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Abstract: The present research work aimed to study the effects of cutting environments and con-
ditions on tool wear and residual stresses induced by orthogonal cutting of AA6061-T6. Cutting
environments included dry- and flood-coolant modes and cutting conditions consisted of cutting
speed and feed rate. A 2D finite element (FE) model was developed to predict tool wear and residual
stresses and was validated by experimental measurements including machining forces, tool wear,
and residual stresses. This was obtained by exploring various magnitudes of the shear friction factor
and heat transfer coefficient and choosing proper coefficients using the calibration of the predicted
results with the measured ones. The experimental results showed that the effect of cutting environ-
ment including dry and flood-coolant modes was negligible on machining forces. The experimental
investigation also demonstrated that increasing feed rate raised machining forces, tool wear and
residual stresses in both cutting environments. Low Speed Cutting (LSC) led to the highest value of
tool wear and High Speed Cutting (HSC) provided the lowest values of resultant machining forces
and residual stresses in both modes. Flood-coolant mode reduced tool wear and slightly decreased
tensile residual stresses in comparison with dry mode. As a result, low feed rate and high-speed
cutting under flood-coolant mode were proposed in order to improve tool wear and residual stress
in orthogonal cutting of AA6061-T6.

Keywords: orthogonal cutting; tool wear; residual stress; finite element model; aluminum alloy
6061-T6

1. Introduction

Machining operations are commonly used in the aerospace industry to produce the
desired shape of components as reported by Javidikia et al. [1] and Touazine et al. [2]. Dry
machining is frequently carried out due to the environmental and health regulations and
reduction in the machining costs, as mentioned by Krolczyk et al. [3]. However, it can
produce high cutting temperatures that could alter the dimensions and properties of the
machined part. According to Brundtland et al. [4] and Khanna et al. [5], sustainability
refers to a capacity that caters to the present human needs without endangering future
generations to meet their needs. Sustainability can be realized in machining processes
using cutting fluids, as mentioned by Sankaranarayanan et al. [6]. Khanna et al. [5] and
Szczotkarz et al. [7] reported that during metal cutting operations, the high level of heat
generated at the tool–workpiece–chip interfaces leads to high tool wear and low surface
integrity. To tackle this problem, Khanna et al. [5] and Adler et al. [8] stated that cutting
fluids can be utilized to reduce the temperature in the cutting region and also perform
functions such as lubrication and flushing of chips. The most widespread type of cutting
fluids used in machining operations is water-based emulsions, leading to a popular cutting
process called flood-coolant (wet) machining, as expressed by Szczotkarz et al. [7].
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Orthogonal cutting of aluminum alloys is an important machining operation in the
aerospace industry, particularly as initial step for further and more complex operations.
According to Javidikia et al. [9], one of the major challenges in othrogonal cutting of alu-
minum alloys is the occurrence of non-uniform cutting temperatures and machining forces.
A previous research study by Hu and Huang [10] on turing of AISI4340 steel demon-
strated that machining forces and temperature are the fundamental factors that determine
the extent of residual stresses and tool wear. High tool wear can result in reduction in
tool life and decrease the quality of the components, thereby increasing machining costs.
Large tensile residual stresses can significantly affect fatigue life and corrosion resistance
of machined components, which lead to crack propagation, as mentioned by Javidikia
et al. [1] and Sadeghifar et al. [11], who carried out research on surface integrity induced
by turning of AA6061-T6 and residual stresses and machining characteristics generated by
orthogonal turning of 300M Steel, respectively. Based on the research work by Javidikia
et al. [9], the machining with the cutting speed below 900 (m/min) is considered as LSC,
while above 900 (m/min) is known as HSC. Therefore, different experimental and numer-
ical studies have been carried out to improve tool wear and residual stress induced by
machining processes.

Leppert and Peng [12] carried out an experimental study to investigate the effects of
cutting environments and conditions on residual stresses after turning AISI 316L steel. The
results demonstrated that by properly selecting cutting parameters and residual stresses
in dry mode could be smaller or comparable with those in wet mode. Cantero et al. [13]
experimentally analyzed tool wear mechanisms in finishing turning of Inconel 718 with
three carbide diamond-shaped cutting inserts under dry and wet cutting environments.
They found that tool wear was higher in dry mode.

MacGinley and Monaghan [14] simulated tool wear, temperature and stress distri-
butions in the workpiece in orthogonal turning Inconel 718 with uncoated and coated
tools using the Forge software – Version 2 (produced by Transvalor). Good agreement
was observed between the simulated results and the experimental ones. Yen et al. [15]
implemented a tool wear model into FE modeling of orthogonal machining of AISI 1045
steel with uncoated carbide tools. They employed a special simulation module called
“Konti-Cut” in order to simulate the cutting process for a sufficiently long cutting time
using the DEFORM software – Version 11.0 (produced by Scientific Forming Technologies
Corporation (SFTC)). The results showed that this approach tended to underestimate the
wear rates and, consequently, some wear constants were required for the FE model to be
calibrated accurately.

Xie et al. [16] carried out FE simulations of tool wear in orthogonal turning of AISI
1045 steel by integrating Abaqus/Explicit and Abaqus/Standard – Version 6.2 (produced by
Dassault Systèmes). Significant discrepancy was observed between the experimental and
predicted results for both flank wear and crater wear. This discrepancy was attributed to
the difference of the characteristic equation of tool wear and the tool wear data available in
the literature, the simplified friction model, the difference in the chemical composition and
heat treatment of the workpiece used in the experiment and simulation, and the poor mesh
control at the tool–chip interface. Coelho et al. [17] performed FE modeling of orthogonal
turning of AISI 4340 steel using the Abaqus software to predict tool wear and machining
forces with uncoated and coated carbide inserts. Good agreement was observed between
predictions and measurements.

Soliman et al. [18] analyzed the effect of feed rate on tool wear in orthogonal cutting
of A36 steel using uncoated carbide insert. The Abaqus software was used to develop a
2D finite element model validated by experimental investigation. The results showed that
crater wear increased with increasing feed rate.

The influence of orthogonal cutting parameters on residual stresses was assessed.
Jomaa et al. [19] studied the effects of cutting speed and feed rate on residual stresses in
orthogonal cutting of AA7075-T651. They showed that the hoop surface residual stress was
compressive in low cutting speed and the axial surface residual stress became tensile with
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increasing cutting speed. They also reported that the effect of cutting speed on residual
stresses was higher when lower feed rates were employed. Outeiro et al. [20] analyzed
residual stress variations using different cutting parameters in orthogonal turning of AISI
316L steel with uncoated and TiC/Al2O3/TiN-coated tungsten carbide tools. The results
showed that the surface residual stresses remained almost constant and increased using
uncoated and coated tools, respectively; in contrast, the surface residual stress rose with
increasing feed rate.

Maranhao and Davim [21] developed a FE model of orthogonal cutting of AISI 316
steel to predict the effect of feed rate on residual stress using the AdvantEdge software
(produced by Third Wave Systems). They concluded smaller feed rates caused the lower
residual stresses. Mohammadpour et al. [22] examined the influence of cutting speed and
feed rate on the distribution of residual stresses in orthogonal cutting of AISI 1045 steel
using the SuperForm software – Version 2005 (produced by MSC.Software Corporation).
The results displayed that raising cutting speed and feed rate increased residual stresses.

Moussa et al. [23] studied the effect of cutting speed and feed rate on residual stresses
induced by the orthogonal cutting of AISI 316L steel. They found that the residual stress in
the machined subsurface decreased when cutting speed rose and depth of cut decreased.
Qi et al. [24] analyzed the effect of different machining parameters on surface residual
stress during dry cutting AISI 1045 steel. Their results showed that the surface residual
stress is not sensitive to the variation of cutting speed. Moreover, they found that residual
stress considerably increased with increasing cutting depth.

Sadeghifar et al. [11] conducted FE modeling of cutting temperature, cutting and
thrust forces, and residual stresses in dry orthogonal turning of 300M steel using the
Abaqus software – Version 6.14. The results showed that higher cutting speed and lower
feed rate were desirable to decrease residual stresses when machining forces, temperature,
and material removal rate were constrained. Muñoz-Sanchez et al. [25] studied the impact
of tool wear on residual stresses in machining of AISI 316L steel using the Abaqus/Explicit
and Abaqus/Standard – Version 6.4-1. The results demonstrated that the residual stress
increased when worn tools were employed compared to the fresh ones.

As seen in the above-mentioned papers, very little information is available in the pub-
lished literature on the effect of different cutting environments and high-speed machining
on tool wear induced by orthogonal cutting of metals. The information is even scarcer
when it comes to different cutting environments such as dry and flood-coolant modes for
orthogonal cutting of aluminum alloys.

In the present research work, the effects of cutting environments and conditions
on machining forces, tool wear, and residual stresses induced by orthogonal cutting of
AA6061-T6 were investigated. Special attention was devoted to examining the influence of
low speed cutting and high speed cutting on tool wear and residual stress. The developed
2D FE model was experimentally validated using cutting forces, tool wear, and residual
stress. The variations of machining forces, tool wear, and residual stress with cutting
environments and conditions were analyzed and discussed.

2. Experimental Tests

Orthogonal cutting tests were conducted using a MAZAK-NEXUS 100-II M CNC
machine (Florence, KY, USA). The workpiece was a 150-mm diameter and 120-mm-length
cylinder made of AA6061-T6. The tool was made of uncoated carbide (ISO CCGX 120408-
AL H10) and a right-hand tool holder of SCLCR 2020 K12 was used to hold the inserts. For
each experimental test, a new insert was employed to provide similar conditions for all the
tests. The samples were groove machined to form tube-shaped workpiece with a 4 mm
thickness. The orthogonal cutting tests were performed for the cutting conditions listed
in Table 1 with the tool geometry consisting of a edge radius of rβ=0.02 mm, a rake angle
of γo= 17.5 degrees, and a clearance angle of αo = 7 degrees under dry and flood-coolant
modes. A Kistler (type 9121) three-component piezoelectric dynamometer (Winterthur,
Switzerland) was utilized to measure machining forces. The acquisition of force signals was
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carried out with LabVIEW software and data treatment was conducted using MATLAB
codes. The experimental set-up of the orthogonal cutting is shown in Figure 1. The utilized
flood-coolant was OEMETA with the flow rate of 7200 mL/min.

Table 1. Cutting conditions for tool geometry including rβ = 0.02 mm, γo = 17.5◦, and αo = 7◦.

Test No. Cutting Speed
VC(m/min)

Feed Rate
f(mm/rev)

1 361 0.16
2 650 0.16
3 950 0.16
4 1250 0.16
5 950 0.1
6 950 0.2
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Figure 1. The experimental set-up of orthogonal machining.

A Mitutuyo Crysta-Apex C Coordinate Measuring Machine (CMM) (Kanagawa, Japan)
was used to evaluate the homogeneity of the final machined surface before conducting the
residual stress measurements, as shown in Figure 2a. As displayed in Figure 2b, the final
machined surface is homogenous all around the surface due to the negligible variation of
the height from the reference surface. Digital Microscope KEYENCE VHX-500F (Osaka,
Japan) was used to observe and measure the length of tool wear as portrayed in Figure 3a.
A Pulstec µ-X360n X-Ray Diffraction machine (Nakagawa, Japan) was used to measure
surface residual stresses as displayed in Figure 3b. This machine uses a Debye–Scherrer
ring image based on a diffracted cone and cos α method to measure and calculate residual
stresses. Moreover, the X-ray incidence angle and X-ray irradiation time were set as 25
degrees and 20 s, respectively. The Bragg’s angle and crystallographic plane were 139.3
degrees and {311}, respectively. It needs mentioning that residual stress was measured on
all the machined samples at four points and was averaged.
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residual stresses.

3. Results and Discussion
3.1. Machining Force Analysis

The effect of feed rate on machining forces consisting of cutting force (Fc) and thrust
force (Ft) was studied under dry and flood-coolant modes for Test Nos. 3, 5, and 6, where
the cutting speed was fixed at 950 m/min, as shown in Figure 4. As observed in this figure,
the resultant machining forces increased with raising feed rate for both modes. This is
because higher feed rates lead to larger tool–chip contact area and pressure, resulting in
larger magnitudes of machining forces [9,11].
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Figure 5 displays the influence of cutting speed on Fc and Ft for both modes as
detailed in Test Nos. 1, 2, 3, and 4 of Table 1. As presented in this figure, increasing
cutting speed from LSC to HSC decreased the resultant machining forces under dry and
flood-coolant modes. This can be attributed to the fact that a larger cutting speed produces
larger frictional and plastic works, leading to more thermal softening of material, and
consequently, generates lower forces during machining [9,11].

Furthermore, the results reported in Figures 4 and 5 reveal that changing cutting
environments from dry to flood-coolant was negligeable on the machining forces. This
could be related to the fact that, in a cutting process, applying a coolant reduces the cutting
temperature, resulting in less thermal softening of the machined material, which therefore
increases the resultant machining forces. On the other hand, a coolant can also have a
lubrication effect. Indeed, applying a coolant also decreases the generated friction between
the tool and workpiece, and consequently reduces the resultant forces. Therefore, the net
effect of these two phenomena does not change the resultant forces in flood-coolant mode
compared with dry mode.

3.2. Tool Wear Analysis

The results reported in Figure 6 based on Tests Nos. 3, 5, and 6, in which cutting speed
was fixed at 950 m/min, cleary demonstrate that the length of crater wear increased with
increasing feed rate. This is due to the fact that raising feed rate increases the tool-chip
contact pressure, contact area and friction, resulting in higher crater wear [26].

The variation of crater wear with cutting speed was investigated under dry and flood-
coolant modes for Test Nos. 1, 2, 3, and 4 for feed rate fixed at 0.16 mm/rev, as shown
in Figure 7. According to this figure, the largest length of crater wear occurred in the
cutting speed of 361 m/min (LSC) and it then dropped with increasing cutting speed from
361 m/min to 650 m/min. Moreover, as shown in this figure, the length of crater wear
remained almost constant with increasing cutting speed from 650 m/min to 1150 m/min
(HSC). The observed behavior is probabaly related to the presence of higher machining
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forces when the cutting speed of 361 m/min was used in the experiments, as reported in
Figure 5, and, consequently, induced more pressure and friction on the cutting tool, leading
to more crater wear.
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As seen in Figures 6 and 7, flood-coolant mode improved the length of crater wear
compared with dry mode. This result is in agreement with that obtained by Kishawy
et al. [27], who reported reduced tool wear in flood-coolant high-speed milling of A356
aluminum alloy compared to the dry mode. This is attributed to the fact that applying flood-
coolant led to lower friction and heat generation and, as a result, reducing the crater wear.
It needs mentioning that there is a direct relationship between “the cutting temperature
and friction” where tool wear increases with increasing temperature and friction [10]. The
length of crater wear in both dry and flood-coolant modes for all the six cutting conditions
are shown in Figure 8.

Accordingly, a combination of low feed rate and high cutting speed in flood-coolant
mode is recommended to reduce the length of crater wear.

3.3. Residual Stress Analysis

The plots of the variation of residual stresses with feed rate and the corresponding
standard deviations in dry and flood-coolant modes for Test Nos. 3, 5, and 6 for cutting
speed fixed at 950 m/min were displayed in Figure 9. As seen in this figure, residual
stresses increased with raising feed rate for both modes. This is because increasing feed rate
increases the tool–chip contact area and the frictional heat, which increases temperature
and residual stresses [1,11].
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A study of the impact of cutting speed on residual stresses and their corresponding
standard deviations was carried out under dry and flood-coolant modes for Test Nos. 1, 2,
3, and 4, in which feed rate was kept fixed at 0.16 mm/rev, as shown in Figure 10. Based
on this figure, residual stresses increased with cutting speed in the range of 361 m/min
to 950 m/min and then dimineshed from the cutting speed of 950 m/min to 1150 m/min
in both dry and flood-coolant modes. In a cutting process, an increment in cutting speed
increases the plastic work, σf l

.
εp, and the frictional work, τVCh, [28], in which σf l ,

.
εp, τ,

and VCh are flow stress, effective plastic strain rate, frictional shear stress at the tool–
chip contact face, and chip velocity along the tool-chip interface, respectively. These
works increase the generated heat and, consequently, raise the temperature and residual
stresses [29,30]. In contrast, an increment in cutting speed raises material removal rate
(MRR), which increases the heat evacuation and, as a result, reduces temperature [9] and
residual stresses [11,29,30]. The competition between these two phenomena determines
the nature (tensile or compressive) and amplitude of the residual stresses.

As shown in Figures 9 and 10, in general, the residual stresses slightly decreased
by applying coolant due to reduction in the cutting temperature and friction. Since the
magnitude of the resultant machining forces remained almost constant for the two modes
(Figures 4 and 5), it can be concluded that the variation of the residual stresses in orthogonal
cutting of AA6061-T6 was more dependent on thermal load than mechanical load.

As a result, a combination of low feed rate and high cutting speed in flood-coolant
mode is proposed in order to obtain lower residual stresses. Although turning at high
cutting speed led to almost similar residual stresses to turning at low cutting speed, the
productivity is higher at HSC as a consequence of larger metal removal rates.
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4. Finite Element Modeling

In this research study, Finite Element (FE) Method was used to simulate the orthogonal
cutting of AA6061-T6. The DEFORMTM software – Version 11.0 was employed to predict
the responses. Accurate predictions of machining forces, tool wear, and residual stresses
are crucial for selecting the optimal machining parameters to improve the tool performance
and the surface integrity of components as the end goal of the machining industry. The
mathematical formulation of the analysis is based on an updated Lagrangian formulation
and implicit integration method for large plastic deformation analysis.

The equations of motion during the orthogonal cutting process at a specific instant of
time are expressed as [11]:

[M]{
..
U}+ {Rint} = {Rext} (1)

where [M] is the mass matrix, {
..
U} is the acceleration vector ({U} is the displacement), and

{Rint} and {Rext} are the vectors of internal and external forces, respectively. The effect of
damping is ignored and, consequently, {Rint} is equal to

{Rint} = [Cd]
{ .

U
}
+ [Ks]{U} ∼= [Ks]{U} where [Cd] ∼= 0 (2)

where [Cd] and [Ks] are the damping and stiffness matrices, respectively. In addition, {Rext}
is the external forces applied during cutting including the reaction forces at the supports.

Heat transfer occurring during the machining process is described as [9]:

[CT ] {
.
T}+ [KT ] {T} = {

.
Qg} (3)

in which [CT ] and [KT ] are the volumetric heat capacitance and thermal conduction matri-
ces, respectively. Moreover, {

.
Qg} is the total heat generation in the machining process.
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The thermal contact between the tool and workpiece is defined by considering heat
conduction through the tool–chip contact face from the chip to the tool during the cutting
process. The heat conduction is calculated as:

Q = hint
(
Twp − Tt

)
(4)

where hint is heat transfer coefficient, Twp and Tt are the workpiece and tool’s temperature at
the tool–chip interface. An initial temperature of 20 °C (room temperature) was considered
to both tool and workpiece.

Convection heat transfer occurs between the workpiece and the environment accord-
ing to the following formula [11]:

Q = h
(
Twp − Ta

)
(5)

in which h is convection heat transfer coefficient, and Twp. and Ta are the workpiece
and ambient (room) temperature. In the present work, hint and h were calibrated by
comparing the predicted results of machining forces, tool wear, and residual stress with
the corresponding experimental ones.

The Johnson–Cook material constitutive model was utilized to model the plastic
deformation of the workpiece material during the cutting process as:

σf l =
[
A + B(ε)n][1 + C ln

( .
ε
.
ε0

)][
1−

(
T − Troom

Tmelt − Troom

)m]
(6)

where σf l is the flow stress, ε. the plastic strain,
.
ε the plastic strain rate

(
s−1), .

ε0 the
reference plastic strain rate

(
s−1), T (oC) the workpiece temperature, Tmelt (

oC) the melting
temperature of the workpiece, and Troom(oC) the room temperature. Additionally, A (MPa)
is the initial yield strength, B (MPa) the hardening modulus, C the strain rate sensitivity
coefficient, n the hardening coefficient, and m the thermal softening coefficient. Table 2
presents the Johnson–Cook constants of AA6061-T6.

Table 2. The constants of Johnson–Cook material model of AA6061-T6 [9].

A (MPa) B (MPa) n C m
.
ε0 (1/s) Tmelt (

oC) Troom (oC)

250 79.70 0.499 0.0249 1.499 1 652 20

Previous research indicated that aluminum alloys tend to adhere to the tool at the
tool–chip interface during cutting which creates a sticking zone [30]. The Coulomb and
Zorev models cannot predict the frictional behavior accurately due to lack of relative
sliding at the tool–chip interface. Hence, the shear friction model was utilized to model the
mechanical contact between the tool and the workpiece as follows [9]:

τ = m f τChip (7)

where m f is the shear friction coefficient and τChip is the shear flow stress in the chip
at the tool–chip interface. In this study, the shear friction coefficient was calibrated by
comparing the present simulated machining forces, tool wear, and residual stress with the
experimentally measured results.

Several tool wear models were commonly used in FE simulation of metal cutting
processes such as Taylor’s extended equation, Takeyama’s wear model, and Usui’s wear
model [31]. The Usui’s wear model has been extensively used in machining simulations
because of consistent experimental validations of its predictions for a wide range of ma-
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chining processes and conditions [10,26,32–36]. Therefore, in the present research study,
Usui’s wear model was used to simulate tool wear as follows:

dw
dt

= A σt V exp
(
−B
T

)
(8)

in which V is the sliding velocity, T interface temperature, σt interface pressure, and w tool
wear. In addition, the values of the Usui’s model constants (A and B) for uncoated carbide
tools are given as [31,37,38]:

A = 7.8× 10−9 and B = 5.302× 103 for T < 1150 K
A = 1.198× 10−2 and B = 2.195× 104 for T ≥ 1150 K
According to a previous research study by the same authors [9], the maximum tem-

perature of the tool induced by orthogonal cutting of AA6061-T6 using uncoated carbide
inserts occurred at the tool rake face and their values were much less than 1150 K. Thus, in
the present simulations, the Usui’s model constants were considered as A = 7.8× 10−9

and B = 5.302× 103.
Using cutting fluids during cutting processes can bring along two main functions

consisting of cooling and lubrication. These two main functions can affect the friction and
heat convection and conduction during the cutting processes [39].

In the present simulations, a rectangular workpiece with dimensions of 4.8 mm × 1.12 mm
was used with an elastic–plastic behavior. The workpiece was meshed with 3424 linear
quadrilateral elements and 3540 nodes. The tool material was considered as a rigid body
and was meshed with 1981 elements and 2080 nodes. Figure 11 exhibits the tool and
workpiece’s geometries. Mesh windows were assigned to the workpiece and tool in order
to have a high-quality fine mesh in the cutting zone. The workpiece and tool’s material
properties are adopted from Ref. [9].
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Residual stresses were modeled and extracted during two steps: cutting and stress re-
laxation processes. In the first step, cutting is conducted to reach the steady-state condition
in which machining forces, temperature, strains and stresses, and chip thickness remain
almost constant with time. As displayed in Figure 12, in both horizontal and vertical
directions, the top and right sides of the cutting tool are fixed. Moreover, the bottom and
left sides of the workpiece are fixed in vertical direction. The workpiece material moves
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through the fixed tool in the horizontal direction. The sides of the workpiece and tool
which are far from the cutting zone and are retained at ambient temperature of 20 ◦C in
order to reduce the simulation time. Thereafter, in the stress relaxation step, the tool was
retracted from the workpiece to allow the workpiece material to relax by cooling down
to room temperature. As shown in Figure 13, the bottom and left sides of the workpiece
are fixed in both horizontal and vertical directions in stress relaxation step. This cooling
process was performed using a convection heat transfer to the workpiece consisting of
the chip [9,11]. The mechanical and thermal boundary conditions for the cutting and the
stress relaxation processes in the FE model for dry and flood-coolant modes as well as the
corresponding experimental tests are shown in Figures 12 and 13. The cutting and stress
relaxation processes take about 16 and 3 h, respectively. The simulations were carried out
using a computer system of Intel® Xeon® CPU E3-1225 V5 with a CPU speed of 3.30 GHz
and a memory RAM of 64.0 GB.
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5. Validation of the FE Model

The developed finite element model was validated by comparing the numerical results
of cutting force, thrust force, tool wear, and residual stresses with those obtained through
the above-mentioned experimental measurements in dry and flood-coolant modes for Test
No. 3 listed in Table 3.

Table 3. Cutting conditions and tool geometry for the validation test.

Test No. VC (m/min) f (mm/rev) rβ(mm) γo (deg) αo(deg)

3 950 0.16 0.02 17.5 7

The predicted and experimental cutting forces and thrust forces are compared in
Figure 14 for both modes. As presented in this figure, there is good agreement between
the numerical predictions and experimental results. The variation of the simulated and
measured cutting and thrust forces with time are also shown in Figures 15 and 16 in dry
and flood-coolant modes, respectively. As observed, the steady-state condition is reached
in both simulations and experiments.
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In addition, as displayed in Figure 17, the simulated and measured crater wear were
well matched for both dry and flood-coolant environments. The simulated and measured
crater wear are also displayed graphically in Figures 18 and 19 under dry and flood-coolant
modes, respectively.

As illustrated in Figure 20, good agreement is obtained between the FE results and
experimental measurements of residual stresses in dry and flood-coolant modes. The
distribution of simulated residual stress in the machined surface for Test No. 3 in dry and
flood-coolant environments are shown in Figure 21a,b, respectively.

As observed in the figures related to the validation, the developed FE model was
properly validated with the experimental results in dry and flood-coolant modes. This was
obtained by exploring various magnitudes of the shear friction factor and heat transfer
coefficient and choosing proper coefficients using the calibration of the predicted results
with the measured ones, as demonstrated in Table 4. It needs mentioning that in the present
study, a heat transfer convection coefficient of 20 kW/(m2°C) for flood-coolant mode,
which was numerically calibrated by [40], was used for FE predictions.
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Table 4. The calibrated frictional and thermal coefficients in the FE models.

Coefficient Dry Flood-Coolant

Shear Friction Factor 0.98 0.90
Heat Transfer Coefficient(

kW/(m2°C
)
)

10,000 10,000

Heat Convection Coefficient(
kW/(m2°C

)
)

0.02 20

6. Summary and Conclusions

The present research studied the impacts of cutting environments and conditions on
machining forces, tool wear and residual stresses in the orthogonal cutting of AA6061-T6.
Cutting environments consisted of dry and flood-coolant modes and cutting conditions
were cutting speed and feed rate. A 2D finite element (FE) model was developed to
predict tool wear and residual stresses and was validated with experimentally measured
machining forces, tool wear, and residual stresses. The experimental results demonstrated
that machining forces almost were not affected by the cutting environment including dry
and flood-coolant modes. The experimental results showed that machining forces, tool wear
and residual stresses increased with feed rate in both cutting environments. The highest
value of tool wear and the lowest value of resultant machining forces and residual stresses
were obtained at low speed cutting and high-speed cutting, respectively. Flood-coolant
mode improved tool wear, whereas it slightly reduced residual stresses in comparison with
dry mode. As a result, cutting with low feed rate and high speed under flood-coolant mode
was suggested to improve tool wear and residual stress in the orthogonal cutting of AA6061-
T6. The developed 2D finite element model can be used as a predictive tool to simulate tool
wear and residual stresses under different cutting environments and conditions to avoid
conducting expensive, time-consuming experiment tests and measurements. These results
provide the industry with some insights into the cutting conditions and environments to
improve the tool performance and the surface quality.
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