3 Fe2O3 TiO2 MgO SO3 Na2O Ignition Loss

Cement 8.93 48.50 25.36 5.12 0.57 1.15 1.15 0.52 0.79
Fly ash 4.88 49.02 31.56 6.97 - 0.83 1.2 - 3.65

Table 2. Basic properties of cement.

Normal
Consistency

(%)

Setting Time
(h) Stability

Compressive
Strength

(MPa)

Flexural Strength
(MPa) Density

(g/cm3)
Initial Final 3 Days 28 Days 3 Days 28 Days

25.3 1:38 2:33 Qualified 18.3 39.3 2.6 6.2 3.11

Table 3. Physical properties of fly ash.

Specific Surface Area
(m2/kg)

Apparent Density
(g/cm3)

Fineness
(45 µm) Water Content Water Demand Ratio

0.994 2.56 18.0% 0.4% 88.0%

2.2. Encapsulation and Preparation of Phase Change Steel Balls and Grouting Steel Balls

The main component of the phase change material used in this test was tetradecane,
which accounted for over 95%. The latent heat of phase change for the organic phase
change material with a phase change temperature of 2 ◦C was found to be about 191.59 J/g.
The hollow steel balls made of stainless steel 304 with an inner diameter of 23 mm and an
outer diameter of 25 mm were used to encapsulate the phase change material. A 1 mm
diameter hole was made in the upper part of the balls, and the balls were filled with phase
change material through a syringe and then sealed by welding. Compared to other carrier
materials such as ceramic pellets, the steel ball has the characteristics of a strong ability to
contain phase change material and a good sealing effect; therefore, it is not easy to cause
phase change material leakage. The steel ball was fully filled with PCM, the density of the
phase change steel ball was 1743 kg/m3, and the mass of phase change material was 63%
of the steel-ball-containing PCM.

For the preparation of grouting steel balls, the hollow steel balls with the same inner
diameter and outer diameter were used. A hole with a diameter of 6 mm was made in the
upper part of steel balls, and then the balls were filled with cement slurry. After the cement
slurry had dried slightly, the total mass of the hollow steel ball and the cement slurry was
weighed to obtain a density of 2439 kg/m3 for the grouting steel ball.

2.3. Preparation of Concrete Mixed with Phase Change Steel Balls

In this paper, 75% volume of large coarse aggregate (20~30 mm) was replaced by an
equal volume of phase change steel balls to prepare phase change concrete, and a control
group was set up as shown in Table 4.

Table 4. Mix proportion of concrete modified by steel balls containing phase change material (kg/m3).

Type C FA S W SBPCM
Coarse Aggregate

WRA AEASmall Medium Large

Ordinary concrete 202 87 688 130 0 389 505 355 1.1918 0.0202
Phase change concrete 202 87 688 130 214.5 389 505 88.75 1.1918 0.0202

C, cement; FA, fly ash; S, sand; W, water; SBPCM, steel-ball-containing PCM; WRA, water reducing agent; AEA,
air-entraining agent.
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2.4. Preparation of Concrete Mixed with Grouting Steel Balls

In this test, in order to investigate the effect of grouting steel balls with different
surfaces on mechanical properties of concrete, the surface of a portion of the balls was
treated with a metal repairing agent, thus classifying the grouting steel balls into two types:
smooth surface and rough surface.

Grouting steel balls were used to replace 25%, 50%, 75%, and 100% volume of large
coarse aggregate (20~30 mm) by equal volume, corresponding to the mix ratio design of
concrete, as shown in Table 5.

Table 5. Mix proportion of concrete modified by grouting steel balls (kg/m3).

Type C FA S W GSB
CA

WRA AEASmall Medium Large

Ordinary Concrete 202 87 688 130 0 389 505 355 1.1918 0.0202

Grouted steel ball concrete

202 87 688 130 100 389 505 266.25 1.1918 0.0202
202 87 688 130 200 389 505 177.5 1.1918 0.0202
202 87 688 130 300 389 505 88.75 1.1918 0.0202
202 87 688 130 400 389 505 0 1.1918 0.0202

GSB, grouting steel ball.

All concrete specimens were demoulded at 24 h after casting and cured in standard
curing boxes for 28 days.

2.5. Test Design
2.5.1. Mechanical Performance Test

Compressive and splitting tensile tests were carried out on concrete with four different
contents of grouting steel ball in the paper, and the test results were analysed to determine
the optimum content for subsequent frost resistance tests on concrete admixed with phase
change steel balls.

The specimen size chosen for compressive and splitting tensile tests was
100 mm × 100 mm × 100mm, with reference to GB/T50081-2019. MTS universal test-
ing machine (Shanghai, China) was used, shown in Figure 1. The loading speeds for
compressive and splitting tensile tests were 0.5 MPa/s and 0.05 MPa/s, respectively.
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Figure 1. MTS universal testing machine.

2.5.2. Rapid Freeze–Thaw Test

The concrete with the appropriate amount of phase change steel balls was prepared
by referring to the results of the mechanical properties test. A rapid freeze–thaw test was
carried out according to the test method specified in GBT50082; the equipment produced
by Tianjin Gangyuan Test Instrument Co. Ltd. (Wenzhou, China) used is shown in Figure 2.
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Three specimens were used for each freeze–thaw cycle condition. Five freeze–thaw cycle
conditions were considered, i.e., 0, 50, 100, 150, and 200 freeze–thaw cycles.
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Figure 2. Rapid freeze–thaw test machine for concrete.

The specimens with dimensions of 100 mm × 100 mm × 100 mm were immersed
in water for 4 days and then removed for the freeze–thaw cycle test. During the test, the
temperature in the centre of specimens was controlled from a minimum of (−18 ± 2) ◦C
to a maximum of (5 ± 2) ◦C. Before the freeze–thaw test and after every 50 freeze–thaw
cycles, the mass and the dynamic modulus of elasticity, as well as the strength, were
measured. The mass loss, the relative dynamic modulus of elasticity, and the strength loss
were calculated from the average of three specimens. The DT-20 dynamic elastic modulus
tester produced by Tianjin Gangyuan Test Instrument Co. Ltd. (Wenzhou, China) was
used, as shown in Figure 3.
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2.5.3. Industrial CT Inspection

Industrial CT (Multiscale-Voxel 450) produced by Sanying Precision Instruments Co.,
Ltd. (Tianjin, China) was employed to scan concrete specimens, and the CT data were
processed using Avizo software to investigate the changes in the internal pore structure
of phase change concrete and ordinary concrete under different freeze–thaw cycles. For
both ordinary concrete and phase change concrete, only one specimen from each was
scanned by CT with 0, 50, 100, 150, and 200 freeze–thaw cycles. In order to decrease the
error caused by the boundary, the 100 mm × 100 mm × 100 mm specimen was cut into
80 mm × 80 mm× 80 mm in the postprocessing and pore structure analysis. After the
samples were scanned by CT, Voxel Studio Recon software was used for reconstruction. The
reconstruction resolution was 1100 × 1100 × 1100 PPI. Before the industrial CT scanning,
the instrument self-examination and parameter setting work were carried out. After setting
the voltage as 385 kV and current as 1.3 mA, the DR Film was taken for correction. The
correction scanning was performed before every CT scanning, and parameters were set as
the same for every scanning.
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3. Results and Discussion
3.1. Compressive Strength of Concrete Mixed with Grouting Steel Balls

The variation in compressive strength of concrete mixed with different contents and
different surfaces of grouting steel balls is shown in Figure 1 and Tables 6 and 7, where
P denotes ordinary concrete, G and C represent concrete with smooth and rough surface
grouting steel balls, respectively, Y is the compressive test, and the figure in the specimen
number indicates the volume fraction of large coarse aggregate replaced by grouting
steel balls.

Table 6. Compressive strength of grouted steel ball concrete.

No. Compressive Strength
(MPa) No. Compressive Strength

(MPa)

PY 36.93 ± 0.31
GY25 23.23 ± 0.59 CY25 29.07 ± 0.58
GY50 30.20 ± 0.69 CY50 25.77 ± 0.68
GY75 32.17 ± 0.21 CY75 34.97 ± 0.75

GY100 27.63 ± 0.45 CY100 31.27 ± 0.12

Table 7. Compressive strength loss rate of grouted steel ball concrete with different contents.

No. Loss Rate (%)

PY 0
GY25 37.10 CY25 21.28
GY50 18.22 CY50 30.22
GY75 12.89 CY75 5.31

GY100 25.18 CY100 15.33

It can be concluded from Tables 6 and 7 and Figure 4 that the incorporation of steel balls
could reduce the compressive strength of concrete to different degrees. The compressive
strength of the concrete tends to increase and then decrease as the amount of grouting
steel balls is increased. Compared to smooth steel balls, rough steel balls strengthen the
bond between the ball surface and the cement slurry and their compressive strength is
superior to that of concrete mixed with smooth steel balls in general. Compared to ordinary
concrete, the compressive strength decreases the least when the steel balls are mixed at
75%, at which point the compressive strength of concrete mixed with smooth and rough
steel balls decreases by 12.89% and 5.31%, respectively. The compressive strength results
show that when using rough steel ball modified concrete with a volume replacement rate
of 75%, the mechanical properties of the concrete are better and basically close to those of
ordinary concrete.

3.2. Splitting Tensile Strength of Concrete Mixed with Grouting Steel Balls

The effects of grouting steel balls with different dosing and surface treatments on
splitting tensile strength of concrete are shown in Tables 8 and 9 and Figure 5, where P
denotes ordinary concrete, G and C represent the concrete mixed with smooth and rough
grouting steel balls, respectively, L is splitting tensile test, and the figure in the specimen
number indicates the volume fraction of large coarse aggregate replaced by grouting
steel balls.
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Figure 4. Change of compressive strength of grouted steel ball concrete.

Table 8. Splitting tensile strength of grouted steel ball concrete.

No. Splitting Tensile Strength
(MPa) No. Splitting Tensile Strength

(MPa)

PL 1.31 ± 0.05
GL25 1.49 ± 0.10 CL25 1.49 ± 0.06
GL50 1.50 ± 0.06 CL50 1.02 ± 0.02
GL75 1.83 ± 0.06 CL75 1.88 ± 0.19
GL100 1.58 ± 0.03 CL100 2.12 ± 0.02

Table 9. Improvement of splitting tensile strength of grouted steel ball concrete.

No. Improvement (%)

PL 0
GL25 13.74 CL25 13.74
GL50 14.50 CL50 −22.14
GL75 39.69 CL75 43.51

GL100 20.61 CL100 61.83
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According to Tables 8 and 9 and Figure 5, the incorporation of steel balls generally
increases the splitting tensile strength of concrete. Similar to the compressive strength law,
the splitting tensile strength of concrete mixed with rough steel balls is generally better
than that with smooth steel balls. When the content of the smooth steel ball is 75%, the
splitting tensile strength reaches the peak value of 1.83 MPa, with an increase of 39.69%; the
splitting tensile strength with 75% rough steel balls is 1.88 MPa, with an increase of 43.51%.
Therefore, the splitting tensile strength of the two kinds of concrete is almost the same.

Based on the above compressive strength and splitting tensile strength results, the
optimum content of grouting steel balls is initially determined to be 75%, and the rough
surface of the steel ball is more effective in modifying the concrete; the conclusions were
applied to the subsequent freeze–thaw test.

3.3. Frost Resistance of Concrete Mixed with Phase Change Steel Balls
3.3.1. Surface Spalling

Figure 6 shows the surface spalling of phase change concrete and ordinary concrete
after 50, 100, 150, and 200 freeze–thaw cycles, respectively, demonstrating that the surface
spalling of phase change concrete is better than that of ordinary concrete after the same
number of freeze–thaw cycles.
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3.3.2. Mass Loss and Relative Dynamic Modulus of Elasticity

Based on the comparison of the mass loss rate and relative dynamic elastic mod-
ulus of ordinary concrete and phase change concrete during freeze–thaw, presented in
Tables 10 and 11 and Figures 7 and 8, it can be concluded that the phase change material
can reduce the mass loss and relative dynamic elastic modulus loss of concrete to a certain
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extent. At the same number of freeze–thaw cycles, the mass loss rate and relative dynamic
elastic modulus loss of phase change concrete are lower than those of ordinary concrete,
and its frost resistance is better. After 50 freeze–thaw cycles, the mass loss rate of ordinary
concrete is much higher than that of phase change concrete, indicating that the phase
change material is effective in improving the frost resistance of concrete in the early stage.
In terms of the limit of concrete to withstand freeze–thaw cycles, the ordinary concrete will
soon enter failure after 150 freeze–thaw cycles, while the phase change concrete does not
occur until the freeze–thaw cycle is close to 200 times.

Table 10. Mass loss rate of concrete during freeze–thaw cycles (%).

Freeze–Thaw Cycles Ordinary Concrete Phase Change Concrete

50 0.67 ± 0 0.09 ± 0.01
100 1.06 ± 0.047 0.88 ± 0.06
150 4.25 ± 0.24 3.65 ± 0.22
200 7.35 ± 0.54 5.48 ± 0.20

Table 11. Relative dynamic elastic modulus of concrete (%).

Freeze–Thaw Cycles Ordinary Concrete Phase Change Concrete

0 100 100
50 97.21 ± 0.85 98.38 ± 0.46

100 82.12 ± 0.54 88.69 ± 0.56
150 74.90 ± 0.96 78.24 ± 0.37
200 52.53 ± 0.49 57.55 ± 0.16
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3.3.3. Mechanical Properties

The changes in compressive strength of concrete during freeze–thaw are shown in
Table 12 and Figure 9, and the changes in the splitting tensile strength are shown in Table 13
and Figure 10. As can be seen from these graphs, the compressive and the splitting tensile
strength of concrete continue to decrease as freeze–thaw cycles increase, but the addition
of phase change material reduces the loss of mechanical properties to some extent. After
50 freeze–thaw cycles, the compressive strength loss of phase change concrete and ordinary
concrete is 16.79% and 18.30%, respectively, which is not a big difference, while the splitting
tensile strength of the former improves more obviously at this time. After 100 freeze–thaw
cycles and 150 freeze–thaw cycles, the compressive strength loss rate of phase change
concrete is 24.65% and 32.51%, respectively, while that of ordinary concrete reaches 35.28%
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and 46.11%, and the difference between the two increases significantly. After 200 freeze–
thaw cycles, the difference in the compressive strength and splitting tensile strength loss
rate between the two is not significant, but the compressive strength of phase change
concrete is still greater than that of ordinary concrete.
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Table 12. Compressive strength of concrete during freezing and thawing (MPa).

Freeze–Thaw Cycles Ordinary Concrete Phase Change Concrete

0 36.93 ± 0.31 34.97 ± 0.75
50 30.17 ± 1.70 29.10 ± 0.85

100 23.90 ± 2.01 26.35 ± 1.63
150 19.9 ± 1.21 23.60 ± 1.56
200 10.07 ± 1.00 11.10 ± 0.46
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Table 13. Splitting tensile strength of concrete during freeze–thaw (MPa).

Freeze–Thaw Cycles Ordinary Concrete Phase Change Concrete

0 2.23 ± 0.05 2.30 ± 0.02
50 1.88 ± 0.05 2.11 ± 0.04

100 1.72 ± 0.01 1.74 ± 0.08
150 1.20 ± 0.16 1.32 ± 0.07
200 0.51 ± 0.02 0.55 ± 0.06
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3.4. Analysis of the Pore Structure in Concrete
3.4.1. Porosity

Table 14 shows the changes in porosity (percentage of pore volume) of ordinary
concrete and phase change concrete during the freeze–thaw process, from which it can be
seen that the total porosity of these two kinds of concrete gradually increases as the freeze–
thaw cycle continues. The porosity growth rate of phase change concrete at 150 freeze–thaw
cycles is still significantly lower than that of ordinary concrete at 100 freeze–thaw cycles,
and the difference in porosity growth rate between the two types of concrete also reaches its
maximum at 150 freeze–thaw cycles, approximately 24%, at which point the improvement
in the internal deterioration of phase change concrete is the most obvious. Throughout the
whole freeze–thaw process, the change in porosity of phase change concrete is significantly
less than that of ordinary concrete, indicating that phase change concrete is less deteriorated
and that the addition of phase change materials can result in a significant improvement in
frost resistance of concrete.

Table 14. Change of porosity in concrete during freeze–thaw process.

0 Cycles 50 Cycles 100 Cycles 150 Cycles 200 Cycles

Ordinary concrete Porosity (%) 2.41 2.91 3.47 3.97 4.61
Increment (%) - 20.75 43.98 64.73 91.29

Phase change
concrete

Porosity (%) 1.64 1.90 2.14 2.44 2.87
Increment (%) - 15.85 60.49 40.78 75.00

3.4.2. Pore Distribution

Table 15 and Figure 11 show the volume proportion of pores in different size ranges
during freeze–thaw.
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Table 15. Volume proportion of pores in different size ranges in concrete (%).

Type Cycles
Pores of Different Sizes

<0.01 mm3 0.01~0.1 mm3 0.1~1 mm3 1~10 mm3 >10 mm3

Ordinary
concrete

0 1.20 15.84 53.59 15.29 14.07
50 1.24 14.34 53.85 17.93 12.64

100 1.38 12.57 51.17 24.09 10.78
150 1.41 11.39 50.38 26.66 10.15
200 1.35 10.24 51.11 27.28 11.02

Phase change
concrete

0 2.29 15.53 46.69 17.21 17.65
50 2.07 12.88 49.03 20.57 15.45

100 2.30 13.99 48.66 19.35 15.70
150 2.00 12.25 47.50 19.87 18.37
200 1.98 13.12 46.80 21.85 16.25
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Materials 2021, 14, 4497 13 of 14

It can be seen from Table 15 that in ordinary concrete and phase change concrete, the
pore volume ratio of 0.1~1 mm3 accounts for the most, while that of less than 0.01 mm3

accounts for the least, and it is similar in the other three ranges.
As freeze–thaw cycles increase, the proportion of pores within 0.01~0.1 mm3 in ordi-

nary concrete decreases, and the proportion of pores within 1~10 mm3 increases continu-
ously; the proportion of pores with the volume of 0.1~1 mm3 fluctuates; the proportion
of pores with a volume greater than 10 mm3 gradually decreases before 150 freeze–thaw
cycles and rebounds slightly at 200 cycles, with the pattern of change being the opposite
of that of less than 0.01 mm3 pores. In the same case, the proportion of pores with the
volume of 0.1~1 mm3 in phase change concrete tends to increase and then decrease, and
fluctuations occur in all four other ranges.

From Figure 11, the pore distribution difference of the five size ranges in ordinary
concrete during freeze–thaw is greater than that of phase change concrete, and therefore,
it can be concluded that the addition of phase change materials can improve the internal
pore structure of concrete, making the internal pore distribution more uniform.

4. Conclusions

In this paper, the mechanical properties of concrete mixed with grouting steel balls
were studied. The optimum content of steel balls was determined under the premise of
ensuring the reasonable mechanical properties of concrete. Additionally, phase change
materials were prepared into phase change coarse aggregate by being packed into hollow
steel balls and then encapsulated macroscopically, so as to prepare phase change concrete
according to the optimal dosage of steel ball in the frost resistance effect research. The main
conclusions are as follows:

(1) The incorporation of grouting steel balls can reduce compressive strength and increase
the splitting tensile strength of concrete to varying degrees, and the balls with the
rough surface have a better effect on the modification of concrete; combining the
results of compressive strength and splitting tensile strength, the optimum dosing of
grouting steel balls can be initially determined to be 75%.

(2) During the freeze–thaw process, all the freeze-resistance indexes of phase change
concrete are better than those of ordinary concrete. In the early freeze–thaw period
(50 cycles), the difference in compressive strength loss between ordinary concrete and
phase change concrete is not significant, while the improvement in splitting tensile
strength of phase change concrete is more obvious at this time. In the middle freeze–
thaw period (100–150 freeze–thaw cycles), the difference between them increases
greatly and the advantage of phase change materials in improving the reduction
of compressive strength is significant. In the late freeze–thaw period (200 freeze–
thaw cycles), the difference in strength loss between the two types of concrete is
not obvious.

(3) Throughout the whole freeze–thaw process, the change in porosity of phase change
concrete is significantly lower than that of ordinary concrete, and its internal deterio-
ration is lesser. The addition of phase change materials optimises the pore structure
distribution in concrete and improves the internal pore structure.
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