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Abstract: In the practical design of thin-walled composite columns, component dimensions should
be wisely designed to meet the buckling resistance and economic requirements. This paper provides
a novel and useful investigation based on a numerical study of the effects of the section dimensions,
thickness ratio, and slenderness ratio on the critical buckling load of a thin-walled composite strut
under uniaxial compression. The strut was a channel-section-shaped strut and was made of glass
fiber-reinforced polymer (GFRP) composite material by stacking symmetrical quasi-isotropic layups
using the autoclave technique. For the purpose of this study, a numerical finite element model was
developed for the investigation by using ABAQUS software. The linear and post-buckling behavior
analysis was performed to verify the results of the numerical model with the obtained buckling
load from the experiment. Then, the effects of the cross-section dimensions, thickness ratio, and
slenderness ratio on the critical buckling load of the composite strut, which is determined using an
eigenvalue buckling analysis, were investigated. The implementation results revealed an insightful
interaction between cross-section dimensions and thickness ratio and the buckling load. Based on
this result, a cost-effective design was recommended as a useful result of this study. Moreover,
a demarcation point between global and local buckling of the composite strut was also determined.
Especially, a new design curve for the channel-section GFRP strut, which is governed by the proposed
constitutive equations, was introduced to estimate the critical buckling load based on the input
component dimension.

Keywords: thin-walled structure; GFRP laminated composite; channel section column; buckling
behavior; column design curve

1. Introduction

Due to its many advantages, such as low density, high strength, and flexible manufacturing,
fiber-reinforced composite materials (e.g., glass fiber-reinforced polymer (GFRP), carbon fiber-reinforced
polymer (CFRP), etc.) have been widely used over the past few decades. Nowadays, many industrial
fields are applying these materials in areas such as aerospace, aircraft, automotive, and especially
civil engineering [1–4]. In the practical civil engineering field, fiber-reinforced polymer composite
materials are often used as profile-type beams or columns. They are applied in various structures, such
as bridges, buildings, off-shore structures, etc. [5–7]. The profile composite columns represent the
thin-walled structures in which their stability is an important factor and is intensely investigated in
research and practice. Regarding the stability aspect, the buckling of columns is a complicated problem
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that often causes the early failure of structures while the yield strength of materials is not reached.
Because of its importance, the buckling behavior of columns needs in-depth study. Thus, the buckling
of fiber-reinforced composite materials has been widely studied recently [8–12].

To study the structures made of these composite materials for practical use in civil engineering, the
experiments often produced various real buckling behavior. Conducting the experiment is a powerful
approach for researching new related buckling problems or new types of composite materials [13–15].
However, it requires a lot of resources and is often costly [16]. One of the main concerns in the
composite industry is to reduce these experimental costs while still obtaining extensive investigation
results. Thus, numerical simulations using finite element software have been done to investigate
the behavior of these structures [17–19]. In this approach, the numerical results are first compared
to the experiment results, then numerous extended studies are undertaken based on the developed
numerical model.

Due to the complicated structure of composite materials, the modeling task needs to be done
carefully to match the experimental results. Moreover, in practical design, extended studies also need
to be applicable. A number of numerical models have been developed for the buckling analysis of the
GFRP composite materials, especially for the channel-section shape column, such as local buckling
and post-buckling behavior [16,20]; progressive failure analysis collapse of the GFRP column [21,22];
buckling, post-buckling, and failure analysis of pre-damaged GFRP column [17,23]; etc. However,
in that research, only one certain dimension of the GFRP column is selected for the investigation;
some of them considered the change in dimension only through increasing or decreasing the number
of laminate layers. As the authors′ acknowledge, the different component dimensions of the GFRP
composite column, which is a significant factor in the practical design, has not been studied yet. This
factor can contribute to an optimal and applicable design for the practical GFRP column. Moreover,
although the channel-section GFRP strut has been studied so extensively, its design equations have
never been introduced.

Therefore, this paper introduces a significant numerical study on the effect of the component
dimension and slenderness ratio on the critical buckling load and buckling mode of a GFRP composite
column. To efficiently perform the investigation, a reliable numerical model was carefully developed
by verifying the linear and post-buckling results with the experiment using a finite element software,
i.e., ABAQUS® [24]. The effects of the cross-section dimensions, thickness ratio, and slenderness ratio,
which are the significant factors in linear buckling analysis, were investigated. A cost-effective design
of the GFRP strut is recommended. Especially, a novel design curve and design equations for the
channel-section GFRP strut were first proposed to calculate the critical buckling load based on the
input dimension of the strut. The investigation found a complex interactive relationship between the
component dimensions and the critical buckling load, as well as the mode shape. The results provide
beneficial information to designers for making a decision on the stability design of a thin-walled GFRP
composite strut.

2. Finite Element (FE) Model

2.1. Studied Object and Scope

In this section, a composite GFRP strut dimension is presented. A uniaxial compression test was
conducted by Gliszczynski et al. [25]. The strut was made using an autoclave technique [26,27] and
had a channel cross-section shape. It had dimensions of 80 × 40 mm (B ×W) and a length L = 250 mm.
The thickness of the flanges and the web was equal to 2.08 mm, which was composed of eight 0.26 mm
laminated layers. The dimension of the GFRP strut corresponding to the compression test setup is
presented in Figure 1.
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Figure 1. Dimension of the glass fiber-reinforced polymer (GFRP) strut.

In this study, the numerical analysis of the GFRP strut was based on a linear buckling analysis in
which the critical buckling load was determined by solving an eigenvalue buckling analysis. The results
from this analysis were used to investigate the effect of the cross-section dimensions, thickness ratio,
and slenderness ratio on the linear buckling load and buckling mode. The accuracy of the FE model
was further verified by solving a post-buckling problem with an initialized geometric imperfection.
However, this study was limited in terms of investigating the dimension effect of the strut up to the
linear critical stage. Thus, the results of the post-buckling analysis can be developed in further study.

2.2. Discrete Models of Composite Struts

The finite element method was employed for analyzing the buckling behavior of the thin-walled
composite strut using ABAQUS® software. The discretization model of the analyzed column was
performed using multi-layered, four-node shell elements (S4R) with six degrees of freedom at each
node (three translations and three rotations). The S4R shell stands for a four-node conventional
stress/displacement shell element with reduced integration. By using this element, the thin-walled
structure geometry is represented using a flat finite element that is degenerated from 3D finite element
formulations describing the mid-surface of the structure. To improve the computational efficiency, the
plane-stress conditions were applied for the shell element formulation. In the local system (x’, y’, z’)
coordinates, the strain field, which is derived from displacement gradient formulations, is expressed as
follows [28]:

ε = ∇(û) =
[
εx′x′ , εy′y′ , 2εx′y′ , 2εy′z′ , 2εz′x′

]T
, (1)

where û is the displacement vector within the shell element. The corresponding stress is presented
as follows:

σ =
[
σx′x′ , σy′y′ , τx′y′ , τy′z′ , τz′x′

]T
(2)

The elastic stress–strain relationship is given by:

σ = Ceε (3)
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where Ce is the plane-stress elasticity matrix and is expressed as follows:

Ce =
E

1− ν2


1 ν 0 0 0

1 0 0 0
(1− ν)/2 0 0

k(1− ν)/2 0
sym k(1− ν)/2


, (4)

where E and ν denotes Young’s modulus and Poisson′s ratio of the material, respectively; k stands for
the shear correction factor [29].

The S4R shell element has shown its suitability for modeling thin-walled composite struts [20,23],
thus it was used for modeling the channel section strut in this study. The simulation model of the
GFRP composite strut is presented in Figure 2.
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Figure 2. Simulation model of the GFRP strut.

The FE numerical model was discretized using a uniform square density in which a single element
size was 2 mm. Thus, the flange and web of the strut were composed of 20 and 40 elements, respectively.
Furthermore, there were 125 elements along the strut length. This way of discretization ensured a
uniform division of the single strut for constituting a constant-density mesh. The mesh size was
taken based on the convergence analysis of the thin-walled strut, which was successfully conducted
previously [22,30,31]. The convergence analysis provided an effective method to select an element size
that achieves a superior accuracy within a reasonable analysis time. In this way, the selected element
size may be prevented from making an excessively stiff model when high deflections occur. Moreover,
considering the geometry aspect, the 2 mm mesh size allows one to model the boundary conditions
generated by the groves more easily.
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2.3. Model of GFRP Laminate Plate

The GFRP laminate plate in this study consisted of eight layers of unidirectional fiber-reinforced
laminate. The laminate was defined as a quasi-isotropic material with symmetrical layups of a
[0/−45/45/90]s stacking sequence. According to this material, the laminate behaves as an isotropic
surface when subjected to in-plane loading. The symmetrical layups can prevent the plate from
warping under stress or thermal expansion. The description of the quasi-isotropic laminate layup is
presented in Figure 3.
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Figure 3. Stacking sequence of a laminate quasi-isotropic plate.

A single laminate can be considered as an orthotropic layer in the ply system (x’, y’, z’), or in other
words, the local axis system. The fiber orientation generates an angle θ relative to the global coordinate
system of the composite plate and is parallel to its local axis x’. The local coordinate system of the
laminate is illustrated in Figure 4.
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To derive the conditions of the quasi-isotropic laminate, the generalized Hooke′s Law can
be applied to define the stress–strain relationship. For an individual lamina isotropic matrix,
the extension and shear are ignored and its components are independent of the laminate orientation [32].
The constitutive relation for a plane-stress condition is expressed as:

σ′ = Qε′ ⇒


σx′

σy′

τx′y′

 =


Q11 Q12 0
Q21 Q22 0

0 0 Q66




εx′

εy′

γx′y′

, (5)
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with Q11 =
E1

1− v12v21
; Q12 =

v12E1

1− v12v21
; Q22 =

E2

1− v12v21
; Q66 = G12, (6)

where σ′ and ε′ are stress and strain vectors in the local coordinate system, respectively; Q denotes the
elastic constitutive matrix; E1, E2, v12, v21, and G12 are the material elastic parameters, where. In the
num v21 = v12E1/E2 erical analysis, the local stress–strain relationship should be transformed into the
global coordinate system [16]. The stress in the global system can now be expressed as:

σ = Qε =
(
TTQT

)
ε, (7)

where T is the transformation matrix and is given according to the fiber orientation θ as follows:

T =


cos2 θ sin2 θ sinθ cosθ
sin2 θ cos2 θ − sinθ cosθ

−2 sinθ cosθ 2 sinθ cosθ cos2 θ− sin2 θ

. (8)

In this study, the GFRP laminate is composed of plies of uniform thickness. The overall thickness
at the web and flange of the strut is identical, which was set to be equal to 2.08 mm. The composite ply
thickness corresponding to the fiber orientation is presented in Table 1.

Table 1. Laminate ply Thickness.

Ply 1 [90◦] 2 [45◦] 3 [−45◦] 4 [0◦] 5 [0◦] 6 [−45◦] 7 [45◦] 8 [90◦]

Thickness
(mm) 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

The laminated composite geometry of the GFRP strut was modeled by using the composite layup
function in ABAQUS®. With the uniform thickness of the strut, the identical properties of composite
layers, including the number of plies, ply thickness, and fiber orientations, were assigned to both the
web and flange of the strut. The GFRP laminate model and assignment of the fiber orientation are
illustrated in Figures 5 and 6, respectively.
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2.4. Material Properties Model

The material model of the GFRP strut, which was performed in ABAQUS®, was based on the
assumption used in the previous study of Debski et al. [23]. The mass density of the GFRP material
was 2200 (kg/m3). The strength properties of the GFRP strut are presented in Table 2.

Table 2. Material Properties of the GFRP Strut Used for the Simulation.

E1 (MPa) E2 (MPa) v12=v21 G12 (MPa) G23 (MPa) G13 (MPa)

38,000 81,000 0.27 2000 2000 2000
XT (MPa) XC (MPa) YT (MPa) YC (MPa) S (MPa)

792 679 39 71 102

where XT and XC denote the tensile and compressive strengths in the fiber direction; YT and YC denote the tensile
and compressive strengths in the matrix direction; and S includes SL and ST, which denote the longitudinal and
transverse shear strengths, respectively.

2.5. Model of the Boundary and Loading Conditions

The strut specimen was placed between a top plate and a bottom table. The bottom table, which
was mounted to the bottom jaw of a universal testing machine (UTM) produced by Instron (Norwood,
MA, USA) and modernized by Zwick-Roel (Ulm, Germany), was a spherical bearing. It included three
degrees of freedom that allowed for rotating about three perpendicular axes. The top plate, which
was fixed to the upper jaw of the UTM, was installed to transfer the compressive load. It only moved
down in the perpendicular direction to the top plate, or in other words, it had only one degree of
freedom. To hold the strut specimen vertically, grooves were created on the surface of the plate and
table. This generated different boundary conditions on the top and bottom edge of the composite
strut. The depth of the grooves was 2 mm. Cylindrical holes in the grooves were milled at the bending
corners of the strut to improve fitting. By way of simplification, in this study, only the strut was
modeled; the upper and bottom plates were replaced by constraints.

The bottom table was fully fixed by restraining all degrees of freedom at the reference point,
while the upper plate could move in the direction of the compressive loading, i.e., along the strut′s
longitudinal axis (Z-axis). The shortening of the strut was modeled by the displacement of the upper
plate in the Z-axis direction. The ends of the channel section strut were simply supported on the
surfaces of rigid plates where contact interactions were defined. The interaction constraints were then
assigned, as presented in Figure 7.
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Figure 7. Upper-end and bottom-end boundary conditions of the GFRP strut.

The plates were provided with grooves that modeled the shape of a channel section profile, but
at the same time, were allowed free rotation on the edges of the strut ends. The simply supported
boundary condition was reproduced using a flat-bottomed groove with slightly chamfered edges of
2 mm depth in total. According to the modeling method studied by Banat, Kolakowski, and Mania [33],
the grooves were modeled by restraining the ends of the strut with a depth of 2 mm. The bottom
table was assumed to be fixed by the jaw of the testing machine. The upper plate was assumed to be
constrained in the x and y directions, along with the rotation angle. Its vertical direction z was set to be
free. The upper and bottom end boundary conditions of the composite strut is shown in Figure 7.

For the elastic buckling analysis, the linear buckling step was employed using the buckle analysis
of linear perturbation procedure in ABAQUS®. The GFRP strut was compressed using the UTM with
a displacement rate of 1 mm/min. To simulate the vertical compression load generated by the UTM,
a uniform load was assigned to a reference point, which represented the upper nodes of the strut by
using rigid body-pin (node) constraints. This type of constraint represents the support contact between
the strut and the top plate. A nominal compressive load, which was equal to 1.0 N, was assigned to the
FE model. The critical buckling load was determined by solving a linear eigenvalue buckling problem.
The buckling mode shapes presented in this study were obtained from the first buckling mode, which
corresponded to the critical buckling load.

2.6. Verification of FE Model

The non-damaged buckling results obtained from the experiment conducted by
Gliszczynski et al. [25] were used to verify the proposed FE model in this study. The cross-section
dimension and length of the specimen were similar to the modeled FE specimen. To verify the
accuracy of the proposed model, the FE buckling behavior results of the quasi-isotropic laminate and
angle-ply laminate were compared to the corresponding C1 and C5 specimens of the experiment.
The quasi-isotropic laminate (C1) and the angle-ply laminate (C5) had symmetrical layups with
[0/−45/+45/90]s and [+45/−45/+45/−45]s stacking sequence, respectively. They were the typical
representatives for the GFRP thin-walled material, which were composed of different ply orientations.
The comparison of the critical buckling load between the numerical and experiment results is shown in
Table 3.
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Table 3. Comparison of the Critical Buckling Load between the Numerical and Experimental Results.

Laminate Types Critical Buckling Load (N)

Numerical Results Experiment Results

Quasi-isotropic laminate [0/−45/+45/90]s 11,285 10,500 ± 10%

Angle-ply laminate [+45/−45/+45/−45]s 12,652 11,700 ± 10%

As can be seen, the obtained critical buckling load of the quasi-isotropic laminate from the FE
model was 11,258 N. Its value was lower than 10% (i.e., allowed error range) of the average buckling
load obtained from the experiment. In detail, it was 7.48% greater than the experimental average
buckling load of 10,500 N. Similar to the quasi-isotropic laminate, the angle-ply laminate buckling load
was 12,652 N, which was 8.14% higher than the experimental result of 11,700 N. The comparison of
the first buckling mode shapes between the numerical analysis and the experiment are presented in
Figure 8.Materials 2020, 13, x FOR PEER REVIEW 10 of 21 
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As can be seen from Figure 8, the first buckling mode shapes of both the quasi-isotropic laminate
and the angle-ply laminate achieved from the proposed FE model were similar to the ones obtained
from the experiment. Both the first buckling load and mode shape of the FE model reached a good
agreement with the experimental results. The verification results showed that the developed FE model
was reliable for further elastic buckling analysis of the composite GFRP strut.

The FE model was further verified by considering the geometric nonlinearity of the GFRP strut.
To perform the post-buckling analysis, the buckling load and buckling mode of the previous linear
buckling analysis was used as the base state of the strut. According to this, the node displacement
obtained from the linear buckling analysis was applied to the initial deformation and the first buckling
load was assigned as the initial load for the post-buckling analysis model. The geometric imperfection
amplitude of 0.1h (i.e., 10% of the strut thickness) was adopted, as introduced by Debski and Jonak [21],
since it satisfactorily represents the imperfection rate of the tested channel-section column. Moreover,
an additional analysis with different imperfection amplitudes of 0.05h and 0.2h was also performed to
verify the current model.

The post-buckling equilibrium path of the strut in the current study was verified with the result
from the experiment done by the UTM and the FE model conducted by Debski et al. [23], as shown in
Figure 9. As can be seen, the post-buckling paths of the strut showed a stable bifurcation behavior.
The post-critical buckling load of the current study with the imperfection amplitude of 0.1h was
29,547 N, while the one obtained from the experiment and the Debski et al. study were around 28,825 N
and 29,798 N, respectively. Although the post-buckling paths of the current study and the experiment
result included some gaps, it was in high agreement with the path of the FE result in the Debski et al.
study. The difference of the post-critical buckling load between the current study and the experiment
was about 2.5%, which is less than the tolerance error of 10%. The effect of the geometric imperfection
amplitude on the post-critical buckling load was also presented in Figure 9. The results indicate that
the post-critical load significantly decreased when the imperfection amplitude increased from 0.05h to
0.12h. This effect reflected the real behavior of the strut and agreed with the results reported in the
literature [16]. These agreements in verification indicate that the current FE model could be utilized for
further investigation.

Materials 2020, 13, x FOR PEER REVIEW 11 of 21 

 

in Figure 9. As can be seen, the post-buckling paths of the strut showed a stable bifurcation behavior. 
The post-critical buckling load of the current study with the imperfection amplitude of 0.1h was 
29,547 N, while the one obtained from the experiment and the Debski et al. study were around 28,825 
N and 29,798 N, respectively. Although the post-buckling paths of the current study and the 
experiment result included some gaps, it was in high agreement with the path of the FE result in the 
Debski et al. study. The difference of the post-critical buckling load between the current study and 
the experiment was about 2.5%, which is less than the tolerance error of 10%. The effect of the 
geometric imperfection amplitude on the post-critical buckling load was also presented in Figure 9. 
The results indicate that the post-critical load significantly decreased when the imperfection 
amplitude increased from 0.05h to 0.12h. This effect reflected the real behavior of the strut and agreed 
with the results reported in the literature [16]. These agreements in verification indicate that the 
current FE model could be utilized for further investigation. 

 
Figure 9. Post-buckling equilibrium paths of the GFRP strut. FEM: finite element model, UTM: 
universal testing machine. 

By using a simple method of straight-line intersection introduced in Debski et al. [20], the critical 
buckling load could be determined using the curve of the post-buckling equilibrium path. Using this 
method, the approximation line of pre-buckling and post-buckling path could be linearly determined. 
Then, the critical load could be obtained by taking the value of the intersection point of those 
approximation lines. The approximation equations based on the load P and shortening d are 
presented in Figure 10 with significantly high determination coefficient (R2) values. The result 
showed that the critical buckling load determined by the post-buckling analysis was about 11,589 N, 
which was 2.7% different from the critical buckling load obtained from the linear buckling analysis 
(i.e., Pcr = 11,285 N). Therefore, for the purpose of critical buckling load determination, the linear 
buckling analysis could be used. 

Figure 9. Post-buckling equilibrium paths of the GFRP strut. FEM: finite element model, UTM:
universal testing machine.



Materials 2020, 13, 931 11 of 20

By using a simple method of straight-line intersection introduced in Debski et al. [20], the critical
buckling load could be determined using the curve of the post-buckling equilibrium path. Using this
method, the approximation line of pre-buckling and post-buckling path could be linearly determined.
Then, the critical load could be obtained by taking the value of the intersection point of those
approximation lines. The approximation equations based on the load P and shortening d are presented
in Figure 10 with significantly high determination coefficient (R2) values. The result showed that the
critical buckling load determined by the post-buckling analysis was about 11,589 N, which was 2.7%
different from the critical buckling load obtained from the linear buckling analysis (i.e., Pcr = 11,285 N).
Therefore, for the purpose of critical buckling load determination, the linear buckling analysis could
be used.Materials 2020, 13, x FOR PEER REVIEW 12 of 21 
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3. Parametric Analysis and Proposal

This section presents a parametric study of the buckling behavior of the thin-walled GFRP
composite strut based on the developed FE model. Different cross-section dimensions and different
thickness ratios between the web and flange of the strut were considered. Moreover, the effect of the
slenderness ratio on the buckling behavior of the composite strut was also investigated. A cost-effective
design of the strut was also studied and proposed. The results provide researchers and designers with
a wider vision to select an effective design for their problems.

3.1. Optimal Section Dimension

In a practical design, when designing for the buckling resistance of a column subjected to a
compressive load, it is necessary to find an appropriate dimension that produces the highest critical
buckling load [34,35]. In this section, the optimal dimension for the strut cross-section was found
under the conditions of a constant strut thickness (i.e., t = 2.08 mm) and a constant cross-section
area (i.e., A = 332.8 mm2). The original strut consisted of two 40-mm flanges and one 80-mm web
in terms of length. A dimension factor κ, which describes the flange length/web length ratio, was
introduced. The effect of the dimension on the critical buckling load was investigated by varying
the dimension factor κ. The buckling mode shape was also an important factor when designing the
structure. This was illustrated using the inflection points at which the internal bending moments
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were zero and the curvature of the structure changed its sign. It showed the possible buckling failure
location on the structure such that designers can propose an appropriate solution for strengthening the
structure by using stiffeners or other methods [36,37]. Thus, the first buckling mode shape of the strut
corresponding to different κ values was investigated and is illustrated in Table 4.

Table 4. First Buckling Modes of the Strut with Different Flange/web Dimension Ratios.

κ = W/B 0.167 0.300 0.452 0.500 1.038

Pcr (N) 6727.8 9556.9 11384 11258 8476.2

First
Buckling

Mode
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As can be seen in Table 4, the buckling mode shape significantly changed when the dimension
factor was varied. Each of them corresponded to a certain buckling resistance capacity. When κ was
around 0.167, i.e., the web length was much longer than the flange length, the buckling primarily
occurred on the web plate. The web plate became a single load-resisting component with a high
slenderness. Thus, its critical buckling load was significantly reduced. The strut had three inflection
points in its body. The buckling failure tended to rise at the positions of 1/3 and 2/3 of the length of the
strut. In the case where κ = 0.3, i.e., the web was about three times longer than the flange, the buckling
mode shape included four inflection points or three waves on its body. The buckling failure focused on
the center of the web (i.e., 1/2 the length of the strut). However, when κ was equal to 0.452 or higher,
the number of waves changed to two, and the buckling on the flange was now more significant than
on the web. Obviously, this phenomenon is completely consistent with the theory, because when
κ increases, the slenderness of the web decreased while the flange’s slenderness increased. For the
results of the buckling mode shape, the researchers and designer may have a more precise design for
strengthening the composite GFRP strut.

The effect of various dimension factors κ on the critical buckling load is shown in Figure 11. It is
interesting to see that when κ < 0.452 (i.e., web buckling was controlled), the critical load increased
very significantly when κ increased; however, when κ > 0.452 (i.e., flange buckling was controlled),
the critical load decreased with a lower slope when κ decreased. Obviously, this observation revealed
that buckling of the web had a more significant effect on reducing the critical load than the buckling of
the flange. It was also noted that, when the original dimension of the web length was 2 times greater
than the flange length, the buckling load was 11,258 N. Meanwhile the greatest critical buckling load
was 11,384 N, corresponding to κ = 0.452, which means the web length was 2.2 times greater than
the flange length; however, that increment of the critical load was not very significant. The results
provided in this section allow researchers and designers to select an optimal dimension for the strut
that will generate the highest critical buckling load.
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3.2. Optimal Thickness Ratio

In case the dimension of the GFRP strut cannot be changed, it is important to select an appropriate
thickness of the web and flange such that the designed strut achieves the highest critical buckling load.
In this section, the thickness ratio η between the flange t f and the web tw is introduced. It was varied
to investigate the effect of different flange/web thicknesses on the buckling load. The strut dimension,
i.e., B ×W = 80 mm × 40 mm, and the cross-section area of 332.8 mm2 were held constant. The number
of layers, which was eight plies, was also constant. The single thickness of each ply was assumed to
be the same for the eight layers. By varying the single thickness of each ply t1, the total thickness of
the web or the flange will be t1 × 8. The flange/web thickness ratio was varied from 0.238 to 2.250.
The investigation results revealed an optimal thickness ratio that produced the highest buckling load.
The buckling mode shapes corresponding to each thickness ratio are presented in Table 5.



Materials 2020, 13, 931 14 of 20

Table 5. First Buckling Modes of the Strut with Different Flange/web Thickness Ratios.

η = tf/tw 0.238 0.405 0.625 0.857 1.000

Pcr (N) 2595.8 5678.5 9190.1 10,904 11,258

First
Buckling

Mode
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As can be seen, the buckling modes had various shapes when the thickness ratio changed. When 
the web thickness was high (i.e., η was small) the buckling failure occurred only on the flange and 
vice versa. Because the slenderness of the web was higher than the flange, the mode shape of the web 
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The effect of the thickness ratio on the critical buckling load is presented in Figure 12. From the
graph, the maximum buckling load was obtained at η = 1.363 with Pcr = 11,524 N. This corresponded
to a web thickness of 0.22 mm and a flange thickness of 0.3 mm. The maximum buckling load was 2.36%
greater than the original strut with the buckling load of 11 258 N. From the results, the critical buckling
load dramatically decreased when η was smaller than the peak point (i.e., η = 1.363). In contrast,
it only slightly decreased when η was greater than the peak point. This was because the slenderness of
the flange was smaller than the web. When the flange thickness increased, it significantly contributed
to resisting the compressive load. This resulted in the gradual decrease of the buckling load. The result
indicates that to obtain a more stable strut, the thickness ratio η should be in the range of approximately
0.85–1.60. This means the thickness of the flange should not be smaller than 15% or greater than 60% of



Materials 2020, 13, 931 15 of 20

the web thickness. In addition, the option of selecting the thickness of the flange such that it is greater
than the web is recommended.
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3.3. Cost-Effective Design

When a GFRP strut is produced using the Pultrusion manufacturing method [38], which is a very
flexible method, the thickness of the strut can be arbitrary. However, this method cannot produce
profile-type products with a high accuracy and a high completion requirements [39]. Thus, to achieve
a good production of a GFRP strut, the auto-clave technique can be used. It is a trade-off between
flexibility and high accuracy. According to this technique, the thickness of the web and the flange
should be the same for cost-effective manufacturing. Therefore, another problem was investigated
regarding which thickness of the web and flange is more effective when they are identical to each other.

To find the most cost-effective design, for a certain cross-section area (e.g., A = 332.8 mm2 for
t f = tw = 2.08 mm), a fixed length of 250 mm, and a dimension of B × W = 80 mm × 40 mm, the
investigation of different flange/web thickness ratios following the same manner as Section 3.2 was
performed. The result from this investigation provided us with a value of the difference percentage
between the optimal ratio at which the maximum critical buckling load was achieved and the original
ratio η = 1.0. The lower this value was, the more cost-effective the design was. Four thickness types
were investigation, which were t f = tw = 1.048 mm, 2.08 mm, 2.24 mm, 2.56 mm. The result of this
investigation is presented in Figure 13. As can be seen, the t f = tw = 2.56 mm was the most effective
design case compared to other cases. The thickness, studied in this paper, i.e., t f = tw = 2.08 mm, had
a thickness that was 36.4% away from the optimal thickness. These results provided an effective tool to
make an appropriate decision when selecting a thickness for the best buckling resistance of a GFRP
strut subjected to a compressive load.
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3.4. Slenderness Ratio Effect and the Proposed Column Curve

In this section, the slenderness ratio effect of the strut on the critical buckling load is presented
and the design curve for the GFRP column is proposed. The thickness ratio between the flange and the
web was kept at 1.0. To investigate various slenderness ratios, the length of the strut was varied while
the cross-section area of the strut was kept constant. For the design purpose, the slenderness ratio
effect was considered a non-dimensional quantity Pcr/Py, where Py is the yield load governing the
limit state of the GFRP strut.

The slenderness ratio was calculated as the ratio of the strut effective length over the least radius
of gyration of its channel cross-section.

λc =
KL

rmin
, (9)

where K was equal to 0.65, corresponding to the modified fixed boundary condition of the strut.
The effective length KL was selected based on the boundary condition of the experimental setup,
which behaved like a fixed condition. However, because of the imperfection condition when setting
up the test, the effective length for the fixed condition was recommended to be equal to 0.65 for this

design [40]. The radius of gyration of the channel section strut was calculated using rmin =

√
Iy
A , where

Iy is the least area moment of inertia (i.e., y axis in this case), and A is the area of the GFRP strut with
the flange ×web dimension of W × B = 40 mm × 80 mm and the thickness of t f = tw = 2.08 mm.

The critical buckling load Pcr was obtained from the numerical analysis of the FE model. The
yield load Py is expressed as:

Py = σyA, (10)

where σy denotes the compressive yield stress of the GFRP material.
The slenderness ratio effect on the critical buckling load is illustrated in Figure 14. The interaction

graph is presented as a design curve for a GFRP strut, including the value of Pcr/Py and buckling
results of the corresponding strut. It should be noted that the slenderness ratio was investigated
in the range of Pcr =

[
0.03Py, 0.1Py

]
. As can be seen, for the short strut, the critical buckling load

dramatically decreased when the slenderness ratio λc increased from 3.0 to 7.0. The intermediate strut
and long strut was assigned in the slenderness ratio range of λc = [7.0, 50.0] and λc = [50.0, 100.0],
respectively. Their critical buckling loads slightly decreased when the slenderness ratio increased.
The value of Pcr/Py shows that the yield load was much higher than the buckling load, which means
the thin-walled GFRP strut mainly failed due to the buckling rather than the yield limit being exceeded.
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Based on the obtained Pcr/Py results, the following design equations for the GFRP strut were
proposed by using a regression technique.

Pcr

Py
=


0.2029λc

−0.63 (R2 = 0.998) i f 3.0 ≤ λc ≤ 7.0
0.045 + 0.052e−0.174λc (R2 = 0.995) i f 7.0 < λc ≤ 50.0
0.028 + 0.016

1+(λc/88.67)17.94 (R2 = 0.997) i f 50.0 < λc ≤ 100.0
, (11)

As can be seen, the determination coefficient (R squared) values are very close to 1.0, showing
that the proposed equations fit the obtained experimental results. These equations are first proposed
for designing the GFRP strut. Based on them, researchers or designers are able to calculate the
critical buckling load according to the dimensions of the GFRP strut, which are expressed through
the slenderness ratio. In addition, the results in Figure 14 show that local buckling occurred when
the slenderness ratio was smaller than 81.5; however, it began to behave as global buckling when the
slenderness ratio was greater than 81.5. This demarcation point provides researchers and designers
with a clearer observation of the behavior of the strut when the slenderness is changed. Thus, a more
precise design can be obtained to increase the stability of the strut.

4. Conclusions

This study provided a significant and useful investigation based on a numerical study of the
dimension effect on buckling behavior of a thin-walled GFRP composite strut. A reliable finite element
model of the GFRP strut under compressive loading was developed. A parametric study was conducted
to investigate the effect of the slenderness ratio on the critical buckling load. The following conclusions
were achieved:

(1) The maximum critical buckling load was obtained when the length of the web was around
2.2 times greater than the flange length. The two-wave buckling mode shape, which contained
three inflection points, withstood a higher buckling load.
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(2) When the thickness ratio between the web and the flange stayed in the range of 0.85–1.60, a good
buckling load could be withstood.

(3) A cost-effective design could be obtained when the thickness of the web and flange of t f = tw =

2.56 mm was used.
(4) The buckling behavior of the GFRP strut changed from local buckling to global buckling at a

demarcation point with a slenderness ratio of λ = 81.5.
(5) The proposed design curve and equations for the GFRP strut provided a precise method for

calculating the critical buckling load based on the input dimensions of the GFRP strut.

This study is limited to the quasi-isotropic laminate material and only the elastic buckling behavior.
In further research, the design curve of many different types of laminates that considers post-buckling
and imperfection buckling behaviors can be employed.
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