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Abstract: In the surge of recent successes of 2D materials following the rise of graphene, molybdenum
disulfide (2D-MoS2) has been attracting growing attention from both fundamental and applications
viewpoints, owing to the combination of its unique nanoscale properties. For instance, the bandgap
of 2D-MoS2, which changes from direct (in the bulk form) to indirect for ultrathin films (few layers),
offers new prospects for various applications in optoelectronics. In this review, we present the
latest scientific advances in the field of synthesis and characterization of 2D-MoS2 films while
highlighting some of their applications in energy harvesting, gas sensing, and plasmonic devices. A
survey of the physical and chemical processing routes of 2D-MoS2 is presented first, followed by a
detailed description and listing of the most relevant characterization techniques used to study the
MoS2 nanomaterial as well as theoretical simulations of its interesting optical properties. Finally,
the challenges related to the synthesis of high quality and fairly controllable MoS2 thin films are
discussed along with their integration into novel functional devices.

Keywords: layered materials; 2D-MoS2; pulsed laser deposition; chemical vapor deposition; photo-
voltaic; gas sensors; plasmonics

1. Introduction

Two-dimensional (2D) materials are generally defined as crystalline substances with
a few atoms thickness [1]. Graphene was the first 2D crystal to be ever isolated in 2004
and has since been extensively investigated by many groups around the world [2–6].
In fact, graphene became known as the material of superlatives showing a mechanical
strength hundreds of times larger than steel [7] while maintaining a high mechanical
flexibility [8] and superior electrical and thermal conductivities [9]. Following the discovery
of grapheme [10], a very large spectrum of 2D materials possessing a wide range of highly
attractive properties have emerged [8,10]. For instance, two-dimensional transition metal
dichalcogenide (2D-TMDs) semiconducting (SC) materials have exhibited unique optical
and electrical properties [11,12], resulting from the quantum confinement effect attributed
to their shapes and sizes with respect to the Bohr radius [13–17], in addition to their surface
effects, which is due to the transition from an indirect bandgap in the “bulk form” to a direct
bandgap for the “mono- to few-layer” ultrathin film form [18]. The layered configuration
of the 2D-TMDs materials is at the origin of their strong interaction with light [19] and
the relatively high mobility of their charge carriers [20], which in turn prompted their
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use in many optoelectronic applications, such as ultra-thin field-effect transistors [21],
photo-detectors [22], light emitting diode [23], and solar-cells [24]. Generally, 2D-TMDs
form a family of graphite-like layered thin semiconducting structures with the chemical
formula of MX2, where M refers to a transition metal atom (Mo, W, etc.) and X is a
chalcogen atom (Se, S, etc.). The layered nature of this class of 2D materials induces a strong
anisotropy in their electrical, chemical, mechanical, and thermal properties. In particular,
molybdenum disulfide (MoS2) is the most studied layered 2D-TMD [25–30]. From a
crystalline point of view, layered MoS2 exists in three polymorphic crystalline structures:
1T (tetragonal) [31], 2H (hexagonal) [32], and 3R (rhombohedral) [33] (Figure 1). The
crystallographic parameters associated to these crystalline forms are summarized in Table 1.
In the case of mono- to few-layer structures, 2H-MoS2 is the most thermodynamically stable
phase and thus the most commonly encountered. When the MoS2 is in the monolayer form,
it takes an octahedral or a trigonal prismatic coordination phase.
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Figure 1. (a) Top view of 2H/1T MoS2 monolayer. (b) Polymorphic structures of MoS2 (2H is the
hexagonal crystal form, 1T is the tetragonal crystal form, and 3R is the rhombohedral crystal form).

Table 1. Crystal parameters and the nature of polymorphic structures of 2D-MoS2.

Polymorphic Structure Lattice Parameter Point Group Electronic Behavior Ref

1T a = 5.60 Å, c = 5.99 Å D6d Metal [31]
2H a = 3.15 Å, c = 12.30 Å D6h Semiconductor [32]
3R a = 3.17 Å, c = 18.38 Å. C3v Semiconductor [33]

Furthermore, MoS2 layered materials were observed to exhibit various shapes and
morphologies, such as planar [34–36] and vertically aligned nanosheets (NSs) [37], nanoflow-
ers [38], nanotubes [39], nanowires [40], and nanoplatelets [41,42]. This variety of forms
could be controlled by choosing suitable synthesis routes with optimized operating param-
eters [38–41,43–47]. Thus, it is possible to adjust the 2D-MoS2 properties to develop high
performance devices i energy storage [47], electronics [46], photonics [45], sensing [48],
and field emission [49] applications. Recently, up to few-layer MoS2 nanosheets have been
shown to be highly efficient for electronic, optoelectronic, and solar energy harvesting
devices [50–52] because of their tunable direct bandgap [53], strong light-absorption, and
prominent photoluminescence with energies lying in the visible range (1.8–1.9 eV) [54].

Although Mo and S are strongly covalently bonded within an individual layer, ad-
jacent sheets are linked together only by the very weak van der Waals interaction. This
weak bonding provides a facile processing route such as mechanical or chemical exfoliation
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to form few- to monolayer MoS2 films. Unlike graphene, 2D-MoS2 is much less prone to
surface contaminations, which offers a superior chemical stability to 2D-MoS2, making it
more attractive for the above-mentioned applications [55–57].

This review is timely to report on the state of the art of 2D-MoS2 from synthesis,
properties, and applications viewpoints. It also intends to provide insights on the re-
maining challenges to widen the applications range of this fantastic 2D-MoS2 material.
It is organized as follows. In Section 2, various fabrication routes are highlighted with a
special focus on physical vapor deposition (PVD) methods. Key processing parameters
are pinpointed and their influence on the material characteristics, i.e., thickness, crys-
tallinity, morphology, etc., and properties are underlined. In Section 3, relevant techniques
used to investigate the complex structure and morphology of 2D-MoS2 are presented and
discussed. In particular, its unique and outstanding optical properties are put forward
through theoretical simulations based on the complex permittivity of the MoS2 monolayer.
In Section 4, density functional theory (DFT) calculations were carried out on both the
bulk and the monolayer MoS2 using Quantum Expresso™ code and one-dimensional
solar cell capacitance simulator SCAPS-1D™. These calculations were used to determine,
respectively, the optoelectronic properties and photovoltaic performances in solar cell
configuration. Then, interesting applications in three selected fields where 2D-MoS2 has
shown promising outcomes, namely solar energy conversion, gas sensing, and plasmonics,
are presented in Section 5. In the last section, we discuss the reported works and point
towards new directions and applications in which 2D-MoS2 would potentially play a key
technological role.

2. Fabrication Techniques of 2D-MoS2

Tremendous efforts have been devoted to the synthesis of 2D-MoS2 with control-
lable large-area growth and uniform atomic layers using both top-down and bottom-up
approaches. The most commonly used processing routes are detailed in the following
sub-sections along with their advantages and limitations.

2.1. Mechanical and Chemical Exfoliations

Mechanical exfoliation, also known as micromechanical cleavage, is a straightforward
technique that takes advantage of the weak bonding between layers, for the production
of high-quality mono- to few-layer MoS2 [58–60]. It consists of exfoliating thin films of
2D-MoS2 from a bulk MoS2 crystal by using a low surface tension tape to break the weak
interlayer bonds in a similar way as for grapheme [61]. Additional exfoliation of the
extracted films may be needed to obtain few- to monolayer MoS2. Tapes could be attached
to glass slides to achieve planar exfoliation and slow peeling. The obtained monolayers are
usually transferred to an appropriate substrate for further analysis and testing.

The advantage of the mechanical exfoliation process lies in its simplicity that requires
the sole use of a confocal microscope to localize the 2D-MoS2 layers deposited on the
substrate. Conveniently, this technique can produce high crystalline quality mono- to few
layers with a lateral size up to few tens of micrometers, making them highly suitable for
sensing applications. However, this approach suffers from a lack of a consistent control
in producing the 2D monolayers as it is heavily user-dependent and does not permit
the control of the size and/or thickness uniformity of the exfoliated 2D-MoS2 layers [62].
Therefore, the mechanical exfoliation technique is not necessarily suitable for the production
of 2D-MoS2 layers intended for large-area and high-throughput applications.

Chemical exfoliation, on the other hand, appears as a promising approach to pro-
duce large quantities of mono- and few-layer MoS2 nanosheets [60,63–65]. Eda et al. [54]
reported a high yield of monolayer crystal synthesis using chemical exfoliation of bulk
MoS2 via Li intercalation. However, this approach may induce an alteration in the quality
of the produced 2D-MoS2. For instance, the chemically exfoliated MoS2 layers can lose
their semiconducting properties because of the structural changes resulting from the Li
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intercalation process. However, this fabrication route stands by its ease of processing, low
production costs, and suitability for catalysis and/or sensing applications [66].

2.2. Chemical Vapor Deposition

Chemical vapor deposition (CVD) is one of the most popular routes for large-scale,
high-quality, and low-cost 2D-MoS2 material production [49,67–69]. CVD is a bottom-
up fabrication method at the equilibrium state, which enables the processing of layered
2D-MoS2 with controlled morphology and good crystallinity while minimizing structural
defects. The control of the CVD process is ensured by tuning the deposition parameters
such as temperature, pressure, gas flow rate, precursor’s quantities, and substrate types.
The 2D-MoS2 synthesis via the CVD technique can be achieved by means of thermal vapor
sulfurization (TVS), thermal vapor deposition (TVD), and thermal decomposition (TD).
Deokar et al. [43] used TVS for high quality and vertically-aligned luminescent MoS2
nanosheets. A similar process could be used to grow 2D-MoS2 layers [36,70] by employing
two sources, such as molybdenum thin film (below 20 nm) or molybdenum oxide (MoO3)
powder deposited on a SiO2/Si substrate as a first precursor and the sulfur powder or
gaseous sulfur source (H2S, etc.) as the second precursor [49,67–69,71,72]. A typical CVD
sulfurization process (Figure 2a) is usually performed in a tubular furnace reactor, where a
continuous argon flow (typical flow rate 100 sccm) is used as a carrier gas to stream the
evaporated sulfur into the Mo source materials.
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One of the critical aspects to be controlled in such a CVD tubular reactor is the
temperature gradient between the S powder and the substrate. In fact, while the S powder
is at 150–200 ◦C, the substrate’s temperature—with or without Mo thin film—should be
maintained in the 700–900 ◦C range to obtain the 2D-MoS2 phase. This technique offers
sufficient latitude to fairly control the thickness and the homogeneity of the grown 2D-
MoS2. The typical average lateral crystal size obtained by CVD is usually in the 10–30 nm
range. Table 2 shows few examples of CVD-TVS grown MoS2 nanostructures along with
their associated processing conditions.

Table 2. Examples of CVD-TVS grown MoS2 nanostructures.

Substrate Precursors Growth Conditions Morphology Ref

Si MoO3 and S powders
dispersed on substrate

MoO3 and S powders dispersed on substrate at
850 ◦C; S powder at 400 ◦C; Ar-0.725 L/min; time

reaction = 30 min
MoS2 nanosheets [43]

Si [001] S powder and Mo film
deposited on substrate

Mo deposited on Silicon at 850 ◦C, S at 400 ◦C;
Ar-0.725 L/min; time reaction = 30 min MoS2 nanosheets [44]

Si/SiO2
S powder and Mo film
deposited on substrate

Mo deposited on Silicon at 850 ◦C, S at 400 ◦C;
Ar-0.725 L/min; time reaction = 30 min MoS2 nanosheets [49]

Diamond substrate S powder and Mo
deposited on substrate

Mo deposited on Silicon with S powder at 800 ◦C;
N2; ambient pressure; time reaction = 30 min

Horizontally and
vertically MoS2

[73]

Si/SiO2
S powder and MoO3

deposited on substrate

MoO3 film deposited on Silicon at 750–850 ◦C,
600 mg of S powder at 100 ◦C; Ar-0.01 L/min;

time reaction = 10 min

Mono-to few-layers
of MoS2

[74]

Table 2 shows the typical morphologies obtained for MoS2, which seem to depend on
the carrier gas and the type of the substrate used. The reaction time and the spatial position
of the substrate strongly affect the number of resulting layers.

The TVD based MoS2 growth (Figure 2b) involves the concomitant evaporation of
both MoO3 and S powders. This approach consists of a stepwise sulfurization of MoO3
to form the MoS2 phase. It has been shown that, by increasing the S vapor flux, the
sulfurization proceeds through several phase changes before reaching the final product.
First, MoO3 is formed, then MoO2 followed by MoOS2, and finally MoS2. This approach is
very useful to obtain 2D MoS2 layers with a lateral size of few tens of microns. The TVD
growth conditions of MoS2 under various conditions and with different characteristics are
summarized in Table 3.

Table 3. Examples of TVD grown MoS2 along with their relevant processing conditions (* D is the distance between the
MoO3 and S powders inside the tubular furnace).

Substrate/Setup MoO3 (mg) S (mg) D * (cm) Gas, Flow (sccm) T (◦C), Time (min) Morphology Ref

Si face-down 15 80 18 Ar
10 to 500 700, 30 Flake size between

5.1–47.9 µm [75]

SiO2/Si
face-up 10 200 30 Ar, 100 850, 20 Monolayer, bilayer

and trilayer MoS2
[76]

SiO2/Si
face-down 10 100 – N2, 20 650, 20 MoS2 monolayer [77]

SiO2/Si
face-down 10-30 – 25 Ar, 150 800, 10 MoS2 triangular

flakes [78]

SiO2/Si
face-up 50 175 – N2, 300 750, 15

MoS2 monolayer
with lateral size of

50 µm
[79]
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In comparison to the results obtained by CVD-TVS summarized in Table 2, TVD
exhibits high-yield fabrication of 2D-MoS2 monolayers generally exhibiting a triangular
flakes shape. Besides, one can notice the two possible configurations of the substrate of
interest in TVD face-up and face-down compared to CVD-TVS [75–79].

Moreover, the TD-based CVD method presents an alternative approach to produce
highly crystalline MoS2 thin layers with superior electrical properties on insulating sub-
strates [34]. Typically, the TD-CVD is based on the high-temperature annealing of a
thermally decomposed ammonium thiomolybdate layer (NH4)2MoS4 in the presence of S,
as illustrated in Figure 2c. It is worth noting that the excess in sulfur introduces changes
in the shape, size, and morphology of fabricated MoS2. It also leads to a p-type MoS2
semiconductor by increasing the electrons deficiency. In contrast, the presence of sulfur
vacancies in MoS2 was reported to have a direct impact on the catalytic properties of MoS2,
suggesting a carriers’ mobility alteration [80]

Besides, the addition of S during the high-temperature annealing drastically enhances
the crystallinity of MoS2. Relatively, centimeter-sized MoS2 crystals could be formed on
Al2O3 substrates compared to SiO2 ones [35]. The fully covered Al2O3 substrate with
an epitaxial monolayer of MoS2 was achieved at 930 ◦C. The MoS2 crystals nucleate
in a single domain to pursue by domain-to-domain stitching process occurring during
annealing at 1000 ◦C mediated by the oxygen flow. The difference in the self-limited
monolayer growth observed between the SiO2 and Al2O3 substrates is related to the
absorption energy barrier on MoS2 [37]. In particular, the growth of MoS2 on Al2O3 obeys
the surface-limited epitaxial growth mode, which is not the case for the SiO2 due to lattice
mismatch. Moreover, the patterning of the as-grown MoS2 layers has been reported by
means of the polydimethylsiloxane (PDMS) stamps and the reuse of the substrate after
transferring the MoS2 layers [35]. Recently, the epitaxial growth of centimeter wafer-scale
single-crystal MoS2 monolayers on vicinal Au (111) thin films were also obtained at a
processing temperature of 720 ◦C, by melting and re-solidifying commercial Au foils [36].
This allows overcoming the evolution of antiparallel domains and twin boundaries, leading
to the formation of polycrystalline films. It has been proposed that the step edge of Au
(111) induced the unidirectional nucleation, growth, and subsequent merging of MoS2
monolayer domains into single-crystalline films.

2.3. Atomic Layer Deposition

The atomic layer deposition (ALD) technique is known to produce high-quality thin
films even at low temperatures, typically between 150 and 350 ◦C. Since ALD is an atom
stepwise growth process, where the reactants are alternately injected into the growth area,
it allows the purging of excess species and by-products after each reaction. As a result,
high-quality films are obtained by sequential surface reactions. A schematic representation
of the ALD synthesis of 2D-MoS2 can be found elsewhere [81].

Despite the challenges related to its synthesis conditions, ALD makes it possible to
deposit crystalline MoS2 thin films at a relatively low temperature (<350 ◦C) followed
by annealing. For instance, L.K. Tan et al. [82] reported the possibility to use ALD for
the synthesis of highly crystallized MoS2 films on sapphire substrates at 300 ◦C. They
prepared MoS2 films by alternating exposure of the substrate to Mo(V) chlorides (MoCl5)
and hydrogen disulfide (H2S) vapors. Similarly, Mattinen et al. [83] proposed the use of
a Mo based precursor, namely Mo(thd)3 (thd = 2,2,6,6 tetramethylheptane 3,5-dionato),
with H2S as a sulfur source. They have been able to achieve a self-limiting growth and a
linear film thickness control (with a very low growth rate of ≈0.025 Å per cycle). While the
crystallinity of these MoS2 films was found to be particularly good (taking into account that
the deposition was done at a low temperature), their surface was rather rough, consisting
of flake-like grains with a size of ≈10–30 nm. One of the advantages of this process is
the possibility to deposit layered MoS2 films on various substrates. Table 4 summarizes
the main processing conditions used by different groups along with the achieved MoS2
film thicknesses.
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The ALD appears as a potentially interesting technique for the production of high-
quality MoS2 ultrathin films at relatively low temperatures and with the ability to achieve
excellent step coverage onto different substrates. However, the very low throughput of the
ALD might hinder its scalability and competitiveness in comparison with other physical
and/or chemical deposition methods.

Table 4. Summary of the ALD deposition conditions and achieved MoS2 film thicknesses.

Substrate Precursors P (Torr) T (◦C) Cycles Thickness Ref

SiO2/Si Mo hexacarbonyl and
dimethyldisulfide 1.4–3.3 100 100 ≈11 nm [84]

SiO2/n-Si MoCl5 and H2S 0.75 350–450 100 ≈9 nm [85]
Al2O3 Mo(NMe2)4 and H2S – 60 100 ≈12 nm [81]

Al2O3 2-inch wafer MoCl5 and H2S 0.001 300 50 ≈9 nm [82]

SiO2/Si
Mo(thd)3 (thd = 2,2,6,6

tetramethylheptane 3,5-dionato)
and H2S

3.75 300 100 ≈25 nm [83]

Al2O3
c-plane

MoCl5 and
hexamethyldisilathiane 3.75 350 250 ≈22 nm [86]

Carbon nanotubes,
Si-wafers and glass

bis(tbutylimino)bis(dimethylamino)
Mo (VI) and H2S 300 100–250 100 ≈11 nm [87]

Si, SiO2, Al2O3 MoCl5 and H2S 3.75 430–480 1 1 layer [88]
Si MoCl5 and H2S – 390–480 100 ≈21.5 nm [89]

SiO2 Mo hexacarbonyl and H2S – 175 100 ≈5 nm [90]

2.4. Pulsed Laser Deposition

Pulsed laser deposition (PLD) has emerged as one of the most promising physical va-
por deposition (PVD) techniques for the deposition of MoS2 thin films. The PLD approach
consists of shining a focused high-power laser beam onto the surface of a solid target to
be ablated and deposited as a film on a substrate. PLD is a non-equilibrium process that
leads to the absorption of very-short (15–20 ns) and highly-energetic laser pulses by the
target and to the formation of a directive plasma plume. The laser-ablated species that
form the plasma plume condense onto the substrate, leading to the growth of a thin film.
The PLD is well known for its large process latitude, high-flexibility, and excellent process
controllability. For instance, by controlling the number of laser ablation pulses and/or the
background gas pressure, nanoparticles, and/or films with thicknesses varying from few
nm to few microns can be synthesized. Figure 3 shows a schematic representation of a
PLD system.

Among the advantages and the unique features of the PLD method, we can cite: (i) its
ability to achieve a congruent transfer to the films when a multi-element target is used [91];
(ii) its highest instantaneous deposition rate along with the highly-energetic aspect of the
ablated species (~10 times higher than in sputtering) enables the growth of metastable
phases and/or crystalline phases even at room temperature; and (iii) its process latitude,
which makes it easy to control almost independently each of the deposition parameters
(laser intensity, number of laser ablation pulses, background gas pressure, and substrate
temperature), and hence the properties of the deposited materials [92–94]. While the
early studies on the PLD of MoS2 date back to the 1990s [95–100], it is only recently that
important advancements have been made in PLD synthesis of 2D-MoS2 films onto various
substrates opening thereby the way to their use for different optoelectronic applications.
In 2014, PLD was successfully used to grow one to several layers of MoS2 onto different
metal, semiconducting, and sapphire substrates [101,102]. Siegel et al. [103] were the first
to report, in 2015, the growth of MoS2 films (from 1 to a few 10s of monolayers thick) on
centimeter-sized areas. Other attempts were made to deposit ultrathin (≤3 nm) films of
nearly-stoichiometric amorphous MoS2 onto irregular surfaces such as silicon and tungsten
tips and to study their field electron emission (FEE) properties [95]. The authors stated
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that the addition of the MoS2 coating is beneficial to the FEE process since lower electric
fields were required to extract an electron current density of 10 µA/cm2 (namely, 2.8 V/µm
for MoS2-coated Si and ~5.5 V/µm for MoS2-coated W tips). More recently, PLD has been
used to fabricate high-quality MoS2 films (monolayer to few layers) and integrated them
into functional ultraviolet (UV) photodetectors [104]. The developed photodetectors were
found to exhibit a very low dark current (~10 × 10−10 A), low operating voltage (2 V),
and good response time (32 ms). Their performance surpassed that previously reported
for 2D-MoS2 synthesized by other routes [105–109]. Indeed, under UV irradiation, their
detectivity, photoresponse (Ion/Ioff ratio), and responsivity were found to be as high as
1.81 × 1014 Jones, 1.37 × 105, and 3 × 104 A/W, respectively. Table 5 summarizes most of
the papers reported so far on the PLD of MoS2 films. More specifically, it compares the
main PLD growth conditions of 2D-MoS2 films along with the obtained crystallographic
phase and some of the reported optoelectronic properties.
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Table 5. Summary of the PLD conditions of MoS2 films along with their thickness and some of their properties.

Substrate Target P(Pa) T(◦C) Laser Energy Thickness Properties Ref

Stainless steel MoS2 2.66 × 10−6 RT/200/300/450 5 mJ ≈400 nm
Granular structure

stoichiometric,
crystalline MoS2

[110]

Stainless steel MoS2 10−6 RT/300 100 mJ ≈70 nm Stoichiometric single
crystal MoS2

[111]

c-Al2O3 (0001) and
Si/SiO2

2H-MoS2 9.33 × 10−4 600 500 mJ/cm2 ≈1.4 nm
Stoichiometric

2H phase
Flake size ≈ 10 µm

[112]

GaN/c-Al2O3
(0001) 2H-MoS2 8 × 10−4 700 50 mJ Few layers Mixed phase

Roughness ≈0.11 nm [102]

Titanium foil p-MoS2 1.33 × 10−2 RT – 0.65 nm 1T phase MoS2 [113]
SiO2 on Si [100] MoS2 1.33 × 10−2 800 200 mJ/cm2 ≈20–60 nm 2H phase MoS2 [104]

Gold-coated
carbon cloth

Amorphous
MoS2

1.33 × 10−2 RT 220 mJ/cm2 ≈200 nm 2H phase MoS2 [97]

Quartz MoS2 9 × 10−5 300 8500 mJ/cm2 30 layers Mixed phase [114]

Al2O3 (0001) MoS2+S
Powder 1.33 × 10−2 700 50 mJ 1–15 Layers of

MoS2

p-MoS2
2H phase MoS2
Roughness of

0.27 nm

[101]

Si MoS2 4 × 10−4 RT 5/10/100/400
mJ/cm2 ≈100–200 nm Various compositions

of MoSx (x ≤ 2.2) [115]
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Table 5. Cont.

Substrate Target P(Pa) T(◦C) Laser Energy Thickness Properties Ref

SiO2 MoS2 3 × 10−5 700 200 mJ 1–5 layers 2H phase MoS2 [116]

W (100)-tip MoS2+poly(vinl) 5 × 10−3 700 2000 mJ/cm2 ≈20–60 nm nearly stoichiometric
2H phase MoS2

[95]

n-Si and p-Si MoS2+poly(vinl) 5 × 10−3 700 500 mJ/cm2 ≈20–60 nm nearly stoichiometric
2H phase MoS2

[95]

Al, Ag, Ni, Cu MoS2 2.6 × 10−5 500 50 mJ ≈5 nm Epitaxial growth of
2H phase MoS2

[98]

Sapphire
Quartz

SiO2
HfO2

MoS2 +S
powder 1.33 × 10−2 700 30 mJ 1 monolayer—

2.8 nm

large-area growth of
stoichiometric

layered 2H phase
MoS2

[117]

SiO2/Si MoS2 10−5 700 200 mJ few-layer 2H phase MoS2 [118]

SiO2/Si MoS2 powder 5 × 10−4 600 2200 mJ/cm2 13 nm Epitaxial growth of
2H phase MoS2

[119]

Si MoS2 10−4 RT 100 mJ 129–1900 nm Stoichiometric films [120]

c-plane sapphire MoS2 10−3 800 2000–3000
mJ/cm2 1–5 layers Epitaxial growth of

2H phase MoS2
[121]

Quartz glass Polycrystalline
MoS2 powder 5 × 10−4 300 8500 mJ/cm2 9–10

monolayers
nearly stoichiometric

2H phase MoS2
[122]

Quartz MoS2 8.9 × 10−5 600 mJ ≈5.8 nm 2H phase MoS2 [123]

SiO2/Si MoS2@Ag 1.33 × 10−7 500 1000–2000
mJ/cm2 ≈1.3–12.8 nm 2H phase MoS2 [124]

fluorophlogopite
mica MoS2 10−5 700 4000 mJ/cm2 ≈3.3 nm 2H phase MoS2 [125]

Al2O3 (0001) MoS2 10−3 650 100 mJ ≈400 nm 2H phase MoS2 [126]

2.5. Other Processing Routes

In addition to the main fabrication methods presented above, other PVD techniques
have been used to deposit 2D-MoS2 films. Among these methods, magnetron sputtering
has been used to deposit both MoS2 and WS2 films onto polydimethylsiloxane (PDMS)
polymer substrates [37,127–130] with controllable defect densities. The PDMS substrate was
chosen to fabricate flexible devices based on 2D-semiconducting materials. Interestingly,
very smooth MoS2 surfaces, with a roughness of less than 2 nm, were achieved by casting
the polymer on a polished silicon wafer. It has also been shown that it is possible to induce
subsequent crystallization of MoS2 by exposing it to a pulsed 532 nm laser [127].

Finally, the use of any of the above-discussed techniques to fabricate 2D-MoS2 films is
mostly dictated by the availability of the equipment, expertise, and requirements of targeted
application. In a general context, the physical-chemical and optoelectronic properties of the
final MoS2 films will be determined to select the appropriate synthesis route. Nevertheless,
the level of complexity, throughput, and fabrication costs have to be considered to choose
the appropriate synthesis technique particularly when a technology has to be adopted.
Table 6 provides a general comparison of the preparation techniques of MoS2 described in
this review by listing their main advantages and limitations.

Table 6. Comparison of the advantages and limitations of different preparation techniques of MoS2.

Techniques Advantages Limitations

Mechanical exfoliation

- High-quality and good crystallinity.
- Mono- to few-layer MoS2
- Simple process

- Long processing time (8–84 h)
- Tedious and no controllability
- Difficult integration with

micro/optoelectronic processing

Chemical exfoliation
- Large-scale growth
- Synthesis of MoS2 monolayer

- Loss of semiconducting properties of
MoS2 during Li intercalation.
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Table 6. Cont.

Techniques Advantages Limitations

Chemical vapor deposition

- High-quality and crystallinity
- Centimeter-scale area growth
- Good control of morphologies

- Caution due to the use of toxic
precursors

- High synthesis temperatures
requirement

- No lateral uniformity
- Mixed phases of 1T, 2H, etc.

Atomic layer deposition

- Low-temperature deposition
- Uniformity of MoS2 films
- High quality of uniformity
- Excellent step coverage

- Very low throughput
- Long processing time
- High cost

Pulsed laser deposition

- High-quality and faithful transfer of
film stoichiometry

- Nanometer-level control of the film
thickness

- Uniformity onto a large surface (up to
3” or 4” diameter wafers)

- Quasi-independent control of the
growth parameters.

- Room-temperature deposition of
crystallized MoS2

- Compatibility with electronic and
optoelectronic device processing

- Relatively costly
- Presence of ablated particulates on the

surface

Sputtering

- High quality and uniformity onto large
surface

- Compatibility with electronic and opto-
electronic device processing.

- Fair thickness control

- Relatively costly
- Preferential sputtering
- Less control on the stoichiometry

3. Characterizations of MoS2 Thin Films

To assess the crystalline quality, microstructure, and optoelectronic properties of
the synthesized 2D-MoS2, a variety of characterization techniques have been employed
and reported in the literature. These include optical microscopy (OM), scanning elec-
tron microscopy (SEM), high-resolution transmission and Scanning transmission electron
microscopy (HRTEM and HRSTEM), atomic force microscopy (AFM), energy-dispersive
X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and
photoluminescence (PL). These methods are often used to investigate the overall 2D-MoS2
surface topography and to qualify the nature of the synthesized material and the shapes of
its building blocks (i.e., triangle, nanosheets, and nanoplates) (Figure 4). The observations
made by imaging methods are also essential to envision a possible growth mechanism of
the micro/nanostructures with respect to the used processing parameters. For instance,
Figure 4d shows a schematic representation of the nucleation process of some morphologies
of 2D-MoS2.

Subsequently, HRTEM investigations could be carried out to precisely characterize
the MoS2 crystalline structure and examine locally its lattice parameters and the presence
of defects. In particular, the HRTEM image depicted in Figure 4e is of great importance, as
it was recorded in cross-region containing the two possible crystal configurations of MoS2.
As it can be seen in Figure 4e–g, the identified phase mixture of 1T@2H-MoS2 could coexist
simultaneously in the same fabricated MoS2 thin film [131].
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in of red circled region of the 2H-MoS2 structure, with the unit cell of the 2H phase. (Figure 4e–g adapted from Ref. [131]
Copyright 2019, Springer Nature.)

AFM and its variant methods constitute key characterization tools for the investigation
of 2D crystals, mainly due to the atomically thin nature of this layered class of materials.
Both vertical and lateral resolutions are fundamentally required to properly investigate the
intrinsic properties of 2D materials. AFM is among the few techniques that allow the char-
acterization of 2D-MoS2 in ambient and controlled environments at the nanometer scale.
In addition to measuring the local thickness and surface topography, AFM-based electrical
methods provide access to additional interesting properties such as the local variations
in surface potential of 2D-MoS2. For instance, the Kelvin probe force microscopy (KPFM)
method allows the characterization of the sample’s surface work function variations. The
work function is an extreme surface property, which depends on the energy differences
between the Fermi and vacuum levels at the surface. This renders the use of KPFM for the
characterization of 2D-MoS2 fundamentally important to investigate band alignments in
nanostructures and to study the dependencies of local electronic properties on the number
of 2D-MoS2 layers. It also provides key insights into the environmental effects on the state
of the sample surface both electronically and morphologically. The KPFM technique was
used (Figure 5a) to determine the surface potential variations in mono- and multilayer
MoS2, under different humidity conditions.

X-ray photoelectron spectroscopy (XPS) is another relevant surface characterization
technique that is widely used to achieve the elemental surface composition of MoS2 films as
well as their chemical bonding states. Figure 5b shows typical high-resolution XPS spectra
of the Mo3d and S2p core levels. The Mo3d region exhibits two characteristic emission peaks
at 232.5 (Mo 3d3/2) and 229.4 (Mo 3d5/2) eV. These binding energy values are consistent
with electrons of Mo4++ corresponding to MoS2. Likewise, the S 2p3/2 and S 2p1/2 doublet
appearing at binding energies of 162.3 and 163.5 eV is typical for S2- in MoS2 structure.
Nan et al. [132] used XPS to show the PL enhancement of monolayer MoS2 through defect
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engineering and oxygen bonding. The chemical adsorption of oxygen created a heavy
p-type doping and the conversion of the Trion into Excitons. Moreover, it caused the
suppression of the non-radiative recombination of the excitons at the defect sites. Their
results were verified by PL measurements at low temperature, as shown in Figure 5c,d.
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and (e,f) Raman spectra for various MoS2 films with respect to the number of MoS2 layers (reproduced from Ref. [135]
Copyright 2010, American Chemical Society).

Unlike bulk MoS2, the ultrathin 2D-MoS2 (i.e., one to few layers) exhibits a strong
PL intensity which increases with reducing the number of layers [136], which has been
attributed to quantum confinement effects [53,137]. The PL response can be tuned via
several mechanisms including doping [134], plasmonic effect, and defects engineering [132].
For instance, Mouri et al. [134] studied the influence of the thickness on the PL response
of MoS2 by using mono-, bi-, and trilayer MoS2 and the PL modulation using doping.
They demonstrated that p-type doping with high electron affinity seems to enhance the PL
intensity, while the n-type doping tends to reduce it, as illustrated in Figure 5c,d.

Moreover, Raman spectroscopy presents a very sensitive, fast, and non-destructive
technique to access valuable information on the chemical structure, phase and polymorphs,
crystallinity, and chemical bonding states of 2D-MoS2 materials. It allows the monitoring
of the two characteristic peaks of MoS2, namely the in-plane and out-of-plane vibration
modes E1

2g and A1
g appearing for 514 nm excitation energy at the respective positions

of 384.5 and 404.6 cm−1 for 2D-MoS2 monolayer [135] (Figure 5e). More interestingly,
the difference between the peak positions of E1

2g, A1
g (∆ω) can be used as a robust and

effective diagnostic to determine the number of MoS2 layers (up to four layers) or to
simply estimate the MoS2 film thickness (Figure 5f). Usually, ∆ω is less than 20 cm−1 in
the presence of a single layer of MoS2, but it increases with increasing MoS2 thickness
to reach 25 cm−1 for the bulk MoS2 [135]. In fact, a thorough study on the dependence
of the characteristic Raman peak positions, width, and intensity of MoS2 films on their
thickness have been investigated [103,135,138]. Furthermore, H. Li et al. [138] reported that
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the frequency of the characteristic peaks is strongly dependent on the excitation energy due
to the resonance effect. They showed a red shift of the E1

2g mode of about 2.2 cm−1 and
blue shift of the A1

g mode of about 4.1 cm−1. Thus, to effectively determine the exact MoS2
number of layers using Raman spectroscopy, one has to consider the excitation energy
and the thickness limit at which the Raman vibrations frequency is reaching a plateau,
indicating that it is less sensitive to MoS2 thickness variation above four layers.

4. Band Structures and Electronic Properties

We employed density functional theory (DFT) to determine the optoelectronic proper-
ties in particular the bandgap energy of both bulk and monolayer MoS2. Perdew–Burke–
Ernzerhof (PBE) approach was applied to describe the electronic states of MoS2 using band
structure and the density of states (DOS). DFT calculations were implemented in Quantum
Espresso™ code [139,140]. The considered 2H-MoS2 has a hexagonal crystal form with the
space group P63/mmc (No. 194). The equivalent positions for this structure employed in
the calculations are Mo (1/3, 2/3, and 2/8) and S (1/3, 2/3, and 0.621). The valence electron
configuration selected for Mo and S atoms are 4p5 5s1 and 3s2 3p4, respectively. The cutoff
wave function and the cutoff charge densities are 70 and 700 Ryd, respectively [140]. The
cell parameters and atomic positions were fully relaxed by the process of the total energy
minimization. The values of the relaxed lattice constants for bulk MoS2 are a = 3.15 Å and
c = 12.3 Å, respectively. The optimized structure was used to perform calculations for band
structures and the total density of states for both MoS2 bulk and monolayer. For bulk MoS2
(top left panel of Figure 6a), 9 × 9 ×2 k-points were used to obtain the band structure along
the path Γ-K-M-Γ in the Brillouin zone. For MoS2 monolayer (top right panel of Figure 6a),
9 × 9 × 1 k-points were used. A 15 Å vacuum along the z-axis above the monolayer was
added to isolate the MoS2 and prevent any interaction between the adjacent layers [141].
The top view of the MoS2 monolayer is shown in the bottom panel of Figure 6a, where
sulfur atoms are represented in yellow and molybdenum atoms are shown in purple.
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To obtain the electronic properties, the MoS2 bulk was considered as a set of two hexag-
onal planes linked together by weak Van Der Waals bonds. The MoS2 monolayer was
considered as a single hexagonal plane with covalent bonds between atoms S-Mo-S [142].
The left panel of Figure 6b shows the total DOS calculation results of the bulk MoS2 while
the right panel of Figure 6b shows the calculation of its band structure. The energy range is
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between −8 and 4 eV versus the directions of the highest symmetries in the first Brillouin
zone Γ, M, K, and Γ. As observed from the band structure calculations, the MoS2 bulk has
an indirect bandgap of 0.9 eV. The minimum of the conduction band is located between
K and G and the maximum of valence band at point G. This indirect bandgap obtained
for the MoS2 bulk was attributed to the presence of interlayer interactions in the bulk
structure [143]. In contrast, Figure 6c shows that the monolayer MoS2 has a direct bandgap
of 1.89 eV at the K point. The DOS results are compatible with the results of the band
structure. Similar conclusions have been stated in other investigations [141,142].

5. MoS2 Applications

Because of their attractive optoelectronic properties, possibly tunable by for exam-
ple controlling the number of monolayers, MoS2 thin films were tested and validated
for a variety of applications including electronics, photonics, solar energy, and energy
storage. Here, we give a few examples of some specific successful and promising applica-
tions of MoS2 films for solar energy conversion [144,145], gas sensing [44,48,146,147], and
plasmonics [148–152].

5.1. MoS2 for Solar Energy Harvesting

As demonstrated by DFT calculations, 2D-MoS2 exhibits interesting optoelectronic
properties attributed to its direct bandgap ranging from 1.2 to 1.9 eV and an absorption
coefficient greater than 105 cm−1 throughout the solar spectrum. These key properties
are very promising for the use of MoS2 in photovoltaic (PV) applications. Indeed, it has
been shown that, when a monolayer of n-type MoS2 is deposited onto a p-type silicon
substrate, the resulting p-n junction based PV device is able to yield a power conversion
efficiency (PCE) as high as 5.23%, as recorded elsewhere [153]. Such a PV performance
is most likely a consequence of the excellent ability of MoS2 to efficiently separate the
generated photo-charges at the n-MoS2/p-Si interface of the heterojunction.

To highlight the electrical performance of thin films MoS2-based solar cells in a homo-
junction form, we used the one-dimensional solar cell capacitance simulator SCAPS-1D™
software 3.3.08 interface [154], developed by M. Burgelman – Department of Electronics and
Information Systems at the University of Ghent, Belgium [155,156], to calculate the different
PV parameters, i.e., open circuit voltage VOC, short-circuit current density JSC, fill factor FF,
and PCE (η). In this sense, a solar cell made of Ag/p-Si/MoS2/Al structure, as the one
represented by a schematic in Figure 7, was implemented in the SCAPS-3308™ environment.
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The simulations were made under AM1.5 illumination conditions at an operating
temperature of 300 K. The physical parameters related to the electronic properties of the
layers used in the simulation are shown in Table 7. For the considered junction, the thermal
speed of the electrons and the holes were fixed at 107 cm/s, the type of defect is neutral,
and the capture cross section is 10−14 cm2.

Table 7. Physical parameters of n-MoS2 monolayer and p-Si substrate used in the SCAPS-1D™ simu-
lations.

Parameters p-Si [SCAPS] n-MoS2

Thickness (nm) 200 0.32
Bandgap (eV) 1.12 1.9 [153]

Electron affinity (eV) 4.5 4.2 [153]
Dielectric permittivity (relative) 11.9 10.5 [157]

CB effective density of states (1/cm3) 2.8 × 1019 2.2 × 1018 [158]
VB effective density of states (1/cm3) 1.04 × 1019 1.8 × 1019 [158]

Electron thermal velocity (cm/s) 1 × 107 1 × 107 [159]
Hole thermal velocity (cm/s) 1 × 107 1 × 107 [159]
Electron mobility (cm2/Vs) 1500 150 [20]

Hole mobility (cm2/Vs) 4500 86 [159]
Shallow uniform donor density (1/cm3) 0 1 × 1017 [159]

Shallow uniform acceptor density NA (1/cm3) 1 × 1016 0

Beyond, the input parameters used in our SCAPS simulations, we provide hereinafter
a survey of commonly used physical parameters of MoS2 reported in the literature to
simulate the performance of MoS2 in PV applications. As can be seen in Table 8, several
combinations are possible which may yield different results.

Table 8. A survey of the physical parameters of MoS2 used for the simulation of photovoltaic applications.

PV Parameters Reported Values and References

Bandgap 1.29 eV [158,160,161] 1.2–1.8 eV [159] 1.23 eV [162] 1.8 eV [163]
Electron affinity 4.2 eV [158,160–163] 4–4.7 eV [159] 4.22 eV [163] –

Relative dielectric permittivity 3 [164] 4 [160–162] 7 [159] 13.6 [158]
Effective density of states in

conduction band 1016 cm−3 [163] 7.5 × 1017 cm−3

[160,162] 2.2 × 1018 cm−3 [158,161] 1019, 2.5 × 1020

cm−3 [159,164]
Effective density of states in

valance band 1017 cm−3 [163] 1.8 × 1018 cm
[160,162] ~1019 cm−3 [158,161,164] 2.5 × 1020 cm−3

[159]
Electron thermal velocity 105 cm/s [162] 2.12 × 107 cm/s – –

Hole thermal velocity 107 cm/s [162] 1.18 × 107 cm/s [161] – –
Electron mobility 44 cm2/Vs [159] 50 cm2/Vs [161] 100 cm2/Vs [158,160,162] –

Hole mobility 30 cm2/Vs [161] 86 cm2/Vs [159] 150 cm2/Vs [158,160,162]
Shallow uniform donor density 1016 [161] 1017 [164] 1018 [162] –

Shallow uniform
acceptor density 10 cm−3 [161] 1017 cm−3

(MoS2 type P) [158]
1021 cm−3

(MoS2 type P) [160]
–

The outcome of our simulations shows that the p-Si/n-MoS2 structure in Figure 7 can
yield a PCE value as high as 19.82% when considering 2D-MoS2 with the highest bandgap
of 1.9 eV. Figure 8 shows the simulated J-V curve of the p-Si/n-MoS2 cell along with its
associated PV parameters. The rather high Voc value of 0.64 V reflects the strong built-in
electrical field at the interface between the n-MoS2 layer and p-Si substrate.
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The high PCE obtained is comparable to the one obtained for well-proven solar
cell materials. This is an outstanding yield for an only 0.33 nm thick material used in
conjunction with p-Si in the solar cell set up as compared to 250 µm thickness used for
conventional Si technology. Moreover, sulfur and molybdenum are abundant and cheaper
raw materials as compared to the technologies achieving similar performances such as
III-V materials.

Nevertheless, although the simulated PCE performance underlines the great potential
of 2D-MoS2 films for PV devices, other challenging issues still need to be addressed or mit-
igated to develop such devices. For instance, the controlled deposition of MoS2 monolayer,
the achievement of a reliable metal contact on MoS2 monolayer free of leakage current or a
shortcut with the underlying Si substrate, and the scalability of 2D-MoS2 ultrathin films to
the well-established large-size Si wafer technology are among the challenging issues to be
addressed in future works.

5.2. MoS2 for Gas Sensing Applications

MoS2 nanosheets (NS) have been reported to exhibit enhanced gas sensing perfor-
mances for a variety of gases, including toxic and hazardous gases such as ammonia
(NH3) and nitrogen dioxide (NO2) [43,48,146,165–167]. Thus, MoS2 NS act as a simple
chemiresistor that changes its electrical resistance when in contact with reactive gases. The
sensing response or sensitivity (S) towards a target gas, at a given operating temperature,
is determined from the measured values of resistances of the MoS2-NS sensing element in
the presence of atmospheric air resistance (Ra) and target gas (Rg). Usually, the target gas
molecules adsorb onto the MoS2 NS exposed edges and changes its conductivity through
the donor/acceptor exchanges process. The sensitivity (S) is defined as follows:

S =
Ra − Rg

Rg

To design an effective 2D-MoS2 gas sensor, care must be taken to the optimization of
its operating temperature, response/recovery times, and selectivity. 2D-MoS2-based gas
sensors were found to offer certain advantages, such as high-temperature stability, high
resistance to a corrosive environment, and high sensitivity [26,146,165,166]. In addition, 2D-
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MoS2 thin film-based sensors were reported to detect NH3 triethylamine (TEA) molecules
at the sub-ppm level, at an operating temperature as low as 30 ◦C [147].

MoS2 thin films obtained by mechanical exfoliation were used for highly sensitive
field-effect transistor (FET) sensors [147]. By varying the number of MoS2 layers, the MoS2-
based FET sensor exhibited high nitrogen monoxide (NO) sensitivity with a detection
limit of 0.8 ppm. Moreover, DFT calculations indicated that NO and NO2 seemed to
strongly bind to MoS2 nanosheets in contrast to other molecules such as carbon monoxide
(CO), carbon dioxide (CO2), NH3, NO, NO2, and CH4. In addition, the exfoliated MoS2
monolayer showed high response to triethylamine (TEA) at concentrations ranging from
1 to 100 ppm at room temperature (Figure 9a). Due to the strong response and excellent
signal-to-noise ratio, a detection limit of TEA as low as 10 ppb was achieved.
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and 100 ppm) (reproduced and adapted from Ref. [42], Copyright 2017, Wiley-VCH).

Furthermore, exfoliated few-layer MoS2 nanosheets deposited on a substrate with
interdigitated electrodes demonstrated good NO2 detection performances at room tem-
perature [168]. The reported device shows a quick and complete recovery time of 2 s at a
rate greater than 97%. Similarly (Figure 9b), DFT calculations indicated that the fairly fast
recovery of MoS2 arises from the weak van der Waals interactions between NO2 and the
MoS2 surface.

It is worth mentioning that, regardless of their form or morphology, MoS2 thin films
remain as robust gas sensors. Indeed, atomic layered MoS2 fabricated by CVD showed
excellent sensitivity and high selectivity once exposed to NH3 and NO2 [169]. The resistance
of the MoS2 films increases in the case of NO2 adsorption, while it decreases for the NH3
adsorption. The recovery rate of NO2 is higher at 100 ◦C than at room temperature, while
the NH3 sensing signal is negligible at 100 ◦C. To further exploit the large affinity of NO2
with MoS2 thin films, MoS2 hexagonal-shaped nanoplates (HNPs), with exposed edges
allowing significant charge transfer, were grown on the top 20 nm of carbon nanotubes
(CNTs). This configuration is advantageous to increase both the surface area and the
number of sites for gas adsorption. The hybridization of MoS2 by deposition on CNTs
showed an enhanced room-temperature gas-sensing performance [42], attaining a detection
limit of a few ppb of NO2 concentration.

5.3. MoS2 for Plasmonic Applications

Because of their optical bandgap spread, MoS2 thin films offer interesting oppor-
tunities to be coupled with noble metal nanoparticles (NPs) in order to exacerbate the
plasmonic properties. Indeed, the coupling effects between the excitons from MoS2 with the
plasmons generated within the metal NPs open various prospects for tunable light emitters
and absorbers over a wide spectrum. Various MoS2-related plasmonic structures have
been developed for different optoelectronic applications, including photodetection [152],
photoluminescence modulation [150], photocatalysis [170,171], and photovoltaics [172].
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To better understand the origin of the enhancement in light emission/absorption
properties of MoS2/metal-NPs hybrid structures, it is necessary to comprehend and esti-
mate the variation of 2D-MoS2 complex permittivity. A mathematical approach based on
hybrid Lorentz–Drude–Gaussian (HLDG) model was proposed by Mukherjee et al. [173]
to describe the complex permittivity of MoS2 monolayer based on its absorption spectrum
(Figure 10a).
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The HLDG model can be presented as follows:

εc = εLD
c + εG

c ,

where the superscripts LD and G correspond to Lorentz–Drude and Gaussian permittivity
terms, respectively, as described elsewhere [173].

Chen et al. [176] used the HLDG model to design and simulate a perfect absorber
based on the local surface plasmon resonance (LSPR) and the coupling properties between
Ag patterns and a MoS2 monolayer. Their results show that MoS2 could increase the optical
absorption dramatically. In another work, Jiang et al. [174] integrated the generalized
interference theory in the HLDG model to investigate the optical properties of a broadband
absorber utilizing a MoS2 monolayer. A more rigorous approach, consisting in the use of a
coupled-wave analysis algorithm with the HLDG model, has been proposed to study the
optical absorption of a composite photonic structure made of MoS2 Au grating [175]. The
authors showed that the optical absorption of Au grating can be strongly modified by alter-
ing the number of MoS2 layers (Figure 10b), changing the layout of the MoS2 layer (e.g., to a
MoS2 nanoribbon array), or inserting a hafnium dioxide spacer. Furthermore, they showed
an enhancement of the localized electromagnetic field due to surface plasmon polaritons
triggered by Au grating in the presence of few layers of MoS2. The observed enhancement
of the MoS2 optical absorption was mainly attributed to the exciton transition. Additionally,
the HLDG model was used by Xiaoyong et al. [149] to investigate the tunability of wave
propagation in MoS2 supported hybrid surface plasmons waveguides based on dielectric
fiber-gap metal substrate structures. By using the finite element method, these authors
examined the influence of the structural parameters, the dielectric fiber shape and carrier
concentration of the MoS2 layer on the hybrid modes. Their results allow identifying the
tunable parameters of the hybrid modes of waveguide structures that could lead to the
design of novel surface plasmon devices in the future.
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On the other hand, the association of MoS2 with plasmonic NPs was also exploited
by Yang et al. [151]. The authors reported on the fabrication of a hybrid nanostructure
where a MoS2 monolayer is transferred onto the surface of 10-nm-wide Au nanogap arrays.
Interestingly, by adjusting the length of the Au nanogaps, the authors achieved a photolu-
minescence enhancement as high as ~20 folds. In a more recent work, Mawlong et al. [150]
also reported a much higher enhancement factor ~463 folds compared to pristine MoS2
monolayer at ambient of the PL intensity in the case of TiO2/Au/MoS2 ternary core–shell
hetero-nanostructures. Such a strong PL enhancement was attributed to the heavy p-doping
of the MoS2 lattice along with LSPR initiated exciton–plasmon coupling at the MoS2/Au
interface [148]. These results suggest that the hybridization of MoS2 with appropriate metal
nanostructures enhances the photoresponse. Indeed, Rahmati et al. [152] also reported
an enhancement in the photocurrent generated by vertically aligned MoS2 nanosheets
decorated with Au NPs.

6. Summary and Outlook

Based on the ever-increasing number of published works on 2D-TMDs materials,
there is no doubt that MoS2 will continue to be one of the materials of the choice for the
development of innovative and potentially scalable optoelectronic devices.

In term of fabrication, the CVD technique remains a comfortable and affordable route
for continuous developments of a variety of shapes and morphologies of 2D-MoS2. By
gaining more control of the deposition process itself, it is possible to further tune the optical
and electrical properties of MoS2 nanostructures while increasing the size of the sample
and the lateral uniformity. Of particular concern is the need to improve the reproducibility
of defect-free structures. On the other hand, PLD appears as a highly promising alternative
for the production of high-quality MoS2 thin films with a fairly high-level of homogeneity.
It also allows tuning the MoS2 strain level during the elaboration, which may lead to
exotic physical properties. PLD also offers an additional possibility to optimize, almost
quasi-independently, different deposition parameters of MoS2 films, and hence tune at
will their properties of interest. Finally, PLD also has the advantage of growing crystalline
2D-TMDS at room temperature, which opens the way to deposit MoS2 films onto flexible
and thermo-sensitive substrates, thereby leading to a variety of new applications.

Regarding the applications, apart from those described in this review, 2D-MoS2 ex-
hibits very appealing performances in infrared domains especially in combination with
metamaterials such as passive radiative cooling. There are some emerging works [177–180]
related to this aspect such as developing hybrid MoS2 thin films with new structures,
including metamaterials, metasurfaces, photonic crystals, plasmonics, etc. Similarly, the
development of 2D material-based antennas remains unsatisfactory as most of the known
achievements on MoS2 in this domain are developed theoretically. Especially, the recent
works [181] on terahertz (THz) plasmonics have shown the potential of MoS2 for their
application in antenna research. Precisely, the use of MoS2 as a conductive medium in THz
antenna appears as a potential direction of recent developments.
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Abbreviations

1T Tetragonal
2D Two-dimension
2H Hexagonal
3R Rhombohedral
∆ω Raman shift between the peak positions of E1

2g and A1
g

ALD Atomic layer deposition
A1

g MoS2 out-of-plane Raman vibration mode
BL Buffer layer
CNTs Carbon nanotubes
CVD Chemical vapor deposition
DFT Density-functional theory
E1

2g MoS2 in-plane Raman vibration mode
ETL Electron transport layer
EQE External quantum efficiency
FEE Field electron emission
FET Field-effect transistor
Gr Graphene
HIT Heterojunction with intrinsic thin layer
HLDG Hybrid Lorentz-Drude-Gaussian model
HNPs Hexagonal-shaped nanoplates
HRTEM High-Resolution Transmission Electron Microscopy
J-V current density versus voltage
Jsc Short circuit current density
KPFM Kelvin probe force microscopy
LSPR Localized surface plasmon
NPs Nanoparticles
NSs Nanosheets
PCE Power conversion efficiency
PDMS Polydimethylsiloxane polymer
PL Photoluminescence
PLD Pulsed laser deposition
PPB Particles per billions
PPM Particles per millions
PSCs Perovskite solar cells
Ra Resistance of the sensing element in the presence of atmospheric air
Rg Resistance of the sensing element in the presence of the target gas
RH Relative humidity
SCs Solar cells
SEM Scanning electron microscopy
Smax The maximum value of the sensing response
SP Surface potential
TCE Transparent conducting electrode
TEM Transmission electron microscopy
TD Thermal decomposition
TMDs Transition metal dichalcogenides
TRPL Time-resolved photoluminescence
TVD Thermal vapor deposition
TVS Thermal vapor sulfurization
UV Ultraviolet
Voc Open circuit voltage
XPS X-ray photoelectron spectroscopy
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