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Abstract: The structure of amorphous alloys still has not been described satisfactorily due to the
lack of direct methods for observing structural defects. The magnetizing process of amorphous
alloys is closely related to its disordered structure. The sensitivity of the magnetization vector to
any heterogeneity allows indirect assessment of the structure of amorphous ferromagnetic alloys.
In strong magnetic fields, the magnetization process involves the rotation of a magnetization vector
around point and line defects. Based on analysis of primary magnetization curves, it is possible to
identify the type of these defects. This paper presents the results of research into the magnetization
process of amorphous alloys that are based on iron, in the areas called the approach to ferromagnetic
saturation and the Holstein—Primakoff para-process. The structure of a range of specially produced
materials was examined using X-ray diffraction. Primary magnetization curves were measured over
the range of 0 to 2 T. The process of magnetizing all of the tested alloys was associated with the
presence of linear defects, satisfying the relationship Dg; , < 1y. It was found that the addition of
yttrium, at the expense of hafnium, impedes the magnetization process. The alloy with an atomic
content of Y = 10% was characterized by the highest saturation magnetization value and the lowest
value of the Dgpf parameter, which may indicate the occurrence of antiferromagnetic ordering in
certain regions of this alloy sample.

Keywords: bulk metallic glasses; H. Kronmidiller theory; Holstein—Primakoff paraprocess

1. Introduction

Ferromagnetics can be classified according to their ease of magnetization, where the classification
criterion is the value of the coercive field. In the case of a coercive field value of less than 1000 A/m, it is
assumed that the associated materials are ‘soft magnetic’; in the range from 1000-10,000 A/m, ‘semi-hard’;
and if greater than 10,000 A/m, ‘hard’ [1]. Magnetically hard properties are exhibited by permanent
magnets. Materials with semi-hard magnetic properties are used, for example, in the construction of
magnetic memory systems. Due to their ease of magnetization (and re-magnetization), alloys with soft
magnetic properties are widely used in electronics and electrical engineering applications; for example,
they can be used in the construction of low-loss transformer cores [2,3].

The amorphous iron-based alloys are commonly known materials with soft magnetic properties.
Among these materials, alloys produced by rapid quenching are most popular. Materials that are
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produced in the form of thin ribbons, using the melt-spinning method [4], present particularly good
properties. Materials of this type are characterized by a high value of saturation magnetization (above
1.5 T) and a low value of coercive field (approximately 1 A/m) [5-9]. These material samples are
extremely easy to magnetize, partly due to their dimensions. Amorphous ribbons have thicknesses of
up to several tens of pm. Unfortunately, these dimensions significantly limit the applications of these
materials. The so-called bulk amorphous alloys comprise a relatively new group of promising materials.
These materials are produced by a rapid-quenching process in copper molds. The most well-known
production methods are the injection- and suction-casting methods [10,11]. In this way, at a cooling
rate of 1071-10% K/s, iron-based alloys with dimensions exceeding 10 mm can be produced [12-14].
However, due to their high proportions of non-magnetic component elements, such as: B, C, Zr, Y, Mo,
Nb, Hf, or Cr, these alloys do not exhibit the best magnetic properties. A compromise that combines
relatively good magnetic properties (saturation magnetization greater than1T, coercive field less than
50 A/m) with favorable alloy geometry (diameter up to 3 mm) exists in the form of alloys with a content
of approximately 65%—75% magnetic elements [15-18].

The process of magnetizing amorphous alloys does not differ significantly from their crystalline
counterparts. Figure 1 shows a diagram of the primary magnetization curve.
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Figure 1. The curve of primary magnetization divided into characteristic areas [19].

In the first area, magnetization is associated with reversible shifts of domain walls. Above 0.4 Hc,
domain wall shifts are irreversible. An increase in the intensity of the external magnetic field causes
the disappearance of magnetic domains with directions that do not correlate with the applied direction
of the magnetic field. In the third area, closing domains are magnetized. In the case of materials
with an amorphous structure, magnetization in this area is associated with the presence of structural
defects—occurring in the form of free volumes and pseudodislocation dipoles [20-22]. As the applied
magnetic field increases, the magnetization vector rotates around point, and then linear, defects. In the
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fourth area, further magnetization of the alloy is associated with the damping of thermally excited
spin-waves; i.e., the so-called Holstein-Primakoff paraprocess [23].

As part of this work, rapidly quenched alloys with the chemical compositions:
FegsNbs Y5, Hfs_«Bog (Where: x =0, 1, 2, 3, 4, 5) were produced, using the injection-casting method.
An analysis of the magnetization process in high magnetic fields was carried out; i.e., within the third
and fourth regions of the primary magnetization curve. The aim of the study was to determine the
effect of Y and Hf content on the magnetization process of bulk Fe-based amorphous alloys.

2. Materials and Methods

Polycrystalline ingots, each weighing 10 grams, were made using an arc furnace. The purities of
the ingredients were as follows: Fe = 99.99% at, Hf = 99.98% at, Nb = 99.98% at, Y = 99.98% at, and
B =99.98% at. Boron was added in the form of a pre-prepared FeB alloy with the chemical composition
Feys.4Bs4 6. The production process was carried out under a protective atmosphere of argon. The charge
was melted by plasma arc using a current of 180-380 A, flowing through a non-melting tungsten
electrode. The ingots were melted on a water-cooled copper plate. Each remelting of the charge
was preceded by the remelting of a titanium getter. The ingots were remelted four times on each
side. The resulting alloys were mechanically cleaned, divided into smaller pieces, and cleaned again
using an ultrasonic cleaner. Rapid-quenched alloys were made using the injection-casting method.
The polycrystalline charge was placed in a quartz crucible inside a copper coil. The charge was melted
using eddy currents at a constant current of 10 A. The production process was carried out in a protective
atmosphere of argon. The liquid alloy was forced into a water-cooled copper mold; 0.5mm-thick plates
were made.

The structure of the produced alloys was examined using X-ray diffraction. Samples, in the form
of powder, were irradiated for 6 seconds per measuring step (0.02°). A Bruker D8 Advance X-ray
diffractometer (Bruker, Billerica, MA, USA), equipped with a CuKa lamp and a semiconductor meter,
was used; the measurement was carried out in the range of 30-100° of the two-theta angle.

The microstructure of each of the alloys was investigated using a POLON Mossbauer spectrometer,
the latter being equipped with a °’Co radioactive source of activity 100 mCi and half-life of 270 days.
Calibration of the spectrometer was performed by recording the spectrum for an «-Fe foil with a
thickness of 20 um. For all the prepared and measured samples of the studied alloys, the surface
density of the 57Fe isotope was less than 0.3 mg/cm?. This allowed the use of the “thin absorbent
approximation. Analysis of the transmission Mossbauer spectra was performed using the NORMOS
software (version 3), developed by R. A. Brand [24]. This software facilitates the decomposition of
the experimental spectra to the constituent spectra and the determination of the distribution of the
hyperfine field induction P(B). In order to determine the distribution of the hyperfine field distribution
on the Fe nuclei, according to the Hesse-Riibatsch method [25], each experimental spectrum was

7

presented as the sum of the elementary sextets:
T(v) = f P(B)Lg(B, v)dB 1)
0

where:
P(B)—distribution of the hyperfine magnetic field induction,
Lg (B, v)—elementary Zeeman sextet,
v—relative speed of source against the absorbent.
From analysis of the distribution of the hyperfine magnetic field induction, the average value
of the hyperfine magnetic field induction By¢ was determined. Due to asymmetry in the Mossbauer
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spectra, during the fitting process, a linear relationship between the isomer shift (IS) and the hyperfine
field induction (By¢) was assumed [24].

1S(Bne) = 1S(BY;) — (Bns — By) 2)

where:
BY¢ = the minimum value of the hyperfine field induction,
o = coefficient.

Due to the powdered form of the investigated samples, the element A2.5 = 2 was blocked due to
the lack of magnetic anisotropy related with the sample texture. Primary magnetization curves were
measured using a LakeShore vibrating sample magnetometer, in the range of external magnetic field
strength extending up to 2 T (Supplementary materials). The structural and magnetic properties tests
were carried out at room temperature.

The primary magnetization curves were subjected to numerical analysis, according to the
H. Kronmidiller theory. According to the modified micromagnetism theory of Brown, (Brown’s
micromagnetic equations) magnetization in high magnetic fields can be expressed approximately by
the formula [20]:

a
HoM(H) = poMs|1 - —22 A B p(poH) 3)

(oH)'2 (uoH)'  (uoH)

where: Mg = spontaneous magnetization, H = magnetic field, 4; (i = %, 1, 2) = angular coefficients
of the linear fit, which correspond to the free volume and linear defects, p) = magnetic permeability
of a vacuum, and b = slope of the linear fit corresponding to the thermally-induced suppression of
spin-waves by a high intensity magnetic field.

The coefficients, a; (described by Equations (4)—(6)), appearing in the expression, reduce the
magnetization and are associated with the presence of structural defects. The term ay,/ (oH)2 in the
Equation (3), related to the point defects, is described as follows:

- 1-r

a1/2 3 (1+r
(woH) 2~ 20

2 1/2
1
) GZ)\?(AV)ZN( ZA”) (

qus )1/2 (4)

poH

The terms a1/poH and ay/(poH)? in Equation (3) are related to the linear defects, which internal stress
field is equivalent to the field generated by the linear dislocation dipoles of the Dgjp width, the effective
Burgers vector b, and the surface density N.

If IyDgip<1, where ly is the inversed exchange distance described by the equation:

HuoMs
Iy = S, 5
H 2A,. ©®)

the dominant role in the Equation (3) plays the term a;/uyH equal to:

mo_ g G?*A2 Nbess , 1 ©)
_[J()H -LHo (1 _ v)2 MApx dip #OH
For lgDgjp > 1 the term ay/(1pH)? is dominant and can be expressed by the equation:
G?A2 Nb 1
= > = 045610 I egf G 2 @)
poH —-v)° M P (uoH)
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where: A,y = exchange constant, G = transverse elastic shear modulus, AV = the change in volume
due to the occurrence of a point defect characterized by a bulk density of N, v = Poisson’s ratio,
As = magnetostriction constant, Dyj, = pseudodislocation dipole width.

The b factor is associated with the damping of thermally excited spin-waves. Through the equation,
this factor is associated with the spin-wave stiffness parameter D,y.

3/2
sp.

where: k = Boltzman’s constant, ug = Bohr magneton, ¢ = gyromagnetic factor, T = temperature.

Based on analysis of the primary magnetization curves, it is possible to assess the type—and
in some cases the number—of structural defects. The exchange constant was determined using the
relationship (9), and the width of the pseudodislocation dipole from the relationship (10). The surface
density of linear defects was calculated using Equation (11).

MSDspf
Apy = % )

Dip = | 57 (10)
Ngipy = = 11)

3. Results

Figure 2 contains X-ray diffraction patterns and Mdssbauer spectra measured for the tested alloys.
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Figure 2. X-ray diffraction images patterns and Mossbauer spectra for the alloys: (a), (g)
FegsNbsY5Hf5Bg; (b), (h) FegsNbsYsHfsByo; (c), (i) FegsNbsY7Hf3Byo; (d), (j) FeesNbsYgHE;Boo;
(e), (k) FegsNbs YoHf; Bog; (f), (1) FegsNb5Y19Boo. [26].
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On the recorded X-ray diffraction patterns, there were only wide maxima within the range of
40—50° of the two-theta angle. The transmission Mossbauer spectra, presented in Figure 2, were
typical for ferromagnetic, amorphous alloys with a relatively low hyperfine field. In effect, low Curie
temperatures are expected [26]. In the case of the first five spectra, a residual paramagnetic phase was
also observed (blue line). For the last of the studied alloys, the Mossbauer spectrum consisted of three
components: two resulting from amorphous matrices, and one from the minor volume of a phase
with order similar to the FeY crystalline phase. Figure 3 shows the distribution of the hyperfine field
induction on the > Fe nuclei, corresponding to the spectrum from Figure 2.
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Figure 3. The hyperfine field distribution on the 5Fe nuclei for the investigated alloys:
(a) FegsNbsYsHf5Bag; (b) FegsNbsYeHfyBog; (c) FegsNbsY7Hf3Bsg; (d) FessNbsYgHFBy0; (e)
FegsNbsYoHf1Byo; (f) FegsNbs Y10Boo.

For five of the studied alloys, in the distribution of the hyperfine field induction there was
a non-zero probability of a zero value of > Fe induction, which suggests the presence of a minor
contribution of a paramagnetic phase (blue bar). A major content of non-magnetic components led
a to significant distribution of the Fe atoms. Locally, the Fe atoms were separated to such a degree,
that in some regions of the alloys, the Fe was present in paramagnetic form. The contribution of
the paramagnetic phase to these samples was about 3%, and reconstitution of the distribution of
hyperfine field induction was observed. In the low-field region, the probability of the presence
of Fe in the vicinity of a central *’Fe atom was higher. Utilizing the distribution of the hyperfine
fields, (2), a monotonic increase in the average value of the hyperfine field and its standard deviation
were observed. With an increase in the Y content, the high-field component started to appear (in
the form of a ‘tail’). The described changes for the first five alloys relate to an increase in the Y
content at the expense of the Hf content. It should be mentioned that these elements had the largest
atomic radii, and their exchange indirectly caused destabilization of the amorphous structure, and
changes in the ferromagnetic interactions. This was confirmed by the spectrum obtained for the alloy
with no Hf content. For the FegsNbsY19Byg alloy, the amorphous matrix can be decomposed into
three components. The amorphous structure was re-phased into two phases, with a high degree
of magnetic inhomogeneity. In the case of the first magnetic phase (shown in red color), at least a
tri-modal distribution can be observed with an average hyperfine field of 9.09 T, whereas for the
second phase (shown in black color) the distribution is bi-modal with an average hyperfine field
value of 25.7 T. Due to the substantial chemical and topological inhomogeneity of the FegsNbsY19Byg
alloy, an additional high-field component—described by two sextets with relatively wide lines—was
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isolated. The distribution of the hyperfine field obtained for these lines may suggest that they may
belong to the FesY crystalline phase [27]. However, their width is too large, and they must be treated
as clustered structures—similar to the ordering of the FesY crystalline phase. This means that the
FesY phase was in the early phase of crystallization of the high-field amorphous matrix. For all the
studied alloys, the average hyperfine field value increased with increasing Y content, in addition
to the dispersion of the distribution. This was related to the rebuilding of the magnetic structure.
The changes in the chemical and topological order in the volume of the alloy—related to atomic
diffusion—indirectly affected the degree in which the structure featured defects. According to the
approach to the ferromagnetic saturation theorem of H. Kronmdiller, analysis of the initial magnetization
curves was performed. Figures 4-9 present results from the analysis of the primary magnetization
curves for the investigated alloys.
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Figure 4. Magnetization curves for the FegsNbsYsHfs5Byg alloy: (a) initial magnetization curve,
magnetization as a function of: (b) (uoH) ™! and (c) (uoH)Y2.
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Figure 5. Magnetization curves for the FegisNbsYgHfyByg alloy: (a) initial magnetization curve,
magnetization as a function of: (b) (uoH)™! and (c) (noH)Y2.
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Figure 6. Magnetization curves for the FegsNbsY;Hf3Byg alloy: (a) initial magnetization curve,
magnetization as a function of: (b) (uoH)™! and (c) (noH)Y2.

0.6 0.45 g
a
0.40
0.3
0.35
0.30
005 1 2 o 20 40
E wH [T] (nH)" [T]
=3 1 H [T]—>»
= 009 036 081 144
0.6
(o3

0.2

03 1.2

0.6 1”2 01/29
(1 H)™ [T
Figure 7. Magnetization curves for the FegsNbsYgHf,Byg alloy: (a) initial magnetization curve,
magnetization as a function of: (b) (uoH) ™! and (c) (noH)Y2.

In the external magnetic field range of 0.03-0.07 T, the magnetization process of the
FegsNbs Y5 Hf5Byg alloy (Figure 4b) was associated with the rotation of the magnetization vector
around linear structure defects. In magnetic fields of greater than 0.07 T, further magnetization was
associated with the damping of thermally excited spin-waves (Figure 4c).

The magnetization process of FegsNbsY¢Hf4Byg alloy (Figure 5) was almost identical to the
previous alloy. In this case, the Holstein—Primakoff paraprocess occurred in magnetic fields of greater
than 0.1 T.



Materials 2020, 13, 1367 9of 14

<« 1 HI[T]
0.6 1 0.05 0.025 0.17
) a 0.45
0.40
0.3
0.35
0.30
0'00 1 2 0 20 40 60
=) uH [T] (1oH)" [T]
= u H [T]—>
=E 0.09 0.36 0.81 1.44

03 06 09 12
(1 H)"™ [T

Figure 8. Magnetization curves for the FegsNbsYoHf;Byy alloy: (a) initial magnetization curve,

magnetization as a function of: (b) (uoH)™ and (c) (noH)Y2.
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Figure 9. Magnetization curves for the FegsNbsYioByg alloy: (a) initial magnetization curve,
magnetization as a function of: (b) (uoH)™! and (c) (noH)Y2.

The analysis of the magnetization process of the: FegsNbsY;Hf3Byo, FegsNbsYsHf>Byg, and
FegsNbsYoHf; By alloys (Figures 6-8) was similar. Linear defects, satisfying the relationship Dy, < 1g,
had a dominant effect on the magnetization process in magnetic fields of less than or equal to
approximately 0.1T. In the case of the FegsNbsY19Byg alloy (Figure 9), based on analysis of the primary
magnetization curves, the presence of linear defects—whose dimensions did not exceed the exchange
distance ly—was also discovered.

Based on analysis of the primary magnetization curves, the following parameters were determined:

e  Slope of the linear-fit curve for linear defects a; [1073];
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e  The transition area to the Holstein—Primakoff paraprocess H,1/Hppp [T];
e  Coefficient of linear fit to the Holstein-Primakoff paraprocess b [-];

e Spin-wave stiffness parameter Dgps [1072 meVnm?],

e Surface density of linear defects Ngjp [10Y7 m~2];

e  Saturation magnetization Mg [T].

Table 1 contains the results of analysis of the magnetization processes pertaining to the tested alloys.

Table 1. Parameters determined on the basis of primary magnetization curve analysis.

alloy ay H,1/Hy.p b Dgyr Nuip Mg H,
Feg5NbsYsHf5Byg 1.1 0.07 0.094 32 1.51 0.42 58
FegsNbsYqHfyByg 2.8 0.09 0.086 34 1.66 0.44 45
Feg5NbsY;Hf3By( 3.2 0.11 0.085 34 1.76 0.47 20
Feg5NbsYgHf, By 2.0 0.1 0.077 37 1.38 0.49 13
FegsNbsYoHf By 2.6 0.1 0.072 38 1.21 0.51 35

FegsNbsY10Byg 41 0.2 0.128 26 2.58 0.60 1170

4. Discussion

All of the tested materials had a disordered structure, as evidenced by the recorded diffractograms;
only broad, fuzzy maxima were present. These reflections arose due to the reflection of X-rays from
chaotically spaced atoms within the sample volume. There were no narrow peaks that would indicate
the presence of crystalline phases. All of the tested alloys were characterized by low values of saturation
magnetization (0.42-0.6 T) in relation to the significant iron content (65% atomic). In the volume of
the investigated alloys, it is possible that there were areas for which antiferromagnetic ordering was
more privileged in energy terms. It is also possible that the tested materials had residual quantities of
paramagnetic phases according with the Mossbauer results. In the case of a small number of these
phases, it was not possible to identify them using X-ray diffraction.

The value of the coercive field Hc [A/m] was determined on the basis of static magnetic
hysteresis loops.

For the sample FegsNbsY10Byo, we observed a definitely higher value of the coercive field than for
the other tested alloys. The introduction of an additional component into the alloy characterized by a
large atomic radius and a large negative heat of mixing in relation to most of the alloy components
caused a slowdown in the movement of atoms during the solidification process, which was in
accordance with the Inoue criteria. This choice of alloy composition significantly increased melt
viscosity and reduced diffusion of alloying elements during solidification. On this basis, it can be
assumed that the incorporation of any component into an alloy that meets the Inoue criteria will have
a similar effect on glass-forming ability as Hf. As is known, amorphous materials based on Fe due to
the lack of long-range interactions between atoms exhibit good soft magnetic properties. For a smaller
number of components, i.e., for the FeNbYB alloy, it follows that the setting time should be longer
than for the five-component FeNbHfYB alloys. This means that privileged system clusters are much
easier to form in four-component systems. In numerous studies [28] of alloys with the addition of
Y (FeCoYB), it has been demonstrated that one of the most frequently formed crystalline phases is
magnetically soft phase aFe, magnetically semi-hard phase FesY, and magnetically hard phase Y,Fe14B.
In the case of the FeNbYB alloy, an axial shape of the hysteresis loop was observed, indicating the
appearance of a magnetic phase in the alloys with hard or semi hard magnetic properties.

The magnetizing process of all the tested alloys in high magnetic fields is associated with the
presence of pseudodislocation dipoles—whose dimensions do not exceed the exchange distance.

According to H. Kronmuller’s theory, at a given range of external magnetic field strength, only one
type of defect affects magnetization, in order: point defects, and linear defects satisfying the relationship
Dgip < 1y and Dgjp > 1. At higher values of external magnetic field intensity, magnetization is
associated with the damping of thermally excited spin waves. The transition between the subsequent
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stages of the magnetization process must be smooth, that is, if linear defects satisfying the Dg;, <1y
relationship affect the magnetization process in the range of 0.2 T, then above this area the Dg;, > 1y
relationship must be satisfied—or the Holstein—Primakoff paraprocess must occur.

Due to the presence of linear defects satisfying the relationship Dg;p, < 1h, itis possible to determine
such parameters as the dimensions of the defects (dipole width Dg;p) and the surface density of Ngip
linear defects.

The results presented in Table 1 confirm that the increasing Y content in the alloy causes the
decrease surface density of linear defects, Ngjp (for alloys with Hf). This, in turn, increases the packing
density of atoms. For a sample without the Hf addition, the width of the pseudodislocation dipole is
the largest, which causes a decrease in the Dyp¢ value.

For each of the examined alloys, the magnetization process in strong magnetic fields (above the
range where the relationships involving the influence of structural defects are valid) proceeded as a
result of Holstein—Primakoff paraprocess, i.e., by damping of the thermally induced spin waves by the
magnetic field.

The existence of phases within the amorphous structure and the creation of clusters of the FesY
crystalline phase affect changes in the interactions between the magnetic atoms. Inhomogeneity of
the structure hinders the movement of the spin-wave and causes a decrease in the value of the Dgp¢
parameter. An increase in the coercivity value for the FegsNbsY19Byg alloy is also connected with
the existence of different phases within the structure. Creation of crystalline phase nuclei prevents
movement of the domain walls and hinders the magnetization process.

Based on the test results, some relationships were found. They are presented in the form of a
diagram in Figure 10.
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Figure 10. Dependence of magnetization process parameters on the chemical composition of the
alloy: (a) M and Dgps in Y content function, (b) transition field to paraprocess in Y content function,
(c) dependence transition field to paraprocess and Ngjp on the factor aj, (d) Bys and ABpg in Y
content function.

The first relationship found is the monotonic increase in saturation magnetization with increasing
Y content in the alloy (an increase of approximately 0.02T per 1 atomic% Y). The exception in this
case is the alloy with no addition of Hf, for which the saturation magnetization increases by 0.09
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T. A similar relationship was found for the value of the transition field to the Holstein-Primakoff
paraprocess. Based on these relationships, it should be stated that the examined process of magnetizing
the examined alloys is identical for all the tested Y contents—from 5% to 9% atomic. For these alloys,
the value of the Dy parameter increases linearly. In the case of the alloy without the addition of Hf,
significant structural reconstruction occurs. This alloy is harder to magnetize, as evidenced by the
higher value of the transition field to the Holstein—Primakoff paraprocess and the much higher value
of the coercive field, compared to other alloys. It is also interesting that this alloy has the highest Mg
and the lowest value of the Dy, parameter. The value of this parameter can be associated with the
environment of the Fe atoms: the number of magnetic neighbors and the distances between them. In
fact, this part of the work is not provided with literature equivalents and one can get the impression
that the information presented is based on assumptions. According to Kaul [29] and Corb [30] in
the work of Kronmidiller, in a relaxed amorphous structure, each magnetic atom has 12 neighbors,
and in non-relaxed, 9-10 neighbors. An increase in the Ds, parameter value may be associated with
an increased number of the nearest magnetic atoms, which is associated with the improvement of
short-range chemical order (SRO). A lower value of the Dg,¢ parameter in this case may mean an
increase in the distance between individual Fe atoms. The arrangement of atoms in this alloy can reduce
the presence of antiferromagnetic ordering, resulting in a higher saturation magnetization. However,
the configuration of magnetic atoms in the FegsNbsY19Byg alloy has a negative effect on creating soft
magnetic properties, causing a significant increase in the coercive field value. The dependence of
the coefficient a; on the value of the transition field to the Holstein-Primakoff paraprocess was also
identified: as the coefficient al increases, the necessary value of the external magnetic field—in which
magnetization depends on the damping of thermally-induced spin-waves—also increases. A similar
relationship was found for the density of linear defects: Ngjp increases with increasing value of the
coefficient ay.

5. Conclusions

In this paper, the structure and process of magnetization of rapidly quenched, iron-based bulk
alloys were tested. All of the tested alloys were characterized by an amorphous structure. Based
on analysis of the primary magnetization curves, it was found that the process of magnetizing these
materials in high magnetic fields was associated with the rotation of the magnetization vector around
pseudodislocation dipoles. These defects did not, in any case, exceed the dimensions of the exchange
distance. Despite the large similarities in magnetic properties, it should be noted that the addition of Y,
at the expense of Hf, had a significant impact on the structure of the alloys tested. As shown in this
work, the chemical composition of the alloy affected the distribution of magnetic atoms within the
volume of the alloy—and the creation of the magnetic properties exhibited by the alloys. Based on
analysis of the results, it was found that:

- An increase in the Y content (from 5% to 9%), at the expense of Hf (from 5% to 1%), caused
an increase in the saturation magnetization value and the value of the Dyp¢ parameter, which
indicated the stabilizing role of Y and a similar configuration of magnetic atoms in the volume of
the alloys;

- A low Mg value, in relation to the Fe content in the alloy, may be associated with the presence of
an anti—ferromagnetic structure;

- On the basis of analysis of the Mgssbauer spectra, it can be stated that the introduction of Y,
at the expense of Hf, affects the chemical and topological ordering connected indirectly with
the magnetic structure. The distributions of the hypermagnetic fields for the five alloys were
combined from the ferro- and paramagnetic phases (97% and 3% respectively). In the alloy with
no Hf content (Y at 10 at. %), there was destabilization of the amorphous matrix and separation
of clearly visible amorphous phases and a single phase with an order similar to the Fe5Y phase;
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- A different degree of disordered structure resulted in an increase in the saturation magnetization
and a difficult magnetization process, which was confirmed by the high value of the coercive
field and the highest value of the transition field to the Holstein-Primakoff paraprocess;

- Factor a1, determining the presence of linear defects that satisfy the relationship Daip<1n,
was related to the density of Ngj, defects and the value of the transition field to the
H,1/Hp.p paraprocess.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/6/1367/s1,
Magnetic measurements were carried out using a VSM vibration magnetometer. The measurement accuracy
is confirmed by the static magnetic hysteresis loop measured without a mounted sample included in the
Supplementary materials.
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