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Abstract: In the last decade, unceasing interest in atom transfer radical polymerization (ATRP) has been
noted, especially in aqueous dispersion systems. Emulsion or miniemulsion is a preferred environment
for industrial polymerization due to easier heat dissipation and lower production costs associated with
the use of water as a dispersant. The main purpose of this review is to summarize ATRP methods used
in emulsion media with different variants of initiating systems. A comparison of a dual over single
catalytic approache by interfacial and ion pair catalysis is presented. In addition, future development
directions for these methods are suggested for better use in biomedical and electronics industries.
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1. Introduction

Nowadays, atom transfer radical polymerization (ATRP) is one of the most certain and versatile
route for preparing well-defined polymers with precise topology and architecture [1–5]. Initially,
copper(I) or other transition-metals (e.g., ruthenium [6], iron [7]) were employed in the catalyst system
as mediators of reversible activation/deactivation between the dormant species and propagating
radicals, assuring control over the polymerization process [8–11]. One of the main disadvantages of
these methods was the necessity for high catalyst concentrations loading, which was improved by
the addition of an additional redox cycle, thus decreasing the catalyst concentration to a “low ppm”
level [12–15]. The development of “low ppm” ATRP techniques [16] comprise an activator regeneration
by electron transfer (ARGET) ATRP [17–20], initiator for continuous activator regeneration (ICAR)
ATRP [21–24], supplemental activators and reducing agents (SARA) ATRP [25–29], and external stimuli
induced approaches—mechanically induced ATRP (mechano-ATRP) [30,31], photoinitiated ATRP
(photo-ATRP) [32–35], electrochemically mediated ATRP (eATRP) [36–42], ultrasonication-induced
ATRP (sono-ATRP) [5,43] and metal-free ATRP [44–46] (Scheme 1).

ATRP techniques in dispersed media are especially beneficial for obtaining multifunctional
polymers with narrow molecular weight distribution (MWD, Mw/Mn, Đ) and a predetermined
molecular weight (MW), as segregation and compartmentalization decrease the rate of termination
processes [47–49]. Polymerizations could be carried out in various media, including homogeneous
systems (bulk or solution) or biphasic heterogeneous systems (suspension, emulsion, miniemulsion) [50].
The biphasic heterogeneous systems contain a mixture of two immiscible liquids [51]. The industrial
polymerizations are mainly carried out in a normal oil-in-water (O/W) system or an inverse water-in-oil
(W/O) system [52,53]. Various polymer structures, including block [27,54], star [55–57] and brush [58–60],
were synthesized in water-dispersed media (microemulsion [61–63], miniemulsion [64–66],
and emulsion [67–70]). Emulsion and miniemulsion methods belong to a heterogeneous environment
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with water as a main dispersing medium for polymerization of insoluble or low-soluble monomers
to receive dispersed nanoparticles [71]. Water, as a continuous phase, enables excellent heat
transfer, ensures lower viscosity during polymerization, and makes these techniques eco-friendly [71].
Furthermore, droplets in emulsion act as tiny reactors that limit the amount of reactive monomer
necessary to form the particle. The use of water ensures the synthesis of hydrophobic polymers at
a low cost [38,72,73].
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Miniemulsion and emulsion polymerizations generally produce polymer latexes in a size range of
50–500 nm [34]. Considering miniemulsion nanoparticles, surfactant and ultrasonic homogenization
are used to break down the monomer droplets to reach a metastable heterogeneous state and reduce
Ostwald ripening (transfer of monomer from small to large droplets aims to reduce total surface energy
of the system) [74]. Although the miniemulsion has many similarities to emulsion polymerization,
their distinct features concern particle nucleation and mass transportation. Miniemulsion micelles
are not present in micron sizes [75], because after sonication the system contains only droplets of
submicron monomer with relative stability [74]. Before sonication, oil-soluble initiators are mixed with
monomers so that the submicron droplets encapsulate all necessary reactants (without dilution effect)
followed by initiation and polymerization without any mass transfer through a continuous media.
This feature provides unique advantages of miniemulsion, such as constant (or insignificantly changed)
viscosity during synthesis and easier removal of the resulting product. However, generating stable
miniemulsion droplets requires high energy input during the sonication process, limiting its broad
application in many scale-up productions in the industry [74]. The miniemulsion polymerization is
a versatile technique for the formation of a broad range of structured materials as linear or branched
polymers with predetermined molecular weight and low dispersity [34,38,43].
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2. Electrochemically Mediated Atom Transfer Radical Polymerization (eATRP)

An electrochemically mediated approach was successfully applied to mediate ATRP in dispersed
media (miniemulsion) of n-butyl acrylate (nBA) [38,76]. In eATRP, reduction of X−CuII/L to CuI/L
requires a cathodic current flowing from the metal working electrode (WE) and occurs at the electrode
surface [37,77,78]. The rate and control over the polymerization are adjusted by the electrochemical
parameters of the system, such as current intensity (Iapp) or applied potential (Eapp) [41,79,80].
The first concept involved the use of a dual catalytic system composed of two distinct copper
catalysts, with a hydrophobic and hydrophilic characteristics, soluble in an organic and aqueous phase,
respectively [1,50,76,81]. This system (CuII/Laq + CuII/Lorg) provided well-defined poly(n-butyl acrylate)
by the eATRP approach. Electropolymerization under heterogeneous conditions is difficult because in
(mini)emulsion the electrode and reagents are separated. The electrode is in contact with the continuous
aqueous phase, whereas polymerization components (monomer, initiator and radicals) are dispersed
in the organic phase [76]. Therefore, to initiate the polymerization an electrochemical stimulus
must penetrate the aqueous phase and subsequently proceeds to the dispersed phase. Furthermore,
miniemulsion eATRP comprises a challenge compared to other organic reactions, because radicals
must be continuously activated/deactivated after the electrochemical stimulus reaches the organic
phase (Scheme 2).
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then chain end activation by CuI/Lorg; pathway (B)—direct activation of the chain end. Reprinted with
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In this approach, CuII/Laq is reduced at the electrode–water interface. Then, the electrochemical
stimulus is passed from the electrode through water to the monomer droplets mainly by CuI/Laq

migration. The catalyst partition and interfacial dynamics constitute new significant parameters to
regulate the process in miniemulsion eATRP [76].

As opposed to the initial concept, a single hydrophilic complex can also catalyze miniemulsion
eATRP, if the cationic copper complex has strong interaction with an anionic surfactant.
The catalyst/surfactant system produces ion pairs at the droplet surface to transport the catalyst into
monomer droplets, thus enabling a controlled polymerization, enhanced by interfacial catalysis [82,83].
Different combinations of surfactant and hydrophilic Cu complexes were studied in the miniemulsion
eATRP of n-butyl acrylate [38]. Table 1 shows the results of eATRP of nBA in miniemulsion with
various surfactants and catalysts.

The application of an anionic surfactant revealed a specific interaction between X−CuIIL
and sodium dodecyl sulfate (SDS), and favored polymerization in dispersed monomer droplets, without
the necessity of using a dual catalyst (hydrophilic and hydrophobic) combination [65]. The strongly
hydrophilic catalyst complex (copper(II) bromide/tris(2-pyridylmethyl)amide CuIIBr2/TPMA)
effectively controlled a miniemulsion eATRP inside stabilized hydrophobic nBA droplets. In such
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a system, the ideal Cu catalyst should have (i) high activity, (ii) the ability to form ionic pairs with
the anionic surfactant, and (iii) greater affinity for creating ion pairs in the oxidation state (CuII).
Scheme 3 presents the proposed mechanism of eATRP in miniemulsion with the X-CuIITPMA/SDS
catalytic system [76]. According to the interfacial catalysis, 95% of catalyst is placed on the interface
of the hydrophobic monomer and water, only ≈1% is inside micelles in the form of ion-pairs, while
the remaining 4% is in the aqueous phase. The transfer of atoms was carried out via interfacial catalysis
(catalyst bound to the surface of droplets) as well as by ion-pair catalysis (ion pairs distributed in
monomer droplets) [38].
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Table 1. eATRP of nBA in miniemulsion with different surfactants and catalysts a.

Entry Monomer
(% vol) Initiator

(CuIIBr2)/Laq/Lorg Surfactant
(% wt to

monomer)

Eapp

Catalyst Concentration
Đ Ref.

Laq Lorg
Ppm

[CuL]/[M]
Ppm

(by wt)

1 nBA
(20) EBiB BPY - SDS

(4.6) Epc 1000 2,503 9.30 [76]

2 nBA
(20) EBiB BPMEA - SDS

(4.6) Epc 1000 2,503 4.62 [76]

3 nBA
(20) EBiB BPY BPMODA SDS

(4.6) Epc 1000 2,503 1.78 [76]

4 nBA
(20) EBiB BPMEA BPMODA SDS

(4.6) Epc 1000 2,503 1.50 [76]

5 nBA
(20) EBiB TPMA BPMODA SDS

(4.6) Epc 1000 2,503 2.53 [76]

6 nBA
(20) EBiB BPY BPMODA* SDS

(4.6) Epc 1000 2,503 1.26 [76]

7 nBA
(20) EBiB BPMEA BPMODA* SDS

(4.6) Epc 1000 2,503 1.19 [76]

8 nBA
(20) EBiB TPMA BPMODA* SDS

(4.6) Epc 1000 2,503 1.32 [76]

9 nBA
(20) EBiB TPMA - Brij-98

(6.2) Epc-0.03V - 2,181 4.77 [38]

10 nBA
(20) EBiB TPMA - SDS

(6.2) Epc-0.03V 321–720 2,181 1.09–1.26 [38]

11 nBA
(20) EBiB TPMA *2 - SDS

(6.2) Epc-0.03V - 2,181 1.32 [38]

12 nBA
(20) EBiB Me6TREN - SDS

(6.2) Epc-0.03V - 2,181 1.94 [38]

a n-hexadecane (HD) was used as cosurfactant and NaBr as supporting electrolyte.

The presence of non-ionic polyoxyethylene(20) oleyl ether (Brij-98) gave an uncontrolled
polymerization with broad molecular weight distribution of final products, indicating an insufficient
amount of deactivator in the hydrophobic droplets. Actually, eATRP with a single catalyst system
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(X−CuIITPMA/SDS) was much faster and was slightly better defined in terms of MW and MWD than
eATRP with dual catalysis [38,76].

3. Activators Regenerated by Electron Transfer Atom Transfer Radical Polymerization
(ARGET ATRP)

Initially, it was thought that the key to success in ARGET ATRP in aqueous dispersed systems
is strongly dependent on the ligand, which must be both hydrophobic and highly active [84].
Hydrophobicity prevents the catalyst from diffusing to the aqueous phase [84], while high activity, or
KATRP value, affords well-controlled polymerizations at low catalyst concentration [85]. The breakthrough
in the field of ARGET ATRP in aqueous dispersed media was the design and synthesis of
bis[2-(4-methoxy-3,5-dimethyl)pyridylmethyl]octadecylamine (BPMODA*) as a highly active ligand.
The modification of previously used bis(2-pyridylmethyl)octadecylamine (BPMODA) [85] was achieved
by the addition of electron-donating groups, which resulted in a ca. 100-fold increase in the KATRP value.
Heterogeneous polymerizations carried out in the range of catalyst concentrations (2,000–250 ppm) with
BPMODA* consistently resulted in increased control over synthesis, particularly during the initial stages
of the process (low monomer conversion) [86]. The same research group investigated an application
of a tetradentate hydrophobic ligand which was both hydrophobic (N′,N”-dioctadecyl-N′,N”-bis[2
(4-methoxy-3,5-dimethyl)pyridylmethyl] ethane-1,2-diamine (DOD-BPED*) also of a highly active nature.
The CuIIBr2/DOD-BPED* catalytic system proved to be extremely useful in miniemulsion ARGET ATRP,
maintaining control over the polymerization of n-butyl methacrylate (nBMA) at concentrations of catalyst
as low as 50 ppm [87].

Inspired by the development of the novel catalytic system for eATRP and based on a strongly
hydrophilic complex, X−CuIITPMA+ [76], the concept of ion-pair and interfacial catalysis in
miniemulsion ARGET ATRP of different acrylate monomers, with ascorbic acid (AsAc) as the reducing
agent, was exploited. Despite the insolubility of the catalytic complex in nBA, it enters hydrophobic
droplets in combination with an anionic surfactant [16]. The interaction between the catalytic system
and SDS formed inert ion pairs (X−CuIITPMA/SDS) which resided on the surface or inside monomer
droplets. In this approach, the final product contained a negligible residue of copper, excluding
the need for an additional purification. The hydrophilic complex (X−CuIITPMA+) migrated into
the water phase while the miniemulsion was breaking up by dilution. The interfacial and ion-pair
mechanism of polymerization, identical to miniemulsion eATRP, provided well-defined star and brush
polymers, monomodal block copolymers (PnBMA-b-PnBA and PnBMA-b-PtBMA), and PnBMA with
low dispersity (using only 50 ppm catalyst) [38] (Scheme 4).Materials 2020, 13, x FOR PEER REVIEW 6 of 16 
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Scheme 4. Mechanism of ion-pair and interfacial catalysis in miniemulsion ARGET ATRP with
ascorbic acid as a reducing agent. Reprinted with permission from reference [19], 2017, American
Chemical Society.

Several anionic surfactants were evaluated to form ion-pair complexes: SDS, sodium
dodecylbenzenesulfonate (SDBS), and sodium dodecanoate (SDA) [19]. This concept could be
considered a paradigm shift for miniemulsion ATRP, which previously required very hydrophobic
catalysts that were predominately confined to the organic phase [76,82,86,88].
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Currently, the polymer industry is mainly focused on the development of green and sustainable
technologies in various polymerization processes. To meet such requirements, our group described
the concept of the naturally-derived triple-functional riboflavin-based macromolecule for an efficient
ARGET ATRP of acrylate monomer in miniemulsion media in an air tolerant environment [66].
This results in the synthesis of polymer brushes with riboflavin core and PBA side chains characterized
by narrow molecular weight distribution. All of the mentioned syntheses by ARGET ATRP approach
are summarized in Table 2. The catalysis in miniemulsion ARGET ATRP is described by interfacial
and ion-pair intermolecular and intramolecular mode interactions. The riboflavin-based molecule
(Rib-Br2) with two modified hydroxyl groups in a ribitol tail is located on the surface of micelles
(on the phase interface), mimicking a Pickering mechanism and enabling effective polymerization
even with only 186 ppm (by weight) of copper catalyst. The functionalized riboflavin supramolecular
structure plays three significant functions in preparation of polymers by miniemulsion ARGET ATRP
methodology, acting as an initiator due to modified brominated tail of ribitol; a reducing agent due
to the preservation of redox functionality of isoalloxazine ring; and an oxygen scavenger, enabling
the reaction in air conditions (Scheme 5) [66].
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Table 2. ARGET ATRP in miniemulsion with different surfactants and catalysts a.

Entry Monomer
(% vol) Initiator

(CuIIBr2)/Laq/Lorg Surfactant
(% wt to

Monomer)

Reducing
Agent

Temp.

Catalyst
Concentration

Đ Ref.

Laq Lorg
Ppm

[CuL]/[M]
Ppm

(by wt)

1 nBA
(20) EBiB - BPMODA* Brij-98

(2.3) Sn(EH)2 80 ◦C 250–2,000 670 b 1.15–1.51 [86]

2 nBMA
(20) EBPA - DOD-BPED* Brij-98

(2.3) AsAc 80 ◦C 50–250 - 1.23–1.39 [87]

3 nBA
(20) EBiB TPMA - SDS

(1.15–9.2) AsAc 65 ◦C 144–719 216 c - [19]

4 nBMA
(20) EBPA TPMA - SDS

(4.6) AsAc 65 ◦C 50–800 216 c 1.2–1.42 [19]

5 nBMA
(20) EBPA BPMODA* - SDS

(4.6) AsAc 65 ◦C 800 - 1.18 [19]

6 nBA
(20) EBiB/EBPA TPMA - SDBS

(4.6) AsAc 65 ◦C 704 216 c - [19]

7 nBA
(20) EBiB/EBPA TPMA - SDS+SDA

(4.6 + 0.5) AsAc 65 ◦C 704 216 c - [19]

8 nBA
(17) Rib-Br2 TPMA - SDS

(6.2) Rib-Br2 65 ◦C 700–1,000 186–267 1.39–2.05 [66]

9 d nBA
(17) Rib-Br2 TPMA - SDS

(6.2) Rib-Br2 65 ◦C 1,000 266 1.19 [66]

a n-hexadecane (HD) was used as cosurfactant and NaBr as supporting electrolyte b for reaction with 2000 ppm of
CuIIBr2, c according to Table 1 at reference [19]; d reaction in air conditions.

4. Photoinduced Atom Transfer Radical Polymerization (photo-ATRP)

The implementation of photoinduced processes in aqueous dispersed can provide more ecological
approaches to the preparation of polymers. This type of photopolymerization was successfully performed
in miniemulsion [34] and emulsion [35] environments. The external regulation of polymerization
eliminates additional chemical compounds to activate the reaction and provides an efficient temporal
control [89–91]. Considering its high energy efficiency and possibilities for spatiotemporal control,
the photoinduced ATRP is a suitable candidate for use in industrial production [92].

In miniemulsion and emulsionpolymerization, particle sizes are in the range of 50–500 nm [34],
which is comparable to the light wavelength. The turbidity and opacity hampers the light penetration;
therefore, the effects of light scattering and absorption in the polymerization should be considered
(Scheme 6) [34]. The latest advances in photo-ATRP in miniemulsion and emulsion media achieved
with UV or LED light are summarized in Table 3.

For a wavelength of 370 nm as a driving force in ATRP in miniemulsion media, a full range of
different key parameters in the reaction including a vial size, CuIIBr2/TPMA ratio, amount of SDS,
solids content, and concentration of the Cu catalyst were examined [34].

The ability of light to penetrate through the reaction medium is a factor that limits the speed of
photochemical processes. Therefore, the most effective reaction takes place on the surface of the reaction
vial where the light absorption is the highest. Another factor directly affecting the light absorption
is the particle size. This parameter could be adjusted by varying the amount of SDS surfactant.
Coagulation after polymerization was observed when the amount of SDS was 1.2 wt % to nBMA,
whereas at higher SDS amounts, no coagulation occurred. A series of reactions were successfully
performed using 4.6 wt % SDS to nBMA (Figure 1). Good control over the process was noticed
even with a low catalyst loading (100 ppm). An excess of TPMA as an electron donor was used to
photochemically (re)generate the Cu activator. Additionally, an auxiliary electrolyte as an ion carrier
was applied [34].

The external regulation of the polymerization reaction was presented by switching the UV
light on and off resulting in temporal control over the process. The versatility of this system was
demonstrated by successful polymerization of nBMA and nBA from small-molecular initiators as well
as a macroinitiator [34].
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Table 3. Photo-ATRP in miniemulsion with different catalysts and monomers a.

Entry Monomer
(% vol) Initiator CuIIBr2/Laq

Surfactant
(% wt to

monomer)

λ (nm),
Intensity
(mW/cm2)

Catalyst
Concentration

Đ Ref.
Ppm

[CuL]/[M]
Ppm

(by wt)

1 nBMA
(5-50) EBPA TPMA SDS

(1.2–18.4)
370
(5) 800–100 220 1.24–1.76 [34]

2 nBA
(20) EBiB TPMA SDS

(4.6)
370
(5) 800 220 1.3 [34]

3 MMA
(20) PEO2K-BPA TPMA SDS

(18.4)
394
(2.6) 400 - 1.75 [35]

4 EMA
(20) PEO2K-BPA TPMA SDS

(18.4)
394
(2.6) 400 - 1.24 [35]

5 nBMA
(20) PEO2K-BPA TPMA SDS

(18.4)
394
(2.6) 400 190 1.09 [35]

6 LMA
(20) PEO2K-BPA TPMA SDS

(18.4)
394
(2.6) 400 - - [35]

7 nBA
(20) PEO2K-BiB TPMA SDS

(18.4)
394
(2.6) 400 - 1.13 [35]

a n-hexadecane (HD) was used as cosurfactant in entries 1 and 2, NaBr as supporting electrolyte except entries 3-7:
NaBr/TEA as supporting electrolyte.

In comparison to the initial work in the field of photo-ATRP, Matyjaszewski et al. went a step
further, using the system in ab initio emulsion with the generation of radicals in the aqueous phase,
followed by nucleation of particles and stabilization by surfactant molecules [35]. The growing particles
are continuously replenished by monomer molecules that diffuse through the aqueous phase from big
monomer droplets. Therefore, after the initial nucleation stage, the polymerization proceeds inside
the hydrophobic polymer particles [35]. The optimized photoinduced ATRP polymerization system in
the emulsion with a low surfactant concentration and no co-surfactant is the preferable environment
for industrial polymerizations.
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5. Ultrasound-Mediated Atom Transfer Radical Polymerization (sono-ATRP)

Particular attention in the context of ATRP in dispersion systems is attracted by the recently
published ultrasonication-mediated atom transfer radical polymerization (sono-ATRP) in a miniemulsion
environment with a reduced concentration of a catalyst complex [43]. The ultrasonic-induced technique
in dispersed media eliminates using an additional reducing agent. This technique was applied for
the first time with the use of a strongly hydrophilic catalyst complex (CuIIBr2/TPMA) in the reaction
setup. This composition was responsible for two crucial mechanisms—interfacial and ion-pair catalysis in
accordance with single-catalyst mechanism (Scheme 7) [38,43].Materials 2020, 13, x FOR PEER REVIEW 10 of 16 
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Sono-ATRP provides polymerization of well-defined polymers with preservation of chain-end
functionality and a narrow molecular weight distribution by using an external stimulus. Moreover,
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temporal control in miniemulsion sono-ATRP is also possible by turning on/off the ultrasonication
without having an adverse influence on the precisely-defined, receiving polymers with low
dispersity and preserved chain-end fidelity. Considering the “green chemistry” aspect, as well
as the results of experiments and the simplicity of scaling reaction setup, this procedure constitutes
a simple and eco-friendly approach to obtain functional polymeric materials [43]. Table 4 shows
the synthesis results obtained by the sono-ATRP approach in minemulsion using different monomers
and reaction initiators.

Table 4. Sono-ATRP in miniemulsion with different catalysts and monomers a.

Entry Monomer
(% vol) Initiator CuIIBr2/Laq

Surfactant
(% wt tom)

Frequency of
Sonication

(kHz)

Catalyst
Concentration

Đ Ref.
Ppm

[CuL]/[M]
Ppm

(by wt)

1 nBA
(20) EBiB TPMA SDS

(6.2) 40 717 189 1.26–1.28 [43]

2 MMA
(20) EBiB TPMA SDS

(6.2) 40 717 244 1.27 [43]

3 MMA
(20) EBPA TPMA SDS

(6.2) 40 717 243 1.6 [43]

4 nBA
(20) PnBA-Br TPMA SDS

(6.2) 40 585 621 1.41 [43]

5 tBA
(20) PnBA-Br TPMA SDS

(6.2) 40 588 623 1.27 [43]

a n-hexadecane (HD) was used as cosurfactant and NaBr as supporting electrolyte, reactions temp. 65 ◦C.

The application of anionic surfactant (SDS) with the presence of catalyst copper(II)
bromide/tris(2-pyridylmethyl) amine provided a single catalyst system. The series of syntheses
of PnBA and poly(methyl methacrylates) (PMMA) homopolymers and copolymers was successfully
conducted, and products with narrow molecular weight distribution were obtained. The polymerization
of PMMA initiated by ethyl α-bromophenylacetate (EBPA) gave polymers with wider distribution
(Đ = 1.6) Although 100% conversion has not been achieved in any reaction, this method is promising
for industrial applications due to its easy scalability and reduced amount of reagents. However, it
requires further optimization to increase conversion and reduce the response time while maintaining
well-defined final products. The ultrasonication-mediated system based on the ion-pair and interfacial
catalysis without the application of additional reducing agent can be considered an interesting
and promising possibility in the field of ATRP [43].

6. Conclusion and Future Prospective

Over the past decade there has been significant progress in ATRP techniques. The lower
catalytic complex quantities in aqueous dispersed media wereaccomplished, especially beneficial in
microelectronic and biomedical applications. These methods in water dispersed media were conducted
using (ultra)low ppm catalyst loading: eATRP (321–1,000 ppm), ARGET ATRP (50–2,000 ppm),
photo-ATRP (100–800 ppm) and sono-ATRP (585–717 ppm). All of the mentioned ATRP techniques
enable the use of a low quantity of catalyst accompanied by a good control over the polymerization
and the preparation of well-defined final products with a narrow molecular weight distribution. In this
context, the proper development path will be the complete elimination of the catalytic complex from
the reaction system. This type of concept was implemented in the metal-free approach according
to the Pickering emulsion [46]; however, it is still a challenge in relation to miniemulsion approach
with the elimination of additional reagents such as photoinitiator. It is worth emphasizing that using
water as a polymerization media is useful only when products can be obtained which do not fall
into the environmental contaminating classification. The (mini)emulsion ATRP with highly toxic
components, such as the copper salts and ligands, has not been yet utilized by industry at all yet;
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therefore, the development of ATRP polymerization towards being metal-free and the replacement of
toxic substances by bio-based multi-tasking compounds is very important. Appropriate development
of polymerization in biphasic systems should focus on limiting the use of surfactants and co-surfactants,
replacing them with multifunctional molecules, acting simultaneously as a monomer or an initiator
of polymerization for either ligand of the catalytic complex. Polymerizations without additional
reagents, such as reducing agent, initiator and catalytic complex, can be possible by using multi-tasking
structures performing several functions at the same time. The excellent example of such a solution is
riboflavin-based macromolecule, which has structural elements excited by energy quantum, allowing
for successful metal-free polymerization [56]. The polymer materials obtained in this way can be used
without hesitation as elements of microelectronics and in the field of biomedical and biotechnological
applications, in particular for the needs of tissue engineering and for the production of medical implants.
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Abbreviations (alphabetical order)

ARGET ATRP activators regenerated by electron transfer atom transfer radical polymerization
AsAc ascorbic acid
ATRP atom transfer radical polymerization
nBA n-butyl acrylate
nBMA n-butyl methacrylate
BPMEA N,N-bis(2-pyridylmethyl)-2-hydroxyethylamine
BPMODA bis(2-pyridylmethyl)octadecylamine
BPMODA* bis[2-(4-methoxy-3,5-dimethyl)pyridylmethyl]octadecylamine
BPY 2,2′-bipyridine
Brij-98 polyoxyethylene(20) oleyl ether
DOD-BPED* N,N-dioctadecyl-N,N-bis[2-(4-methoxy-3,5-dimethyl)pyridylmethyl]ethane-1,2-diamine
eATRP electrochemically mediated atom transfer radical polymerization
EBiB ethyl α-bromoisobutyrate
EBPA ethyl α-bromophenylacetate
EMA ethyl methacrylate
Epc cathodic peak potential
ICAR ATRP initiators for continuous activator regeneration atom transfer radical polymerization
LMA lauryl methacrylate
Me6TREN tris(2-(dimethylamino)ethyl)-amine
mechano-ATRP mechanically induced atom transfer radical polymerization
MMA methyl methacrylate
MWD molecular weight distribution
PnBA poly(n-butyl acrylate)
PnBMA poly(n-butyl methacrylate)
PtBMA poly(t-butyl methacrylate)
PEO2K-BiB poly(ethlene glycol) 2-bromoisobutyrate
PEO2K-BPA poly(ethylene glycol) 2-bromophenylacetate
photo-ATRP photoinduced atom transfer radical polymerization
PMMA poly(methyl methacrylate)
Rib-Br2 brominated riboflavin
SARA ATRP supplemental activator and reducing agent atom transfer radical polymerization
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SDA sodium dodecanoate
SDBS sodium dodecylbenzenesulfonate
SDS sodium dodecyl sulfate
Sn(EH)2 tin(II) 2-ethylhexanoate
sono-ATRP ultrasound-mediated atom transfer radical polymerization
tBA tert-butyl acrylate
TEA triethylamine
TPMA tris(2-pyridylmethyl)amine

TPMA*2 1-(4methoxy-3,5-dimethylpyridin-2-yl)-N-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-
N-(pyridin-2-ylmethyl)methanamine
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