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Abstract: We investigated characteristics of highly flexible and stretchable electrodes consisting of
Galinstan (i.e., a gallium-based liquid metal alloy) under various conditions including sub-zero
temperature (i.e., <0 ◦C) and demonstrated solar-blind photodetection via the spontaneous oxidation
of Galinstan. For this work, a simple and rapid method was introduced to fabricate the Galinstan
electrodes with precise patterns and to exfoliate their surface oxide layers. Thin conductive films
possessing flexibility and stretchability can be easily prepared on flexible substrates with large
areas through compression of a dried suspension of Galinstan microdroplets. Furthermore, a laser
marking machine was employed to facilitate patterning of the Galinstan films at a high resolution
of 20 µm. The patterned Galinstan films were used as flexible and stretchable electrodes. The
electrical conductivity of these electrodes was measured to be ~1.3 × 106 S m−1, which were still
electrically conductive even if the stretching ratio increased up to 130% below 0 ◦C. In addition,
the surface oxide (i.e., Ga2O3) layers possessing photo-responsive properties were spontaneously
formed on the Galinstan surfaces under ambient conditions, which could be solely exfoliated using
elastomeric stamps. By combining Galinstan and its surface oxide layers, solar-blind photodetectors
were successfully fabricated on flexible substrates, exhibiting a distinct increase of up to 14.7% in
output current under deep ultraviolet irradiation (254 nm wavelength) with an extremely low light
intensity of 0.1 mW cm−2, whereas no significant change was observed under visible light irradiation.

Keywords: liquid metals; gallium alloys; Galinstan; flexible electronics photodetectors; solar-
blind photodetection

1. Introduction

Recently, liquid metals based on gallium (Ga) alloys have received increasing atten-
tion, owing to their outstanding electrical and mechanical properties [1–3]. The Ga-based
metal alloys that exist as virtually non-toxic liquids at room temperature show not only
excellent stretchability and deformability but also environmental friendliness and recycla-
bility. In this context, extensive research efforts have been devoted to the development
of various applications using Ga-based metal alloys, such as sensors [4], reconfigurable
antennas [5], and soft electrodes [6]. These fluidic metal alloys also show great potential
for electronic skins [7,8] and wearable electronics [9–11]. Among various Ga-based metal
alloys, Galinstan (68.5% Ga, 21.5% indium (In), and 10% tin (Sn)) has been notably studied
in recent years due to its remarkably low toxicity and melting point (~−19 ◦C) [12], which
is also suitable for flexible and stretchable devices operating below 0 ◦C compared to other
eutectic gallium indium (EGaIn).

Although Galinstan shows outstanding properties including flexibility and stretchabil-
ity even under cold conditions, its high surface tension and rapid oxidation rate hinder the
fabrication of desirable patterns for electronic devices and circuits in comparison with other
functional materials [13–15]. Various methods for Galinstan patterning thus have been de-
veloped and enhanced, including microfluidic injection [16–21], photolithography [22,23],
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stencil lithography [24–27], imprint lithography [28], microcontact printing [29,30], and
composite material synthesis [31]. Each of these methods has individual advantages
(i.e., high processability, high resolution limits, high stability, or cost-effective fabrication);
however, integrating all the advantageous elements is still a challenge. For instance, the
demanding process conditions for delaying surface oxidation or preventing leakage of the
liquid metal or the low patterning resolution limits still need to be improved depending
on the method. Laser ablation is one of the patterning methods with high processability,
enabling the rapid fabrication of electrodes with complex features [32,33]. Although the
pattern resolution is limited by the beam spot of laser, which is normally in the range
of tens to hundreds of micrometers, this method can be directly employed for various
applications without laborious pre- and/or post-treatments.

In addition, it is worth noting that the spontaneous oxidation of Galinstan in air leads
to the formation of thin Ga oxide (Ga2O3) films on Galinstan surfaces [3,34,35]. Ga2O3
with a wide bandgap (~4.9 eV), which is rapidly formed on Galinstan surfaces in less
than one second during the patterning processes in air [2], is transparent in the visible
light region and exhibits high light-absorption coefficients in the deep ultraviolet (UV)
region [35–38]. The surface oxide layers normally degrade the metallic properties of Galin-
stan; however, these layers are also expected to be utilized for solar-blind photodetection
(i.e., deep UV detection insensitive to solar radiation) if they can be neatly separated from
the bulk material [39].

Herein, we investigated characteristics of the Galinstan electrodes to verify flexibility
and stretchability under various conditions including sub-zero temperature (i.e., <0 ◦C).
For this study, a simple and rapid method was employed to fabricate the Galinstan elec-
trodes with precise patterns. Thin Galinstan films with high electrical conductivity were
uniformly deposited on flexible polydimethylsiloxane (PDMS) substrates by the compres-
sion of Galinstan microdroplets and sequentially patterned using a fiber laser marking
machine. The transparent PDMS substrates were found to be undamaged by a laser with a
wavelength of 1064 nm, and only the Galinstan layers were ablated according to the de-
signed electrode shapes. In addition, the surface oxide (i.e., Ga2O3) layers of the Galinstan
electrodes were also examined to confirm their potential for solar-blind photodetection. For
the photoactive components, the thin Ga2O3 films, spontaneously formed on the Galinstan
surfaces, were exfoliated using elastomeric PDMS stamps [39,40] and then transferred onto
the patterned Galinstan electrodes to complete the device structure for solar-blind pho-
todetection. By combining Galinstan and Ga2O3 films, sensitive solar-blind photodetectors
were successfully fabricated on flexible substrates. The photodetectors showed a distinct
increase of up to ~15.1% in output current under deep UV irradiation (254 nm wavelength)
with an extremely low light intensity of 0.1 mW cm−2, whereas no significant change was
observed under visible light irradiation.

2. Materials and Methods
2.1. Preparation of Galinstan Microdroplets

Galinstan (68.5 wt.% Ga, 21.5 wt.% In, and 10.0 wt.% Sn) and PDMS (SYLGARD 184) were
purchased from Geratherm Medical AG (Geratal, Germany) and DOW (Midland, MI, USA),
respectively. EGaIn (75.5 wt.% Ga and 24.5 wt.% In) was purchased from Sigma-Aldrich
Korea (Seoul, Korea). To prepare the Galinstan microdroplets, 0.5 g of Galinstan was
sonicated in ethanol for 30 min (80 W, 40 KHz). Galinstan was well dispersed during
the sonication process and rapidly stabilized by surface oxidation in ethanol, resulting
in the suspension of Galinstan microdroplets (<10 µm) as shown in Figure 1a. The same
procedure was repeatedly performed for the preparation of the EGaIn microdroplets.
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Figure 1. (a) Preparation of suspensions comprising EGaIn and Galinstan microdroplets by sonication. (b) Schematic
illustration of the fabrication of flexible solar-blind photodetector using Galinstan microdroplets.

2.2. Preparation of Elastomeric PDMS Substrates and Stamps

For the PDMS substrates, the PDMS precursor, consisting of a silicone elastomer
base and a curing agent (in a 10:1 weight ratio), was poured onto a flat Petri dish, and
subsequently degassed in a vacuum desiccator for 1 h. The sample was cured at 80 ◦C for
1 h in a convection oven. After thermal curing, the PDMS film was easily peeled off from
the Petri dish and then cut into 50 mm× 50 mm specimens. The thickness of each substrate
was measured as ~1 mm. Sticky elastomeric PDMS stamps were individually prepared
to exfoliate the thin Ga2O3 films. The mixing ratio of the PDMS precursor was modified
to a 11:1 weight ratio to delay the saturation of cross-linking and enhance its adhesive
properties, and the same preparation procedure as for the PDMS substrates was followed.

2.3. Fabrication of Patterned Galinstan Electrodes

The suspension containing the Galinstan microdroplets was drop-dispensed onto the
flat PDMS substrate and then slowly dried at 30 ◦C for 24 h to avoid the formation of
structural defects induced by rapid evaporation of the solvent. The dried suspension of
the microdroplets in thin-film form was covered with another flat PDMS substrate and
subsequently pressed at a pressure of 15 MPa for 5 s to collapse the surface oxide layers
and connect Galinstan. After releasing the pressure, the upper PDMS mold was peeled off
from the bottom PDMS substrate, resulting in the formation of thin conductive Galinstan
films deposited on both PDMS substrates.

The Galinstan films were patterned using a laser marking machine (50 W, Dongil
Laser Technology, Gwangju, Korea). The scanning speed of the laser marking machine
was 600 mm s−1, and the power intensity was 1.0 % of its maximum power (i.e., 0.5 W). A
high resolution of 20 µm was achieved in the Galinstan patterning process by this laser
ablation method.
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2.4. Characterization of Flexible and Stretchable Liquid Metal Electrodes

To investigate characteristics of the liquid metal electrodes under various conditions,
thin conductive films (15 × 25 mm2) of Galinstan and EGaIn were individually prepared
with the same procedure. The thickness of each film was 1 µm. A semiconductor character-
ization system (4200-SCS, Keithley, Beaverton, OR, USA) was used for the measurements.

2.5. Fabrication of Flexible Solar-Blind Photodetectors Using Ga2O3

The elastomeric PDMS stamp was brought into contact with the surface of the Galin-
stan film. A thin Ga2O3 film (<10 nm), which was spontaneously formed on the Galinstan
surface, was attached to the sticky PDMS stamp and easily exfoliated from the Galinstan
film by peeling off the stamp. The transparent Ga2O3 film on the PDMS stamp was cut and
placed between two patterned Galinstan electrodes to complete the device structure.

2.6. Measurements

A semiconductor parameter analyzer (Keithley 4200, Beaverton, OR, USA) and re-
sistivity meter (Loresta-GX MCP-T700, Mitsubishi Chemical Analytech, Yamato, Japan)
were used to measure electrical properties and perform bending tests on the devices. Pho-
tocurrent measurements were performed for deep UV and visible regions using a UV lamp
(8 W, Vilber Lourmat, Collégien, France) and a halogen lamp (FOK-100W, Fiber Optic
Korea, Cheonan, Korea). The surface morphology was also investigated using atomic
force microscopy (AFM; Nanoscope IIIa, Digital Instruments, Bresso, Italy) and scanning
electron microscopy (SEM; JSM-7500F, Tokyo, Japan).

3. Results and Discussion

Suspensions comprising microdroplets of Galinstan and EGaIn were individually
prepared as shown in Figure 1a. It exhibited a matt dark gray color due to diffuse reflections
and surface oxide layers of the microdroplets. As schematically illustrated in Figure 1b,
the suspension was drop-dispensed onto a flat PDMS substrate and then slowly dried at
30 ◦C for 24 h. As the slow drying process hindered the formation of structural defects
induced by rapid evaporation of the solvent, the microdroplets were densely aggregated
in thin-film form with high uniformity. For Galinstan, the size of each microdroplet
was less than 5 µm, and rod-shaped particles were also observed between the rounded
droplets. It is well known that rounded Galinstan microdroplets are surrounded by a
thin layer of carbon and Ga2O3, of which the inner core is composed of Ga, In, and
Sn [41,42]. As previously reported, the rod-shaped particles possibly consisted of Ga
oxide monohydroxide ((GaO)OH) [43]. Note that Ga in Ga-based metal alloys can react
with decomposed OH− in the presence of O2, leading to the crystallization of (GaO)OH
as follows:

2Ga + 2OH− + O2 → 2(GaO)OH (1)

The amount of rod-shaped particles is significantly less than that of round parti-
cles, and it is expected to be further reduced at low-temperature conditions because
the crystallization strongly depends on heat and reactive oxygen species originating
from sonication [44,45].

The thin film comprising aggregated Galinstan microdroplets was not electrically
conductive because each droplet was fully covered by a non-conductive Ga2O3 layer. Thus,
another flat PDMS substrate for protecting Galinstan was brought into contact with the
thin film, and an external pressure of 15 MPa was sequentially applied to the sample to
collapse the surface Ga2O3 layers and connect Galinstan. With the collapse of the surface
Ga2O3 layers, the Galinstan microdroplets were connected to achieve a continuous phase
between the two PDMS substrates. After peeling off the upper PDMS substrate from the
bottom PDMS substrate, thin Galinstan films were consequently formed on both PDMS
substrates (see Figure 2a). The thickness of each glossy film was measured to be less than
1 µm, of which the surface partially cracked due to rapid surface oxidation during the
peeling process.
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Figure 2. (a) Photographs of (left) a dried suspension of Galinstan microdroplets in thin-film form on a flexible PDMS
substrate, and (right) a conductive Galinstan film fabricated by compression and separation using PDMS. (b) SEM images
of patterned Galinstan films, of which the minimum line width is ~20 µm. (c) Photographs of exemplary Galinstan films,
patterned by laser ablation. (d) Optical microscopy image and its close-up SEM image of an exemplary Galinstan structure
with complex pattern.

A fiber laser marking machine (λ ~ 1064 nm) was employed for the direct patterning
of the Galinstan films, enabling the fabrication of accurate and desirable features with
sub-100 µm resolution. Various exemplary features of the patterned Galinstan films are
shown in Figure 2b–d. The smallest feature size of the Galinstan line was 20 µm. Laser
ablation is a fast and precise method for patterning liquid metal electrodes, facilitating
the fabrication of complex and hollow patterns. In addition, this light-based patterning
method does not cause significant damage to the transparent substrates, such as glass and
PDMS, which do not directly absorb the energy from a fiber laser. After completing the
laser ablation process, partial buckling was observed on the PDMS substrates.

The electrical resistance and conductivity of the Galinstan film were measured corre-
sponding to the structural deformation of the PDMS substrate. For the measurements of
electrical properties, the patterned Galinstan electrode (80 µm × 5 mm) was used as shown
in Figure 3. Its thickness was less than 1 µm. The electrical resistance and conductivity
were initially measured as 48.3 Ω and ~1.3 × 106 S m−1, respectively. In response to the
deformation ratio, the electrical resistance gradually increased to 73.8 Ω, corresponding to
an electrical conductivity of ~8.5× 105 S m−1. In comparison with pure Galinstan, in which
the electrical conductivity was found to be ~3.5 × 106 S m−1, the relatively low electrical
conductivity of the Galinstan films used in this work could be attributed to the partial
cracks and insulating components remaining in the films, such as (GaO)OH and Ga2O3.
However, since the majority of the film components were Galinstan, the fabricated films still
possessed electrical conductivity high enough to be used as flexible electrodes. It should be
noted that the electrical conductivity of the fabricated Galinstan film (~1.3 × 106 S m−1) is
slightly lower than that of the thin EGaIn film (~2.2 × 106 S m−1) prepared using the same
procedure [39]. It is possibly originating from the content of the insulating material in the
suspension. As shown in Figure 1a, the content of the rod-shaped particles in the Galinstan
suspension is significantly higher than in the EGaIn suspension under our experimental
conditions, which may cause a decrease in overall electrical conductivity.
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Figure 3. Electrical resistance and conductivity of a line-patterned Galinstan electrode (80 µm × 5 mm) corresponding to
the structural deformation of the PDMS substrate.

One advantageous property of Galinstan is the liquid phase, maintaining its flexibility
and stretchability, even below 0 ◦C. To compare with EGaIn, electrical resistances of the
two materials were measured corresponding to lateral stretching (up to ~130%) of the
PDMS substrates. For the measurements, the flat Galinstan and EGaIn electrodes were
individually prepared on the PDMS substrates (15 × 25 × 1 mm3) and then stretched
up to 130% at room temperature and −10 ◦C, respectively. Changes in the electrical
resistances upon lateral stretching are shown in Figure 4a. At room temperature, the
electrical resistances of both materials slightly increased with the stretching ratios, which
is possibly originating from structural deformation [26]. At the temperature of −10 ◦C,
the cracks were generated inside the EGaIn film upon the lateral stretches (see Figure 4b),
leading to significant reduction in the film continuity. When the stretching ratio was
above 110%, the electrical conductivity of the EGaIn film was thus not observed. However,
differently from EGaIn, the Galinstan film was still electrically conductive even if the
stretching ratio increased up to 130%. These results were caused by the difference in the
melting points of the two materials (i.e., ~−19 ◦C for Galinstan and ~16 ◦C for EGaIn).
At −10 ◦C, the EGaIn film in the solid phase was significantly damaged, whereas the
Galinstan film in the liquid phase showed excellent film continuity (see Figure 4c).
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In addition, the Ga2O3 layer, which was spontaneously formed on the Galinstan
film, was neatly exfoliated using an elastomeric PDMS stamp for further investigation. It
should be noted that inherently high adhesion between the thin oxide shell and PDMS was
reported [42], and the elastomeric PDMS stamps enabled intimate contact with the oxide
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surfaces. In this work, the mixing ratio of the PDMS precursor was further modified to
enhance the adhesive properties, demonstrating excellent contact characteristics with a
relatively rough Ga2O3 surface. The elastomeric PDMS stamp was placed on the surface
of the Galinstan film without applying any external pressure and was then detached. In
this process, the transparent Ga2O3 layer was successfully transferred onto the stamp. The
transferred Ga2O3 film was slightly darker than the bare PDMS substrate because small
Galinstan residues in the form of islands (<10 µm) remained on the substrate, as shown
in Figure 5c. However, all Galinstan residues were entirely isolated from each other and
wrapped with Ga2O3, resulting in the formation of a non-metallic film. The thickness of
the exfoliated Ga2O3 film was measured as ~13 nm using AFM, as shown in Figure 5b. It is
worth noting that the measured thickness of the Ga2O3 film in this work is thicker than that
of the single surface oxide layer of Galinstan (i.e., ~3 nm) due to further oxidation during
the exfoliation process. The surface roughness and embossed features of the fabricated
Galinstan film, as shown in Figure 2d, could also affect the thickness of the Ga2O3 film.
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Galinstan electrodes was bridged using Ga2O3, as shown in Figure 5a. For this work, the 
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Figure 5. (a) Schematic illustration of solar-blind photodetector. (b) AFM image of transparent Ga2O3 film, exfoliated
using a PDMS stamp. The height profile along the white line is also indicated. (c) Optical microscopy image of a channel
between two patterned Galinstan electrodes. The black areas correspond to Galinstan beneath the transparent Ga2O3

film. Photograph of the fabricated photodetector is also shown in the inset. (d) Output characteristics of the solar-blind
photodetector under irradiations of visible light (with a halogen lamp; ranging from 350 to 900 nm) and UV light of
365 nm wavelength, respectively. (e) Output characteristics of the solar-blind photodetector under deep UV irradiation
(254 nm wavelength). The on/off switching of each irradiation was manually performed at 30 s intervals, and the output
characteristics were constantly measured at a sample bias voltage of 0.1 V.

To investigate the solar-blind photodetective properties of the exfoliated Ga2O3 film
in consideration of its wide bandgap (~4.9 eV) [35–38], a channel between two patterned
Galinstan electrodes was bridged using Ga2O3, as shown in Figure 5a. For this work, the
conductive Galinstan film, prepared on a large area (50 mm × 50 mm), was patterned
by laser ablation to form a channel. The transparent Ga2O3 film, individually prepared
on the PDMS stamp, was placed between the channel to complete the device structure
(see Figure 5b). The output current was constantly measured at a sample bias voltage of
0.1 V. Under visible light irradiation with a halogen lamp (ranging from 350 to 900 nm),
the output current only increased by ~2.7% at a high light intensity of 30 mW cm−2 (see
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Figure 5c), and no significant change in the output current was observed at lower light
intensities. As the contribution of the short-wavelength region in the emission spectrum is
not negligible at high intensity, a small increase in the output current could be detected at
light intensities above 30 mW cm−2. To confirm this speculation, the output current was
also measured under irradiation of UV light of a 365 nm wavelength, which was contained
in the emission spectrum of the halogen lamp, and the output current in effect increased
by ~14.9% at a low light intensity of 0.2 mW cm−2. Eventually, under deep UV irradiation
(254 nm wavelength) with an extremely low light intensity of 0.1 mW cm−2, the output
current sensitively increased by up to 15.1% (see Figure 5d). These results strongly suggest
that the combination of Galinstan and its surface oxide layers can be used for sensitive
solar-blind photodetectors that possess remarkable advantages, such as low-cost and easy
processability under ambient conditions, and flexibility.

4. Conclusions

We investigated characteristics of the flexible and stretchable Galinstan electrodes
under various conditions including sub-zero temperature (i.e., <0 ◦C) and successfully
demonstrated solar-blind photodetection via the spontaneous oxidation of Galinstan. In
this work, a simple and rapid method was introduced for fabricating the flexible and
stretchable Galinstan electrodes with precise patterns and exfoliating the surface oxide
layers to complete the device structure enabling solar-blind photodetection. A suspension
consisting of Galinstan microdroplets was prepared by sonication. Thin Galinstan films
with thickness less than 1 µm were uniformly deposited on flexible PDMS substrates by
compression of the dried suspension of the microdroplets. The Galinstan films, deposited
on a large area (50 mm × 50 mm), were sequentially patterned using a fiber laser marking
machine (λ~1064 nm), and accurate and desirable features with a high resolution of 20 µm
were fabricated. Although the electrical conductivity of the fabricated films was lower than
that of pure Galinstan, they still possessed electrical conductivity high enough to be used
as flexible and stretchable electrodes even below 0 ◦C. For the photoactive components,
thin Ga2O3 layers, spontaneously formed on the Galinstan surfaces, were exfoliated us-
ing elastomeric PDMS stamps and successfully transferred onto the patterned Galinstan
electrodes to complete the device structure for solar-blind photodetection. The solar-blind
photodetectors demonstrated a distinct increase of up to ~15.1% in the output current
under deep UV irradiation (254 nm wavelength) with an extremely low light intensity of
0.1 mW cm−2, whereas no significant change was observed under visible light irradiation.
These results strongly suggest that Galinstan can be used for flexible and stretchable elec-
trodes working under extreme conditions, and the combination with its surface oxide layer
also shows great potential for sensitive solar-blind photodetectors that possess outstand-
ing advantages, such as low-cost and easy processability under ambient conditions. We
anticipate that these results will contribute to the development of flexible and stretchable
electronic devices based on liquid metals, which can lead to further application of sensors
under extreme conditions.
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