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Abstract: An analytic-empirical model was developed to describe the heat transfer process in raw
straw bulks based on laboratory experiments for calculating the thermal performance of straw-based
walls and thermal insulations. During the tests, two different types of straw were investigated. The
first was barley, which we used to compose our model and identify the influencing model parameters,
and the second was wheat straw, which was used only for validation. Both straws were tested in
their raw, natural bulks without any modification except drying. We tested the thermal conductivity
of the materials in a bulk density range between 80 and 180 kg/m3 as well as the stem density,
material density, cellulose content, and porosity. The proposed model considers the raw straw stems
as natural composites that contain different solids and gas phases that are connected in parallel to
each other. We identified and separated the following thermal conductivity factors: solid conduction,
gas conduction in stem bulks with conduction factors for pore gas, void gas, and gaps among stems,
as well as radiation. These factors are affected by the type of straw and their bulk density. Therefore,
we introduced empirical flatness and reverse flatness factors to our model, describing the relationship
between heat conduction in stems and voids to bulk density using the geometric parameters of
undisturbed and compressed stems. After the validation, our model achieved good agreement with
the measured thermal conductivities. As an additional outcome of our research, the optimal bulk
densities of two different straw types were found to be similar at 120 kg/m3.

Keywords: natural fibers; raw barley and wheat straw; heat transfer; thermal conductivity; porosity;
physical properties

1. Introduction

The amount of built-in thermal insulations is continuously growing these days [1] due
to thermal insulations usually applied to newly built and refurbished buildings because
of the strict energy performance regulations that have come into force in recent years to
decrease carbon emissions and energy use. In 2019, households represented 26% of the
final energy consumption of the EU, of which 64% is from space heating [2]. The energy
demand of buildings can be reduced by thermally insulating the houses. Nowadays,
even the previously insulated buildings should receive additional thermal protection to
meet regulations or repair previous building construction mistakes that cause defects and
mechanical, chemical, environmental, or hygrothermal deteriorations, or accelerate natural
aging [3–6].

The manufacturing energy consumption and carbon emission of materials also need
to be addressed. Artificial materials usually have higher manufacturing energy consump-
tion and higher carbon emission than natural-based thermal insulations. With the carbon
sequestration considered in the calculations, the embodied carbon content of a building
construction insulated by natural thermal insulations can achieve negative carbon emis-
sions compared to artificial insulations such as mineral wool, expanded polystyrene, or
polyurethane foam. This is possible because cellulose-based insulations′ embodied carbon
contents are lower than those of artificial insulations [7] due to their composition or lower
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densities. In addition, carbon is locked in the natural insulations for the service life of the
building; hence, it is sequestered [8]. The fact that using natural construction material can
reduce CO2 emission is proven, considering the temporary carbon storage, which has a
real physical impact at a 100 year time horizon [9].

All stakeholders must reduce their environmental footprint as well as their products′

energy demand, even if there are no other reasons behind it, just the financial implications of
the higher energy consumption [10,11]. Today′s society also feels responsible for reducing
waste by reusing or recycling materials. Therefore, the construction industry must also
respond to this challenge; otherwise, they risk turning themselves into enemies of humanity
in the long term [12]. One solution to reduce the amount of waste is to increase the
number of natural materials in the construction industry that are biodegradable and do
not leave waste behind or can be recycled after their end of life [13,14]. The use of natural-
based materials and agricultural waste in construction material applications as alternative
materials [15,16] or the development and use of natural-based thermal insulation materials,
especially from renewable or by-product sources [17,18], are reasonable solutions to reduce
our environmental footprint.

Such materials are, among several other used natural alternatives such as bark, cellu-
lose, hemp, kenaf, flax, feathers, sheep wool, or wood fibers [7,19–21], the natural vegetable
fiber-based thermal insulations that are gaining ground in the construction market [22]
because demand for green building materials is rising sharply [23]. Among natural fibers,
one of the most researched materials is the use of straw bales as building materials [24,25]
because of their low thermal conductivity and high specific heat capacity, and hence low
thermal diffusivity and good thermal insulation capability, especially with fibers randomly
oriented and perpendicular to heat flow, and low environmental impact if the straw bale
selection used for the straw-based building is suitable [26]. In recent years, regarding the
thermal performance of straw-based materials, Sabapathy and Gedupudi created simpli-
fied equations to predict the thermal conductivity of straw bale constructions based on
their fiber orientation, density, temperature, and relative humidity [27]. Piégay et al. used
a self-consistent modeling technique to predict the equivalent thermal conductivity of
vegetal-based fibrous thermal insulations as a function of thermal conductivities of solid
and liquid phases and material porosity. Platt et al. [28] investigated the effect of fiber
orientation on the thermal conductivity of straw bales. Yang et al. [29] investigated the
thermal transmittance of straw bale walls and the effects of different structural details
concerning straw bale joints; using the guarded hot box method, Conti et al. [30] realized a
metering chamber within a climate chamber to be able to measure and calculate rectangular
straw-bale sample′s thermal conductivity, while Costes et al. [31] used a specific guarded
hot plate which was designed to measure straw bale samples of up to 50 cm thickness.
Cornaro et al. [32] confirmed in their study that a straw-based natural multi-sheet wall
package (named straw wall) could comply with the limited values of the thermal trans-
mittance in Italy. Furthermore, in research examining the potential of straw as a paneled
insulating material, it was found that the use of straw as a construction material can re-
duce the embodied energy by 50% compared to traditional masonry [33]. Despite the few
existing examples, the volume of research on natural-based thermal insulation materials is
far that conducted on their artificial counterparts [34]. This may be due to the properties
of the artificially manufactured materials being well known and more homogenous, and
having design guidelines, standards, and reliability assessments, and, despite the excellent
performance of straw-based materials, there are often questions about their durability, fire
risk, questionable natural anti-fungal properties and bacterial activity, and higher moisture
absorption capability. The possibility of fungi/mold settling has been studied by Tobon
et al. [35], and, especially for straw bales used in building envelopes, by Thomson and
Walker [36]. At the same time, Yin et al. recently investigated the durability of straw bale
walls in warm, humid continental climates and found that hot and humid summer climates
have insignificant impacts on the durability of straw bales within straw bale walls [37].
Fire resistance of straw-based thermal insulation boards was also examined previously,
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and, with special binder composition, it is possible to achieve excellent performance [38].
Another issue could be that, in the case of natural materials, that most studies show higher
variability of their physical properties [39,40]. However, a recent study shows that the
variability of long natural-based fibers composites is in the same order of magnitude as that
of carbon fiber composites [41]. Shi et al. [42] proved that natural and bio-based materials
could have a good effect on health because a thermal insulation board made of straw can
significantly dampen the increase in humidity level and improve the moisture environment
of the inner spaces, especially in summer. These effects have also been observed in straw
bale walls; however, these walls can also dampen the temperature fluctuation [43]. In the
case of raw materials, we must handle structures created by nature. Still, with different
natural processes, the physical properties can be modified to better meet the requirements.
In many cases, there arises the problem that natural-based thermal insulators are not fire-
resistant, and do not simultaneously have the lowest possible thermal conductivity and
high load-bearing capability, but they have homogeneity problems or contain hazardous
additives [44].

For solving these problems, our research investigates straw as a raw material in an
experimental and theoretical aspect. The first step is to understand the thermal conduc-
tivity of the raw and dry fibers in their absolute natural state. The most common types of
thermal insulations are inorganic fibrous materials and organic foams. In the first group,
atmospheric air is hardly moving among the fibers because of friction, while in the case
of organic foams, the air is embodied in the pore formation of the material. Using natural
vegetable-based raw materials, fibrous thermal insulations can be created. In our study,
we deal with straw-based construction materials with randomly oriented fibers, although
most of the fibers are perpendicular to the heat flow direction. Papadopoulos and Anas-
taselos [45] dealt with heat transfer phenomena in randomly oriented fibrous insulating
materials. That research focused on mineral wools, which consist of inorganic, dense, and
homogeneous fibers with a relatively uniform and very small diameter. That study exam-
ined the mineral wools in a wide temperature range between 15 ◦C and 1000 ◦C. In their
model, the convection was neglected because this component was too small (and constant)
compared to the others. The created physical model precisely estimated the experimental
results of fibrous thermal insulations. Xie et al. [46] dealt with the heat transfer in porous
fibrous structures. This heat transfer model involved coupling the heat conduction with
the thermal radiation in the case of porous fibrous structures. The randomly distributed
fibrous media and directionally distributed fibrous media are theoretically and numerically
investigated. Besides these, the study considers the connections of the heat-conducting
media to each other (parallel, serial). Hoseini et al. [47] investigated heat transfer in aerogel
blankets. Their paper demonstrates a theoretical and experimental study on the effective
thermal conductivity of aerogel-fiber composites. The analytical model represents aerogel
composites with a unit cell consisting of a cylindrical fiber surrounded by a packed bed of
aerogel particles. This material structure is similar to the natural stems that are investigated
in the present paper. The two cases are inverse to each other because, in straw stems, the
pores are inside the stem wall, not on the surface of the fiber. These above-mentioned
papers were used as starting points to develop our contribution. However, the models
were created for mineral wools and aerogel blankets, but the equations prescribed for these
materials had to be changed or supplemented to be able to describe the presented straw
material properly. For example, a straw model needs a more accurate material property
description because of the nature of the stems and because some of the natural state or
loose-filled thermal natural thermal insulations are especially sensitive to bulk density
changes [20,48–50]. In the case of the first base model [45], the material density and the bulk
density of the insulation were sufficient because the glass fibers are both solids. However,
the influence of the density and porosity of the heat transfer in natural-based materials
also depends on the type of raw materials as well as the size and orientation of fibers,
particles, or grains [19,51]. In the case of straw stems, one more density parameter must
be introduced to take into consideration the porosity of the stems and the gaps among
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the stems. Besides stem density and material density, we must know certain physical
properties, too, such as the porosity, cellulose content, and the average stem diameter, to
be able to create the model for straw. During our experiments, a natural fiber length and
diameter distribution were used. Therefore, in the set of stems, relatively short and long
fibers occurred in the same sample, respectively. This relatively significant deviation is
also true for the unit mass of fibers, and for the other parameters due to the natural origin
of the material. These parameters could be handled in the model if the average of many
measurements were considered.

The raw straw that is investigated in this paper is slightly different from the previously
mentioned fibers because every straw stem has porosity that is similar to that of foams.
Therefore, our paper deals with the modeling of heat transfer in straw-based materials, such
as randomly oriented straw bale walls or straw-based fibrous thermal insulating materials.
To create an accurate model, the dual nature/material complexity must be considered.
Although the discussed model is a physical model, some of the material properties must
be specified experimentally. Straw is a lignocellulose material; therefore, the vegetable
fibers are natural composites consisting of three main base components: cellulose, lignin,
and hemicellulose. Cellulose fibers provide strength, lignin is the embedding matrix, and
hemicellulose is the interface that ensures the bond between the cellulose and lignin [52,53].
Wheat straw (Triticum spp.) is composed of 42.9% cellulose, 28.9% hemicellulose, 21.6%
lignin, and only 6.6% other components, according to [54]. These ratios of the components
are different by species of the grain and strongly affected by the environment (e.g., weather
and soil); therefore, in our study, the ratios need to be specified experimentally. However,
since the thermal conductivity of cellulose is 1.04 W/m·K transversal to fiber and 0.26
W/m·K parallel to fiber, while the thermal conductivity of hemicellulose and lignin are
both isotropic and have 0.34 W/m·K thermal conductivity, we only need to separate the
cellulose, which provides a sufficient approximation.

In terms of handling or describing the model, it was more expedient if the insulation
was considered as a fibrous material. Because, at the macro scale, the specimens are made
up of fibers (stems), the already existing fibrous material models can be used as the base
of the model. The foam nature of the stem wall is taken into consideration within the
model, where the thermal conductivity of solid and gas parts is combined. In our study,
the above-mentioned models and literature were used as an initial basis, although they
were modified in several details because of the nature of the straw fibers.

2. Materials and Methods
2.1. Raw Straw Bulk Materials

In the present research, two types of straw were investigated: barley (Type-1) and
wheat (Type-2). They were grown in a different region of Hungary but collected from
the same harvest period and year (Autumn 2019). Because of the different species, there
were some natural disparities in the structure of stems. We used a scanning electron
microscope (Phenom XL Desktop SEM, Phenom-World B.V., Eindhoven, The Netherlands)
to investigate the pore microstructure of the stems.

Based on Figure 1, it is visible that Type-1 had a thinner stem wall, smaller pores
but thicker walls in the parenchyma, and thin and organized epidermis, while Type-2
had a thicker stem wall, larger pores and thinner walls in the parenchyma, and thicker
epidermis; therefore, their pore composition is different. The barley and wheat arrived at
the laboratory in different conditions. Type-1 was in big bales; therefore, most of the stems
were compressed, but it contained intact stems too. Type-2 was only slightly compressed;
therefore, almost all stems were intact.
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2.2. Methods
2.2.1. Physical Properties Measurement

The physical properties of the tested stems were investigated to contribute to the heat
transfer model. To measure material density, firstly, some randomly sampled stems from
the straw bales were dried at 120 ◦C for 48 h. After the drying process, an Labor MIM
LE-101 ball mill (Labor Műszeripari Művek, Budapest, Hungary) was used to mill the
stems to dust (see Figure 2).
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In the case of both straw types, straw dust was made under the same conditions mentioned
above. The resulted dust was examined under SEM, and it showed that most of the particle size
of dust was under 50 µm, but the overwhelming majority was under 5 µm, while the maximum
diameter was 100 µm. The dust was sieved to remove all the particles that may have contained
porosity itself; therefore, all the stem′s porosity had vanished (see Figure 3).
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Figure 3. SEM images in 600×magnification of: (a) milled Type-1 straw dust; (b) milled Type-2 straw dust.

The material density of the straw using straw dust was measured using a Kimble
pycnometer (DWK Life Sciences GmbH, Mainz, Germany) (Figure 4a), while the straw
stem density was tested by the Archimedes method (Figure 4b). Only the tubular parts of
the stem were measured; the nodes were excluded because they could make the results
larger, and they would, therefore, not be representative for most of the fiber set. During
the weighing of mass, the bundles of stems were completely dry. For the measurement
of the volume of stems, they were completely water-saturated. From the material density
and stem density, the porosity (p f ) of stems could be determined, which is an important
input parameter in the modeling of the thermal conduction in fibers. The measuring tube
is graded in milliliters; therefore, the measurement accuracy is ±0.5 mL, and it has an effect
on stem density and on porosity, respectively. Thus, these two parameters are not a specific
number but a relatively narrow interval.

An important input data for the model to calculate the thermal conductivity factor of
the solid component is the cellulose content of the straws. To measure it, firstly, the stems
were dried as in the case of determining their porosity (Figure 5a). Then, the cellulose
component of stems was separated conventionally [55]. Chopped stems were put in thick
NaOH (pH 14) solution and stirred at 100 ◦C (Figure 5b). The ratio of initial dry mass and
residual fiber mass determines the cellulose content of the straw.

The diameter of the stems must be measured for the model, but it is decisive in many
ways. The deviation of the stems′ measured diameter was large; therefore, 300 randomly
selected pieces of stems were measured in two perpendicular directions for both types
using a digital caliper with±0.02 mm precision (Vogel Germany Gmbh & Co. KG, Kevelaer,
Germany). In our proposed model, in the case of the diameter of the stems as an input
parameter, only the mean value was used because we tried to keep the model as simple as
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possible. The most important definitions and all the symbols representing experimental
values are listed in Appendix A.
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2.2.2. Thermal Conductivity Measurement

We measured the thermal conductivity of randomly oriented bulk raw straws accord-
ing to the EN 12667 standard using the guarded hot plate method [56] with Taurus TLP
300 DTX equipment (Taurus Instruments GmbH, Weimar, Germany). Specimens were
prepared according to EN 12667 and EN 1946-2 [57], respectively. The investigated bulk
density range of the straw samples was between 80 and 180 kg/m3 in the case of both
types, not only to calibrate or validate our model, but also to identify the optimal bulk
density that gives the lowest possible thermal conductivity and can often be found for
natural fibrous thermal insulations [20].

At every bulk density, three samples were made and measured at three temperature steps
(around 10 ◦C, 20 ◦C, and 30 ◦C mean temperatures) using a 10 K temperature difference.
The results of the measurements were given at 10 ◦C sample mean temperature, since this
temperature is given in ISO 10456 standard [58], respectively. In the experiments, the interval
between the two densities was 20 kg/m3. The raw straw stems were filled to a closed thin-
walled (<0.5 mm) PE foil box. The PE foil was penetrated to avoid inflation during compression.
The foil makes a slight and constant difference in the test results. The stems were filled in
a completely dry state randomly oriented into the box (Figure 6a). The size of the box was
150 mm × 150 mm × 50 mm. This box was taken into a stock made of EPS foam and
aluminum sealing tape, ensuring that no moisture can penetrate the samples during the
measurement (Figure 6b). Although the guarded hot plate method for testing thermal con-
ductivity is more time-consuming than using a heat flow meter, it produces high precision
measurements with excellent repeatability. Therefore, we obtained the experimental bulk
density–thermal conductivity curves as precisely as possible to minimize the deviation by
measurement, which is often present when measuring natural fibers [59]. Reducing the
measurement deviation is essential because raw fibers naturally differ slightly, but these
measurements served both for calibration (Type-1 straw) and for model validation (Type-2
straw); therefore, we wanted to keep the standard deviation of the measurements as low as
possible and originated only from the stems, not from the measurement itself.
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2.3. Analytic-Empirical Model Development

The reason that we must create a new model for straw-based fibrous thermal insu-
lations is that we cannot apply any of the existing models to approximate the thermal
conductivity of this composite structure. However, we used the previously mentioned
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three models as a base for our contribution. Two out of the three base models [45,46]
deal with silicate-based solid fibers, and one of them deals with porous fibrous structures,
although the structure is also significantly different from straw [26]. None of the previous
models consider stem density or the effect of changing bulk density. Therefore, the existing
models cannot describe the behavior of porous fiber sets. However, each cited model has a
different connection with our studied material. One of them links to the connection system
of the heat transfer models [46], while the other deals with the description of the heat
transfer in the fibrous system in an understandable way [45,60]. The third model describes
a system that is a fibrous and porous system at the same time as a straw stem [47], but in
this case, the structure is reversed because the pores are inside the stems and not outside as
in aerogel blankets.

Straw stems are tubular cylinders, which contain voids and pores. In the specimens
during the thermal conductivity measurements, almost all the stems were approximately
perpendicular heat flow direction (see Figure 6). Therefore, we assumed that heat transfer
occurs (if any point of the specimen is considered) in the direction of the stem from the
warmer side until that stem contacts another fiber closer to its colder side. It then spreads
to the next thread, and so on. We separated the four main components of heat transfer in a
straw-based insulation material for our model (Figure 7):

1. ks—conduction through the solid medium (fibers), this component includes the heat
transfer in the natural composite and in its embedded air pores;

2. kg.tot—conduction through gas medium including:

a. kg.g—conduction in the air trapped in gaps among the stems,
b. kg.v—conduction in the voids of stems;

3. kr—radiative heat transfer;
4. kconv—convection in the air in gaps between the fibers.

In our analytic-empirical model, we have neglected the effect of convection, since
convection is generated by the movement of air molecules in the gaps or voids and due to
the small dimensions of the gaps among stems. In addition, because walls roughly close
the voids of stems (<3 mm), the convection effect is minor and practically negligible [61,
62]. The ratio of radiation compared is an order of magnitude smaller compared to
other conductive components in the investigated temperature range, similar to previous
studies [60], although the radiation component has also been taken into consideration in
our proposed model.

The assumptions used in our proposed analytic-empirical model are summarized as:

• Steady-state three-dimensional heat transfer occurs in the components of the material;
• Natural convection is negligible due to small pore and void sizes, and as a result, the

air is static;
• In the case of conduction through the solid medium, we considered both natural

composite components and entrapped air in the stems;
• Parallel heat transfer occurs between phases of the solid medium;
• With the growing bulk density, the dominance of gas and solid conduction should

change in an inverse way;
• There is no heat generation source inside the medium (no negative heat transfer

components);
• The model gives an accurate estimation only if the necessary and representative

material properties of stems are measured in the laboratory;
• The model is applicable in the investigated bulk density range of 80–180 kg/m3;
• For creating the model, only the material properties and thermal conductivities of

Type-1 straw were used. The material properties and measurement results of Type-2
were used only for validation of the model.

To simplify the presentation of the analytic-empirical model and its equations, we
listed the most important definitions and all symbols used in Appendix A.
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2.3.1. Heat Transfer by Conduction in Stems

In the case of straw, heat-conduction in stems is a complex procedure because the
stems are composite materials containing several sub-components. These are cellulose,
hemicellulose, lignin, and air. Naturally, the composite also contains some other compo-
nents, but the ratio of these phases is small enough to be neglected. This part of the model
must take into consideration the conduction of the solid part of stems and conduction of
gas-phase inside the pores of the stem wall. All the previous phases determine the thermal
conductivity factor of the solid part. Based on Papadopoulos and Anastaselos′ model [45]
from the bulk density of insulation, the stem density of fibers and material density are two
important parameters that have to be defined; these are f 1 and f 2 in Equations (1) and (2):

f1 =
ρins
ρ f

(1)

f2 =
ρ f

ρm
(2)

To be aware of every component of the solid material, the porosity (p f ) and the
cellulose content (rc) of stems must be known. The thermal conductivity of the actual (non-
porous) solid part is calculated by the combination (based on the mass ratio of material
phases) of the thermal conductivities of the components of the composite (λc, λl,h). The
conduction in the actual solid part of the stem can be calculated based on Equation (3). The
air heat conduction setpoint was calculated as follows in Equation (4), where ξ ∼= 2 for air:

λsolid = (1− rc)× λl,h + rc × λc (3)

Lc =
π

4
× da

( f1 + f2)
, s f = 69 nm× P0

P
× T

T0
→ Kn =

s f

Lc
→ λg =

0.021 + 8× 10−5 × T/K
1 + 2× ξ × Kn

(4)
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After that, the solid conduction (λsolid) and the entrapped gas conduction (λair) can
be combined, based on the described equations about serial systems (λs,g) based on [46],
see Equation (5):

λs,g =
λsolid × λair

(1− p)× λair + p× λsolid
(5)

The overwhelming majority of the stems in the investigated straw bulks were parallel
with the heated and the cooled surface during the thermal conductivity experiments, as
presented earlier. Since the heat must travel perpendicular primarily to the measured
surfaces, it passes primarily through the cross-section of the stem walls in a hypothetical
path. It is assumed that the heat transfers in the shortest possible way (to reach the
next stem). Voids serve as scattering centers for phonons (atomic vibrations); therefore,
while heat flow transfers through solids and voids, respectively, gas conduction is much
lower. The thermal conductivity factor through fibers changes with the bulk density of the
insulation material.

The stems are flattened during the compaction and become denser. Therefore, we
can draw two consequences: firstly, the ratio of embedded air is decreasing (thus the
ratio of solids is increasing), and secondly, while the stems are flattening, the heat can
spread through a shorter path in the cross-section of the stem wall, so the conduction
of solid phases becomes more significant (Figure 8). This effect can be handled by the
introduction of a parameter that can handle it in our model, the flatness factor. Parallel
with this phenomenon, since the the voids serve as scattering centers for phonons and
the voids of stems also become smaller, the gas conduction factors become smaller as well
(kg.v), which must also be handled.Materials 2021, 14, x FOR PEER REVIEW 12 of 23 

 

 

 
Figure 8. Effect of stem density on the length of heat path describing the idea of the flatness factor. 

The introduced flatness and flatness factor can handle this relationship between the 
length of the heat path (which is a function of stem density) and heat conduction through 
fibers in the model (Figure 8). In light of the above explanations, to obtain the flatness 
factor, we need to calculate ls, Vs, and ρins using Equation (8) to be able to obtain the flatness 
vector Equation (9), that assigns the shortest path to the lowest density and the longest 
path to the highest stem density, which will contribute to describing the resistance against 
heat flow in the stems: 𝑙 = → 𝑉 = 𝑙 × × → 𝑝 = × , (8) 

𝑆 = 𝑠 + (𝜌 − 𝜌 ) × 𝑠 − 𝑠 (𝜌 − 𝜌 )⁄ . (9) 

Then the flatness factor, which is a vector of ratios, can be calculated with respect to 
the max length of the heat path using Equation (10): Fl = . (10) 

The thermal conductivity factor of the stem can be calculated from λs,g, f1, f2, and D 
based on [45] using Equation (11): 𝑘 = [(𝑓 + 𝑓 ) × 𝜆 , ] × D. (11) 

2.3.2. Heat Transfer by Gas Conduction 
Assuming that the air inside the straw stems is stationary, the thermal conductivity 

factor of the entrapped air by heat conduction of the stationary air (𝜆 ) is included in 𝜆 , , 

Figure 8. Effect of stem density on the length of heat path describing the idea of the flatness factor.



Materials 2021, 14, 4408 12 of 23

When the stem bulk is in an absolute loose state (uncompressed, natural density),
the cross-section of stems is well approached by a circle. In this case, the shortest way
for the heat is equal to the half perimeter of the stem in the centerline of the stem wall
cross-section, which is described in Equation (6):

smax = (da −
tw

2
× π/2). (6)

It is the longest heat path (absolute maximum), which means heat transfer needs more
time because the heat must spread a long way. This state gives the minimum value of
the thermal conductivity factor through fibers. Natural density is an experimental value
that gives the bulk density without any compression (loose stem bulk which fits in the
test/measurement box).

In a fully compressed state, the opposite points of the inner surface of the tubular stem
are almost in contact in Equation (7):

smin = dmin (7)

In this case, the shortest way for the heat is equal to the thickness of fully compressed
stems; this value is also experimental, based on a large number of measurements. It is
the shortest heat path (absolute minimum), which means heat transfer needs less time
because the energy must spread in a short way. This state gives the maximum value of the
thermal conductivity factor through fibers. With the use of linear interpolation between
these values, the actual effect of heat′s path can be calculated.

The introduced flatness and flatness factor can handle this relationship between the
length of the heat path (which is a function of stem density) and heat conduction through
fibers in the model (Figure 8). In light of the above explanations, to obtain the flatness
factor, we need to calculate ls, Vs, and ρins using Equation (8) to be able to obtain the
flatness vector Equation (9), that assigns the shortest path to the lowest density and the
longest path to the highest stem density, which will contribute to describing the resistance
against heat flow in the stems:

ls =
ρins
ml
→ Vs = ls ×

d2
a × π

4
→ pins =

1×m3 −Vs

m3 , (8)

S f l = smin + (ρins − ρnat)× smax − smin/(ρmax − ρnat). (9)

Then the flatness factor, which is a vector of ratios, can be calculated with respect to
the max length of the heat path using Equation (10):

Fl =
S

Smax
. (10)

The thermal conductivity factor of the stem can be calculated from λs,g, f 1, f 2, and D
based on [45] using Equation (11):

ks = [( f1 + f2)
2 × λs,g]×D. (11)

2.3.2. Heat Transfer by Gas Conduction

Assuming that the air inside the straw stems is stationary, the thermal conductivity
factor of the entrapped air by heat conduction of the stationary air (λg) is included in λs,g,
respectively, to enable the model to consider the quantity of pores to solid in the stems
depending on the compression of the stems.

The gas conduction in the bulk straw insulation material must be separated into two
parts. The first part is the gas conduction factor in voids of stem (kg.v) and the second part
is the gas conduction factor in gaps (kg.g) among stems. Both are based on the thermal
conductivity of stationary air. In the case of the gas conduction factor in voids, the following
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assumption can be made: it has smaller and smaller values while the voids become tighter
due to compression because the number of gas molecules in voids is decreasing, which
thus collide less so transfer less heat to each other.

The compression of stems (increasing stem density) has a proportional but opposite
effect to gas conduction in voids than the conductivity of the solid part in the stem wall.
Therefore, the conduction factor will be proportional to the reverse of the flatness factor
(which can be formed using an exchange matrix) as shown in Equation (12):

Flrev = Fl×

 0 · · · 1
...

. . .
...

1 · · · 0

. (12)

Although the flatness factor basically is related to the deformation of the stem wall
and the thermal conductivity of the solid part, some modification of this factor must be
applied to describe the gas thermal conduction changes in voids because the voids inside
the stem is an inseparable part of the stem. Therefore, it is foreseeable while the thermal
conductivity factor through fibers increases as a result of the compression, then the gas
conduction factor in voids of the stem is decreases (see Figure 8) which can be described
using Equation (13)):

kg.v = λg × Flrev. (13)

The second part is the gas conduction factor in gaps among stems. The value of
this factor is based on a similar principle as the previous one. This value is much less
measurable due to material particularities; therefore, it was determined based on theoretical
calculations. If the ratio of gaps is decreasing, then the bulk density of insulation material is
increasing. If the bulk density of the raw straw insulation material, the unit mass of stem by
length (g/mm), and the average diameter are known, the volume ratio of the stems is also
determinable. From these values, the volume ratio of gaps (ρins) can be calculated, which
we also used to obtain the flatness factor, and the resulting vector will be proportional to
the gas conduction factor among gaps, as Equation (14) describes:

kg.g = λg × pins. (14)

2.3.3. Total Heat Transfer by Conduction

Both conduction factors approach zero while the stem density of the insulation is
increasing because the gas medium is displaced from the material (see Figure 8), and the
conduction of the solid part become dominant. The sum of the solid and gas conduction
factors gives the total heat transfer by conduction (kc,tot) in the investigated material and
can be calculated using Equation (15):

kc,tot = ks + kg.v + kg.g. (15)

2.3.4. Heat Transfer by Radiation

There are analytical methods available to calculate the radiative heat flux. In most
cases, a complex system of simultaneous differential and integral equations must be
used. One of the standard methods to calculate the radiative thermal conductivity is
the Rosseland equation. When this equation is applied, the spectral mean extinction
coefficient and must be known or measured. Fukushima and Hatfield [63] measured the
extinction coefficient of different cereals, separated the leaf and the stem. In our research,
the specimens contained both stems and leaves, so the applied extinction coefficient is the
mean of leaf and stem, β = 1865 m2/kg. Based on the specific extinction coefficient and
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the extinction coefficient (β), the heat transfer by radiation (kr) can be calculated using
Equations (16) and (17) based on [45]:

β =

(
βlea f + βstem

)
2

, (16)

kr =
16× σ× T3

3× β
× Fl3. (17)

2.3.5. Total Thermal Conductivity

Finally, the total value of the heat transfer is summarized in the total thermal conduc-
tivity factor (ktot) that can be defined by the sum of the conduction and radiation factors
using Equation (18):

ktot = kc,tot + kr. (18)

3. Results and Discussion
3.1. Physical Properties of Straw Stems

The experimentally measured material properties are summarized in Table 1. Type-
1 material physical properties were used to create our proposed model, while Type-2
properties were used only for validation purposes afterwards. As is visible in Table 1, stem
density is greater for Type-2 than Type-1 straw by more than 11.5%, while material density
is the other way around: Type-1 is larger by 12% than Type-2. This shows a reversed trend
that can be explained by the porosity of the two different straw materials. Type-1 straw is
more porous, as can be seen in the SEM images in Figure 1. The difference in porosity is
3.9% in favor of Type-1.

Table 1. Measured physical properties of the investigated straw types.

Straw Stem Stem Density
(g/cm3)

Material Density
(g/cm3)

Porosity
(1)

Cellulose Content
(%)

Average Stem
Diameter (mm)

Type-1 0.190 1.3197 0.852 37.5 3.15

Type-2 0.212 1.1770 0.820 42.4 3.02

The other significant difference in the material properties comparing Type-1 and Type-
2 straw is their cellulose content. Our wheat samples had a very similar percentage of
cellulose reported in [54], while barley had almost 5% lower cellulose content. Since these
two straws are from different vegetables, the difference is understandable. This difference
indicates that these two straws will have different thermal conductivity.

The average diameter of the examined 300 pieces of randomly sampled straw stems
showed that Type-1 has a slightly larger average stem diameter than Type-2. However, as
we discussed earlier, as explained in Figure 1, Type-2 straws have thicker stem walls.

3.2. Thermal Conductivity of Straw Bulks

The thermal conductivity measurement results are summarized in Figure 9, which
shows the average thermal conductivity and the upper and lower values. The average
standard deviation of the measurements was 0.0004 W/m·K for Type-1 and 0.0011 W/m·K
for Type-2. Both straw types’ standard deviations can be considered acceptable, and the
slightly higher standard deviation for Type-2 can be explained with its pore system, which
showed greater variance than Type-1, as shown earlier in Figure 1.
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Figure 9. Measured thermal conductivity of randomly oriented Type-1 and Type-2 straw bulks with different bulk densities.

As expected, Type-1 straw has smaller thermal conductivity than Type-2 due to its
higher porosity and lower cellulose content. Both straw types show a similar trend in
terms of changing bulk density, and we measured the lowest thermal conductivity for both
Type-1 and Type-2 straw bulks at 120 kg/m3 bulk density, which can be considered the
optimum bulk density. This optimum bulk density is higher than that of mineral wool or
bagasse (100 kg/m3), hemp or palm fiber (90 kg/m3), flax fiber (80 kg/m3), feather fiber
(60 kg/m3) or wood wool (50 kg/m3), respectively [20,50,64,65].

Compared to other studies dealing with raw straw materials, our investigated straw
types′ measured bulk density-dependent thermal conductivities are lower than what Conti
et al. [30,66] or Costes et al. [31] measured on full-size straw bale walls that were filled
with compressed straw bales oriented in parallel and made of different straws, which were
probably also more humid than our laboratory conditioned samples, but in the same range
that the literature review of Costes et al. [31] showed for straw bales with fibers oriented
perpendicular to the heat flow.

3.3. Validation of the Analytic-Empirical Model

Figure 10 shows the measured thermal conductivity and the results of the analytic-
empirical model. As we mentioned, we created the model using only the physical prop-
erties of Type-1 straw. When the model produced a value of R2 ≥ 0.99, we tested the
calculation using the measured material properties of Type-2 straw. The validation showed
that our model, fed with the properties of Type-2 straw, obtained a 0.99 R2 value. Therefore,
we considered it acceptable. As is visible in Figure 10, the largest difference between the
measured and modeled values is less than 2%. This difference could be due to the impact
of injury level of the stems, which needs to be investigated in the future, and, including
these integrity effects, we are probably able to increase the accuracy of our model. It is also
observable in Figure 10 that our model′s characteristics and trends match with the mea-
sured results, and the curve of bulk density versus thermal conductivity calculated using
our model reasonably matches the experimentally measured results within the investigated
bulk density range.
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3.4. Bulk Density Dependency of the Thermal Conductivity Factors

The total thermal conductivity factor of Type-1 and Type-2 straw using our validated
analytic-empirical model can be calculated using Equation (18), and the results and its compo-
nents are shown in Figure 11 for Type-1 straw and Figure 12 for Type-2 straw. In the figures, we
also included trend lines that fit with R2 ≥ 0.99 to the model results of each component.
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These trend lines show that the thermal conductivity factor of gas conduction de-
creases linearly in the function of bulk density, and it is consistent with the expectations,
while the solid conduction and radiation thermal conductivity factors change exponentially
with the increase in bulk density. In the investigated bulk density range, the gas conduction
factor could be approximated using a linear function with a perfect R2 value, while the
radiation factor could be reached using a linear function with R2 values of 0.964 and 0.968
for Type-1 and Type-2 straws, respectively, and these approximations would not have
significantly impaired the accuracy of the final results since radiation is accountable only
for 0.67% to 6.43% of the total thermal conductivity, depending on the bulk density at 10 ◦C
and dry state, as it was proven earlier that the radiation component is negligible at low
temperatures for fibrous thermal insulations [60], and the bulk density dependence shows
only a slightly curved trend line [62].

In the present model, the value of the radiative component (kr) is regulated by the
cubic function of the flatness factor, but it also has a very small curvature at 10 ◦C. However,
if we approximate the solid conduction using linear trend lines, despite the fact that we
can achieve a 0.966 and 0.971 R2 fit, the results were visibly different in the case of the gas
conduction factor, and the increase could reach up to 71% at 100 kg/m3 bulk density and,
in the investigated range, an average of 46.5% for Type-1 and 37.9% for Type-2. Therefore,
we state that the trend of the solid conductivity factor can only be modeled using a power
function, and only this type of regression can give high accuracy. We included all the
above-mentioned trend lines and their equations in Figure 11, and showed Type-1 straw
while showing only the acceptable trend lines in for Type-2 Figure 12.

It is also observable in the figures that the value of the solid thermal conductivity
factor is growing as the bulk density is increasing because the ratio of solids in the natural
composite (which has higher thermal conductivities than still air) is growing. We must note
that the value of the gas conduction factor changes in the opposite way and with a simpler
trend than the solid conduction factor. It is decreasing while the bulk density of insulation is
growing. This is because, in the thermal conductivity factor of gas conduction, we included
the gas components depending on the bulk density of the straw thermal insulation, and
not only the thermal conductivity of stationary air, although that is also a roughly constant
value at 10 ◦C. Therefore, the behavior of the linear curve is understandable because the
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quantity of the air (in gaps and voids) is decreasing where heat conduction can occur if we
increase the stem and bulk density, and therefore, the amount of solid component in bulk.
Theoretically, gas conduction could be reduced to zero when all the gases are squeezed out
from the insulation.

The obtained trends of the thermal conductivity factors are different from what we
used to obtain with conventional heat transfer models and conventional thermal insulation
materials since, in materials such as mineral wool or organic foams, the total heat transfer is
dominated by the contribution of the gas conduction within the hollow spaces or pores [67],
while in our model, the gas conduction decreases rapidly with the increase in the bulk
density. We can also compare the trends and similarities of the thermal conductivity factors
obtained by our model for straw-based materials, depending on their density, with a
different heat transfer model that has recently been published [68]. This other new model
describes the heat transfer in recycled glass foams and also shows thermal conductivity
factors separately. This model is different from ours in terms of the description of solid and
gas conduction (since glass foam is significantly different from natural fibrous materials),
but it used the Rosseland equation to include radiation, similarly to our model. Comparing
their results, the solid and gas conduction shows very similar trends. Still, the radiation
factor is decreasing with an increasing density, similarly to most conventional insulations
or vacuum panels [62].

If we compare our model results for Type-1 and Type-2 straws, it is clear that while
the trends and the characteristics of the curves are similar, the main difference between
barley and wheat straw is the gas conduction, which is due to the different pore structure
of the stems, and there are only slight differences in the solid conduction and radiation
factors. We can state that the most important physical property to create a good thermal
insulator material out of a straw is the pore structure of the crop.

4. Conclusions

In the present paper, a validated analytic-empirical model was presented, which was
developed to describe the heat transfer process in raw straw bulks, depending on their
bulk density, in the range of 80–180 kg/m3, and the physical properties of different straw
stems with the assumptions described in Section 2.3. The following conclusions can be
drawn from our research:

• From the relationship between bulk density and thermal conductivity, it is observable
that the characteristic of the curve is independent of the material properties of the
different investigated straws (barley and wheat). The absolute value of the thermal
conductivity is regulated by the inner structure and the physical properties of individ-
ual stems. Therefore, with different inner compositions, a shifted version of similarly
shaped curve characteristics can be obtained. The most important parameter is the
porosity of the stems. Our model is sensitive to the physical properties of the straw
stems and only applicable for the calculation of the thermal conductivity of straw fiber
thermal insulation bulks if the material properties of the used straw are measured and
defined.

• In our paper, we demonstrated two types of straws and their physical properties,
barley and wheat straw, as well as their thermal conductivity depending on the bulk
density. The optimal bulk densities of both straw types were found to be similar, at
120 kg/m3.

• The thermal conductivity factor of straw bulks must be separated into three main
components: conduction in solids, conduction in gases, and radiation. These are the
same components as in the case of every fibrous material. However, the gas conduction
in straw insulations should be separated into another three subcomponents, which
are: conduction in the pore gas of the stem, conduction in the voids of the stem, and
conduction in the gaps among the stems.

• The individual stem is a natural composite material that contains different solid mate-
rial components. The thermal conductivity of the stem′s solid part can be calculated
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from the product of the components′ thermal conductivities and the mass ratio of
the components. For simplification, differentiating only cellulose and other solid
components did not cause a significant difference in the model calculations; therefore,
obtaining only the cellulose content of a straw type provides sufficient data for model
calculations.

• The individual stem not only contains different solid material components but also
different phases. In the light of heat transfer in individual stems, the gas and solid
phases can be modeled as they are connected in parallel. The value of the individual
systems can be modeled by knowing the components′ thermal conductivity and the
volume ratio of the components, for which we can use porosity. We also proved that
the porosity of the stems is the most important material property to be known in the
case of straw-based fibrous thermal insulations.

• The path of the heat flow in the stems′ cross-section is changed by the stem density
of the straw fibers. A vector derived from the length of this path, called the flatness
factor, is introduced to our model, and this can control the value of heat conduction in
the stem wall and in voids with accurate precision.

• The trends of thermal conductivity factors on bulk density, depending on thermal
conductivity, are observable, and while the gas conduction shows the linear trend
and decreases with density, solid conduction and radiation increases exponentially
with bulk density and can be described using power functions with high accuracy.
However, radiation may be simplified to a linear model in the investigated bulk
density and temperature range without a loss of precision.
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Appendix A

Appendix A.1 Definitions

Flatness factor: this is a vector that shows the dominance of the thermal conductivity of
the solid part of a stem at the current density compared to the natural and maximum density.

Gaps: spaces among individual stems in the compressed bulk of the stems.
Material density: density of the stems without pores and voids.
Maximum density: the density values at which all of the fibers are fully compressed.

The inner surface of the stem wall is almost in touch.
Natural density: experimental value, gives bulk density of the insulation without any

compression (loose stem bulk which is fitted into the test box).
Pore: volume inside the stem wall which contains gases or liquid.
Reverse flatness factor: this is a vector that shows the dominance of thermal conduc-

tivity of the gas in the voids inside stems at the current density compared to the natural
and maximum density.

Stem density: density of stems that contain pores, without voids.
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Void: volume in the tubular stem, which is bounded by the inner side of the stem wall
and nodes.

Appendix A.2 Nomenclature of Material Properties

da: average diameter of stems.
p: porosity.
rc: cellulose content.
tw: the thickness of the stem wall.
ρf: stem density.
ρins: bulk density of the straw specimen.
ρm: material density.

Appendix A.3 Nomenclature of Experimental Values

dmin: the thickness of the fully compressed fiber.
ml: unit length stem mass.
ρmax: fully compressed specimen′s bulk density.
ρnat: uncompressed specimen′s natural density.

Appendix A.4 Nomenclature of Literature Data

dg: collision diameter of the air.
KB: Boltzmann′s constant.
sf: mean free path of air molecules.
βleaf: extinction coefficient of steam.
βleaf: extinction coefficient of steam′s leaf.
λc: thermal conductivity of cellulose.
λh: thermal conductivity of hemicellulose.
λl: thermal conductivity of lignin.
σ: Stefan–Boltzmann constant.

Appendix A.5 Nomenclature of Model Parameters

f1: density ratio of ρins and ρf.
f2: density ratio of ρf and ρm.
Fl: flatness factor.
Flrev: reverse flatness factor.
kc,tot: total conductivity factor.
kconv: convection factor.
kg.g: gas conductivity factor in the gaps among stems.
kg.tot: total gas conductivity factor.
kg.v: gas conductivity factor in the voids of stems.
kr: radiation factor.
ks: thermal conductivity factor of the stem.
ktot: total thermal conductivity.
Lc: characteristic length.
ls: sum length of stems in the specimen.
pins: volume ratio of gaps in the specimen.
Sfl: flatness.
smax: maximum length of heat flow.
smin: minimum length of heat path.
Vs: sum gross volume of stems in the specimen.
λg: thermal conductivity of still air.
λs,g: thermal conductivity of the stem.
f2: density ratio of ρf and ρm.
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Appendix A.6 Nomenclature of Environmental Conditions

P: pressure.
RH: relative humidity.
T: temperature.
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