



Supplementary Materials: Temperature-Dependent Luminescence of Red-Emitting Ba<sub>2</sub>Y<sub>5</sub>B<sub>5</sub>O<sub>17</sub>: Eu<sup>3+</sup> Phosphors with Efficiencies Close to Unity for Near-UV LEDs

Egle Ezerskyte, Julija Grigorjevaite, Agne Minderyte, Sebastien Saitzek and Arturas Katelnikovas



Figure S1. XRD patterns of Ba<sub>2</sub>Y<sub>5</sub>B<sub>5</sub>O<sub>17</sub>: Eu<sup>3+</sup> phosphors.



Figure S2. FTIR spectra of  $Ba_2Y_5B_5O_{17}$ :  $Eu^{3+}$  phosphors.



**Figure S3.** Digital images of: 0.73-mm-thick  $Ba_2Y_5B_5O_{17}$ :50%Eu<sup>3+</sup> ceramic disk under daylight (a); 0.73, 0.98, and 1.20-mm-thick (from left to right)  $Ba_2Y_5B_5O_{17}$ :50%Eu<sup>3+</sup> ceramic disks under 365 nm excitation (b); 1.20-mm-thick on top of 400 nm emitting LED (c).

**Table S1.** PL lifetime values of Ba<sub>2</sub>Y<sub>5</sub>B<sub>5</sub>O<sub>17</sub>:Eu<sup>3+</sup> phosphors as a function of Eu<sup>3+</sup> concentration ( $\lambda_{ex}$  = 280 nm,  $\lambda_{em}$  = 615 nm).

| Eu <sup>3+</sup> (%) | τ1 (μs)      | Rel. % | τ2 (μs)       | Rel. % | $\overline{	au}_{1/e}$ (µs) |
|----------------------|--------------|--------|---------------|--------|-----------------------------|
| 1                    | $2400 \pm 2$ | 100    | _             | _      | _                           |
| 5                    | $2290 \pm 2$ | 100    | _             | _      | _                           |
| 10                   | $2140 \pm 2$ | 100    | _             | _      | _                           |
| 25                   | $1850 \pm 2$ | 100    | _             | _      | _                           |
| 50                   | $920 \pm 34$ | 22     | $1600 \pm 16$ | 78     | $1450\pm20$                 |

**Table S2.** PL lifetime values of Ba<sub>2</sub>Y<sub>5</sub>B<sub>5</sub>O<sub>17</sub>:Eu<sup>3+</sup> phosphors as a function of Eu<sup>3+</sup> concentration ( $\lambda_{ex}$  = 394 nm,  $\lambda_{em}$  = 615 nm).

| Eu <sup>3+</sup> (%) | τ1 (μs)       | Rel. % | τ2 (μs)       | Rel. % | $\overline{	au}_{1/e}$ (µs) |
|----------------------|---------------|--------|---------------|--------|-----------------------------|
| 1                    | $1240 \pm 11$ | 69     | $2320 \pm 39$ | 31     | $1570 \pm 20$               |
| 5                    | $1170 \pm 18$ | 44     | $2130 \pm 22$ | 56     | $1710 \pm 20$               |
| 10                   | $1010 \pm 22$ | 25     | $2000 \pm 12$ | 75     | $1750 \pm 15$               |
| 25                   | $880 \pm 50$  | 8      | $1840 \pm 8$  | 92     | $1760 \pm 11$               |
| 50                   | $840 \pm 30$  | 20     | $1540 \pm 11$ | 80     | $1400 \pm 15$               |

**Table S3.** PL lifetime values of Ba<sub>2</sub>Y<sub>5</sub>B<sub>5</sub>O<sub>17</sub>:Eu<sup>3+</sup> phosphors as a function of Eu<sup>3+</sup> concentration ( $\lambda_{ex}$  = 465 nm,  $\lambda_{em}$  = 615 nm).

| Eu <sup>3+</sup> (%) | τ1 (μs)       | Rel. % | τ2 (μs)       | Rel. % | $\overline{	au}_{1/e}$ (µs) |
|----------------------|---------------|--------|---------------|--------|-----------------------------|
| 1                    | $1230 \pm 11$ | 64     | $2320 \pm 30$ | 36     | $1620 \pm 18$               |
| 5                    | $1160 \pm 18$ | 41     | $2130\pm20$   | 59     | $1730 \pm 19$               |

| 10 | $940 \pm 20$ | 22 | $1970\pm10$  | 78 | $1740 \pm 12$ |
|----|--------------|----|--------------|----|---------------|
| 25 | $690 \pm 35$ | 6  | $1830 \pm 5$ | 94 | $1760 \pm 7$  |
| 50 | $740 \pm 27$ | 15 | $1500 \pm 8$ | 85 | $1390 \pm 11$ |

**Table S4.** PL lifetime values of Ba<sub>2</sub>Y<sub>5</sub>B<sub>5</sub>O<sub>17</sub>:50%Eu<sup>3+</sup> as a function of temperature ( $\lambda_{ex}$  = 394 nm,  $\lambda_{em}$  = 615 nm).

| T (K) | τ1 (μs)       | Rel. % | τ2 (μs)       | Rel. % | $\overline{	au}_{1/e}$ (µs) |
|-------|---------------|--------|---------------|--------|-----------------------------|
| 77    | $1020 \pm 83$ | 21     | $1500 \pm 29$ | 79     | $1400 \pm 41$               |
| 100   | $940 \pm 64$  | 16     | $1500 \pm 18$ | 84     | $1410 \pm 26$               |
| 150   | $920 \pm 52$  | 18     | $1530 \pm 17$ | 82     | $1420 \pm 23$               |
| 200   | $830 \pm 42$  | 15     | $1500 \pm 12$ | 85     | $1400 \pm 17$               |
| 250   | $800 \pm 32$  | 17     | $1500 \pm 10$ | 83     | $1380 \pm 14$               |
| 300   | $740 \pm 29$  | 15     | $1480 \pm 9$  | 85     | $1370 \pm 12$               |
| 350   | $750 \pm 28$  | 17     | $1480 \pm 10$ | 83     | $1360 \pm 13$               |
| 400   | $750 \pm 28$  | 18     | $1450\pm10$   | 82     | $1320 \pm 13$               |
| 450   | $750 \pm 27$  | 21     | $1420 \pm 12$ | 79     | $1280 \pm 15$               |
| 500   | $670 \pm 23$  | 23     | $1250 \pm 11$ | 77     | $1120 \pm 14$               |

**Table S5.** CIE 1931 colour coordinates and luminous efficacies (LE) of synthesized phosphors as a function of Eu<sup>3+</sup> concentration and excitation wavelength.

| E3+       |         | $\lambda_{\rm ex} = 280 \ {\rm n}$ | = 280 nm λ |         |         | nm $\lambda_{ex} = 4$  |         |         | m                      |
|-----------|---------|------------------------------------|------------|---------|---------|------------------------|---------|---------|------------------------|
| $Eu^{31}$ | CIE     | 1931                               | LE         | CIE     | 1931    | LE                     | CIE     | 1931    | LE                     |
| (70)      | x       | у                                  | (lm/Wopt)  | x       | у       | (lm/W <sub>opt</sub> ) | x       | у       | (lm/W <sub>opt</sub> ) |
| 1         | 0.62257 | 0.37682                            | 250        | 0.65746 | 0.34217 | 235                    | 0.65064 | 0.34871 | 245                    |
| 5         | 0.63546 | 0.36414                            | 247        | 0.65504 | 0.34462 | 238                    | 0.65214 | 0.34749 | 242                    |
| 10        | 0.64174 | 0.35789                            | 249        | 0.65407 | 0.34561 | 239                    | 0.65196 | 0.34768 | 242                    |
| 25        | 0.65166 | 0.34802                            | 242        | 0.65397 | 0.34572 | 241                    | 0.65366 | 0.34602 | 240                    |
| 50        | 0.65458 | 0.34511                            | 243        | 0.65629 | 0.34341 | 240                    | 0.65642 | 0.34328 | 238                    |

**Table S6.** CIE 1931 colour coordinates and luminous efficacies (LE) of Ba<sub>2</sub>Y<sub>5</sub>B<sub>5</sub>O<sub>17</sub>:50%Eu<sup>3+</sup> as a function of temperature ( $\lambda_{ex}$  = 394 nm).

| Т   | CIE     | 1931    |              |
|-----|---------|---------|--------------|
| (K) | x v     |         | LE (lm/Wopt) |
| 77  | 0.66286 | 0.33686 | 227          |
| 100 | 0.66171 | 0.33800 | 228          |
| 150 | 0.65972 | 0.33998 | 231          |
| 200 | 0.65818 | 0.34152 | 234          |
| 250 | 0.65706 | 0.34264 | 235          |
| 300 | 0.65589 | 0.3438  | 235          |
| 350 | 0.65458 | 0.34509 | 236          |
| 400 | 0.65308 | 0.34657 | 237          |
| 450 | 0.65124 | 0.34838 | 238          |
| 500 | 0.64869 | 0.35086 | 239          |

**Table S7.** CIE 1931 colour coordinates and luminous efficacies (LE) of different thicknesses $Ba2Y_5B_5O_{17}$ :50%Eu<sup>3+</sup> ceramics mounted on 375, 400, and 455 nm LEDs.

| LED   | Thickness | CIE     | LE      |           |
|-------|-----------|---------|---------|-----------|
| (nm)  | (mm)      | x       | у       | (lm/Wopt) |
| 275   | 0.73      | 0.64451 | 0.33749 | 146       |
| 375 - | 0.98      | 0.64645 | 0.33774 | 166       |

|     | 1.20 | 0.64953  | 0.33786 | 190 |
|-----|------|----------|---------|-----|
|     | 0.73 | 0.561s92 | 0.27882 | 155 |
| 400 | 0.98 | 0.57402  | 0.28627 | 167 |
|     | 1.20 | 0.58928  | 0.29480 | 180 |
|     | 0.73 | 0.16916  | 0.05116 | 69  |
| 455 | 0.98 | 0.17442  | 0.05422 | 73  |
|     | 1.20 | 0.18400  | 0.05984 | 80  |