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Abstract: Recently, 3D concrete printing has progressed rapidly in the construction
industry. However, this technique still contains several factors that influence the buildability and
mechanical properties of the printed concrete. Therefore, this study investigated the effects of the
nozzle speed, the interlayer interval time, the rotations per minute (RPMs) of the screw in the 3D
printing device, and the presence of lateral supports on the buildability of 3D concrete printing.
In addition, this paper presents the results of the mechanical properties, including the compressive,
splitting tensile, and flexural tensile strengths of 3D printed concrete. The buildability of 3D printed
structures was improved with an extended interlayer interval time of up to 300 s. The printing
processes were interrupted because of tearing of concrete filaments, which was related to excessive
RPMs of the mixing screw. The test results also showed that a lateral support with a wide contact
surface could improve the resistance to buckling failure for 3D printed structures. The test results
of the mechanical properties of the 3D printed concrete specimens indicated that the compressive,
splitting tensile, and flexural tensile strengths significantly depended on the bonding behavior at the
interlayers of the printed specimens. In addition, although metal laths were expected to improve
the tensile strength of the printed specimens, they adversely affected the tensile performance due to
weak bonding between the reinforcements and concrete filaments.

Keywords: 3D concrete printing; buildability; interlayer interval time; lateral support;
mechanical properties

1. Introduction

The 3D printing technique has become promising for prefabricated structures because of its
outstanding flexibility in both architectural and structural designs [1]. Without the facilitation
of formwork, structures with various shapes can be built quickly by using this technique [2–4];
thus, 3D printing is being rapidly applied in the building industry [5–8]. In addition, the 3D printing
technique also reduces the cost and amount of materials for construction compared to those for
traditional on-site construction methods [9–12].

Although the 3D printing method is considered a promising technique, some factors still influence
the printing performance. For example, the printing performance is strongly dependent on the fresh
properties of concrete, such as its rheology and green strength [13–15], and the printing parameters, such
as the nozzle speed, nozzle height, interlayer interval time, and extrusion rate [16–19]. These factors
also influence the mechanical properties of 3D printed concrete in the hardened state. Therefore, it is
important to investigate the buildability for the printing of concrete structures and the mechanical
properties of hardened concrete.
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Panda et al. [18] investigated the effect of different nozzle speeds on the properties of fresh concrete
used for 3D printing. They pointed out that the optimum printing speed would ensure a constant
bead width of the layers throughout the printing process, and the bonding strengths of the printed
specimens slightly reduced with increasing nozzle speed. Kruger et al. [20] developed a design model
for 3D concrete printing and predicted the printing speed to prevent the failure of the structure under
the given conditions.

The effect of the interlayer interval time (delay time) during 3D concrete printing also has
a significant influence on the buildability as well as the interlayer bonding strength of filaments.
According to Le et al. [21] and Sanjayan et al. [22], the interlayer bonding strength decreased with
increasing interlayer interval time. In addition, they recommended that it was necessary to optimize
the interlayer interval time to develop the green strength of fresh filaments to prevent significant
deformation or collapse and ensure an acceptable bonding strength between printed layers.

Moreover, the printed structure may collapse suddenly by buckling during printing; the buckling
behavior depends on the geometry and support conditions of the structure. Thus, lateral support or
reinforcement is needed [23,24]. For example, steel wire mesh reinforcement improved the flexural
strength of printed specimens [25], although there were obvious limitations in the printing process and
the design of the nozzle for the reinforcement.

In addition, the anisotropic strength of 3D printed concrete is a concern because the printing
direction significantly affects the material properties of 3D printed concrete in the hardened
state [15,16,21,26–28]. Nerella et al. [16] investigated the compressive and flexural tensile strengths
of 3D printed specimens in three different directions. The layer directions slightly affected the
compressive strength but significantly influenced the flexural tensile strength of the printed specimens.
However, Wolfs et al. [27] reported that the effect of the layer directions on the mechanical properties of
3D printed concrete was insignificant based on the measurements of the compressive, splitting tensile,
and flexural strengths in three different directions for the printed specimens.

Based on previous studies, the aim of this study was to investigate the buildability of 3D printed
concrete during printing and the mechanical properties of the 3D printed concrete in a hardened
state. The effects of the nozzle speed, interlayer interval time, and presence of lateral support on the
buildability of the 3D concrete printing were investigated. To investigate the mechanical properties of
3D printed concrete, compressive, splitting tensile, and flexural tensile tests in three different loading
directions were carried out. Finally, the mechanical properties of the monolithic specimens and printed
specimens were compared.

2. Experimental Program

2.1. Printing Method

Currently, several printing techniques have been applied in building construction, such as
contour crafting [29], Apis-Cor [30], concrete printing [31], and D-shape [32], which are based on
additive manufacturing techniques. The concrete printing technique, which has outstanding control
of internal and external geometries, was applied in this study. This system consisted of four major
parts: a computer controller, a gantry system, a nozzle part, and a platform, as shown in Figure 1a.
The nozzle part was carried on by the gantry system on two parallel rails, so it could move in both the
x and y directions, as shown in Figure 1a. Additionally, the nozzle elevation could be adjusted in the z
direction during the printing process. A nozzle with a diameter of 40 mm was attached to a storage
bin with a volume capacity of 0.05 m3, as shown in Figure 1b. A vertical screw rod rotating during the
printing process was equipped inside the storage bin to maintain the extrusion and workability of the
mortar filament.
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Figure 1. 3D printing equipment.

2.2. Printed Structures and Printing Process

To investigate the buildability and mechanical properties of 3D printed concrete, ten concrete
structures were printed, as listed in Table 1. All structures were printed into rectangular wall shapes
from the top view. The dimensions of ten structures are also shown in Table 1. The ten 3D printed
concrete structures were categorized into three groups.
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Table 1. Details of the printed structures.

Group Structure
Identification Dimensions Nozzle Speed

(mm/s)

Interlayer
Interval Time

(s)

RPMs of Mixing
Screw
(r/m)

Number of
Deposition

Layers

Ultimate
State

Group 1
S1
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Table 1. Cont.

Group 3

S7

Materials 2020, 13, x FOR PEER REVIEW 5 of 26 

 

S8 

 

50 300 120 52 (1) Printing 
stopped 

S9 

 

50 300 120 52 (1) Printing 
stopped 

S10 (2) 

 

50 300 120 52 (1) 
Printing 
stopped 

Note: (1) For the structure, printing stopped at the corresponding layers, and thus, the collapse of the structure was not observed. (2) The structure was reinforced by a 
metal laths at the interlayers. 

 

50 300 120 52 (1) Printing stopped

S8 50 300 120 52 (1) Printing stopped

S9

Materials 2020, 13, x FOR PEER REVIEW 5 of 26 

 

S8 

 

50 300 120 52 (1) Printing 
stopped 

S9 

 

50 300 120 52 (1) Printing 
stopped 

S10 (2) 

 

50 300 120 52 (1) 
Printing 
stopped 

Note: (1) For the structure, printing stopped at the corresponding layers, and thus, the collapse of the structure was not observed. (2) The structure was reinforced by a 
metal laths at the interlayers. 

 

50 300 120 52 (1) Printing stopped

S10 (2)

Materials 2020, 13, x FOR PEER REVIEW 5 of 26 

 

S8 

 

50 300 120 52 (1) Printing 
stopped 

S9 

 

50 300 120 52 (1) Printing 
stopped 

S10 (2) 

 

50 300 120 52 (1) 
Printing 
stopped 

Note: (1) For the structure, printing stopped at the corresponding layers, and thus, the collapse of the structure was not observed. (2) The structure was reinforced by a 
metal laths at the interlayers. 

 

50 300 120 52 (1) Printing stopped

Note: (1) For the structure, printing stopped at the corresponding layers, and thus, the collapse of the structure was not observed. (2) The structure was reinforced by a metal laths at
the interlayers.



Materials 2020, 13, 4919 6 of 24

Three structures, namely, S1, S2, and S3 in Group 1, were printed to investigate the effect of the
interlayer interval time and rotations per minute (RPMs) of the mixing screw on the buildability of
the structures. Accordingly, the three structures in Group 1 had the same shapes and dimensions but
different interlayer interval times or RPMs of the mixing screw.

Three structures, namely, S4, S5, and S6 in Group 2, were printed to investigate the effect of lateral
supports inside walls on the buildability of the structures. Accordingly, wall members of the three
structures were supported laterally by members with zigzag shapes inside walls. Structures S4 and S5
had the same rectangular wall dimensions, but the details of the connected parts between the wall
and lateral supports were different from each other. For structure S4, the wall and lateral supports
were connected to the wall by point contact, as shown in Figure 2a, and for structure S5, the wall and
lateral supports were connected in parallel with a width of 100 mm, as shown in Figure 2b. Details of
the dimensions of structures S4 and S5 can be found in Table 1. For structure S6, the wall and lateral
supports were also connected in parallel with a width of 100 mm.
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Figure 2. Printing of structures S4 and S5.

Four structures, namely, S7 through S10 in Group 3, were printed to investigate the effect
of the interlayer interval time on the buildability of the structures and mechanical properties
in the hardened state of the 3D printed concrete. Among these four structures, structures S7
and S8 were duplicates, and structures S9 and S10 were also duplicates except for the interlayer
reinforcement. The four structures were printed with the same printing process, as shown in Figure 3.
Accordingly, the interlayer interval time of the four structures in Group 3 was 300 s, which was much
greater than those of the other structures in Groups 1 and 2. In addition, to study the effect of the
reinforcement between the layers on the strength of the 3D printed concrete, metal laths were used as
the interlayer reinforcement. The metal lath reinforcement used in this study was made of aluminum.
The nominal yielding strength of the metal laths was 270 MPa, and the laths had the shape of an
extended parallelogram, as shown in Figure 4a. The lengths of the short and long diagonal distances
were 13 and 30 mm, respectively, and the thickness was 2 mm. A metal lath was attached to the
interfaces between the layers in structure S10, as shown in Figure 4b. No special surface treatment
method was used to increase the bonding strength between the printed concrete and metal laths.
The metal laths were laid manually over the printed layer; then, a new layer was repeatedly printed
over the metal laths without any artificial interlayer treatment. Therefore, the metal laths were bonded
between the printed concrete by the self-weight of the metal laths and printed concrete. After the
buildability of the four structures in Group 3 was investigated, the walls of the hardened structures
were cut into cubic and prismatic specimens for compressive, splitting tensile, and flexural tensile tests.
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2.3. Mixture

The mixture used for the 3D printing process is given in Table 2. Ordinary Portland
cement (OPC, Asia cement, Seoul, Korea) with a density of 3.14 g/cm3 was used for the mixture.
Additionally, two types of cementitious materials, namely, silica fume (SF, Asia cement, Seoul, Korea)
and class C fly ash (FA, Asia cement, Seoul, Korea), were added to the mixture. To improve the
extrusion and bonding properties, SF with a SiO2 content of 91.3% was used as a supplementary
cementitious material. Class C FA used in the mixture had a density of 2.26 g/cm3 and a loss on ignition
of 2.8%. Sand with a size range from 0.16–0.2 mm was selected to ensure good extrusion during the
printing process. To increase the concrete filament extrusion under the low water-binder ratio of 0.29,
a high-performance water-reducing agent (HWRA, Dongnam, Seongnam, Korea) was added to the
mixture. Finally, the mixture included a viscosity agent to prevent segregation of the materials and
enhance the viscosity of the mixture.
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Table 2. Mixture proportions.

W/B
(%)

Unit Weight (kg/m3)

Water OPC SF FA Sand HWRA Viscosity
Agent

0.29 240 576 79 172 1154 8.27 1.65

OPC: Ordinary Portland cement, SF: silica fume, FA: fly ash, and HWRA: high-performance water-reducing agent.

2.4. Material Properties in the Fresh State

The repeatability of the process is a critical requirement for 3D printing technology. The width,
height, and material characteristics of the printed structures should remain almost the same for
each printing process. To achieve repeatable printing in this study, the nozzle height and speed,
concrete pumping rate, and RPMs of the mixing screw were controlled by an accurate printing
device. Moreover, the test structures were printed on a stable platform. A nozzle height of 10 mm
from the existing printed layer was maintained during the printing process. In addition, to control the
quality of the mixture, the properties of the materials in the fresh state were measured.

The rheological properties of printing concrete primarily affect extrusion. Therefore, the fluidity
and extrusion rate of concrete were measured before printing the structures. The fluidity of the concrete
filament was estimated by a flow table test according to ASTM C 230 [33]. The extrusion rate was
evaluated by measuring the weight of extruded concrete in one minute. The test results showed that the
diameter of the mortar on the flow table was 148 mm and the extrusion rate was 0.133 kg/s. In addition,
the rheological yield stress of the concrete was measured by using a rheometer (Brookfield DV-III).
The yield stress was approximately 413 Pa, and the plastic viscosity was 19.6 Pa-s.

The measurement of early-age mechanical strength is one of the possible ways to find the stiffness
of printing materials. Green strength measurement by a uniaxial unconfined compression test on
cylindrical samples has been found to be useful in concrete printing applications. Voigt et al. [34] found
that the green strength had a close relationship with the microstructure of the concrete. The test results
of Panda et al. [35] showed that green strength developed linearly with time for the initial 30–40 min
and then exponentially increased.

For green strength measurement, the specimen preparation and testing process should be
designed to minimize unintentional breakdown of the thixotropic behavior of the concrete [35].
Moreover, the vertical and lateral deformation of the sample should be measured using a special
device. However, in this study, the green strength at early ages was not measured because there were
some difficulties in securing a testing machine with a small loading rate and in capturing dynamic
measurements of the changing cross-section of concrete samples.

3. Buildability in the Fresh State

The critical criterion for fabricating concrete structures via 3D printing is the vertical deposition
of filament layers. The buildability is a significant parameter to evaluate the printable performance
of concrete filaments. The buildability refers to the resistance of the deposited fresh concrete to
deformation during construction and the ability of the concrete to retain its extruded shape [13]. The 3D
printability of concrete, especially the buildability, depends on material parameters (the rheology,
green strength, and stiffness of the fresh concrete) and printing parameters (the interlayer interval
time incorporated by the nozzle speed, nozzle height, RPMs of the screw, and structural stability
parameter) [35,36]. This study focused on the effect of the printing parameters and structural stability
parameter on the buildability of 3D printed concrete. The printing parameters included the interlayer
interval time and RPMs of the screw, and the structural stability parameter included the presence of
lateral supports.
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3.1. Interlayer Interval Time

The buildability of 3D printed concrete structures was investigated based on the layer deposition
process. Among the six S1 through S6 structures, S1, S2, S4, and S6 collapsed suddenly, as shown in
Figure 5a,b,d,f, respectively. The collapse occurred at the wall members with the maximum length
between the supports where the lateral displacement was prevented. Moreover, structures S3 and S5
showed tearing of the concrete filaments at the uppermost layer, as shown in Figure 5c,e, respectively.
The printing of the structures was stopped when tearing of the concrete filaments was observed.
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To investigate the influence of the interlayer interval time on the buildability of the 3D printed
concrete, three different nozzle speeds of 50, 80, and 100 s and different structural shapes were applied
to print the concrete structures, as shown in Table 1.

First, structures S1, S2, and S3 were printed with the same dimensions of 1500 mm × 300 mm
along the centerline of the wall but with different nozzle speeds. Due to the different nozzle speeds,
structure S1 was printed with an interlayer interval time of 36 s, while structures S2 and S3 were printed
with an interlayer interval time of 45 s. The maximum number of printed layers in structures S1, S2,
and S3 were 19, 49, and 29, respectively. The maximum number of printed layers upon the collapse of
structure S1 was much lower than those of structures S2 and S3. Therefore, the test results showed
that the buildability of the 3D concrete printed structures increased as the interlayer interval time
increased. According to previous studies [18,21,27,37–39], an increased interlayer interval time could
provide sufficient time for the early strength development of the low layers in the 3D printed concrete
structures and thus improve the buildability of the structures. On the other hand, extending the
interlayer interval time could reduce the bonding strength between the layers.

Structures S2 and S3 were printed with the same interlayer interval time but with different RPM
values of the screw in the storage bin during printing of the structures. The printing of structure S3
was stopped when tearing of the filaments in the structure in the top layer was observed, as shown
in Figure 5c. When tearing of the filaments in structure S3 was observed, the maximum number of
printed layers was 29, which is lower than that of structure S2. This was because the RPM value of
the screw during printing of structure S3 was higher than that of structure S2, as shown in Table 1.
The high speed of the screw in the storage bin might have caused excessive friction heat between the
screw and concrete filaments and thus decreased the fluidity of the concrete. Finally, excessive friction
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heat affected the extrusion of the concrete, and thus, the printing process was stopped when concrete
filaments were torn. Therefore, the test results in this study indicated that the RPM value of the screw
could affect the buildability when the printing device in a storage bin containing a mixing screw is
used for 3D concrete printing.

The buildability of structures S5 and S7, which had similar geometries, was also compared to
investigate the buildability of 3D printed concrete at different interlayer interval times. Structure S7
with an interlayer interval time of 300 s was printed up to 52 layers, whereas structure S5 with an
interval time of 57 s was printed up to 28 layers. The comparison also showed that an increased
interlayer interval time favorably affected the buildability of the printed concrete.

The different interlayer interval times in structures S6 and S9 were compared because the two
structures had the same long wall length of 500 mm between lateral supports. Structure S6 was printed
with an interval time of 30 s, while the interlayer interval time of structure S9 was extended to ten times
that of structure S6. Structure S6 was stacked up to 33 layers and then collapsed by buckling along the
long wall. Moreover, structure S9 was printed up to 52 layers, and then printing of the structure was
stopped because it was to be used for investigating the mechanical properties of the concrete in the
hardened state.

Therefore, a comparison of printed structures with interlayer interval times ranging from 36
to 300 s showed that an increased interlayer interval time favorably affected the buildability of the
concrete. The interlayer interval time of the printing process influenced the green strength of the 3D
printed concrete. If the interlayer interval time was too short, the green strength of the 3D printed
concrete was not high enough to support the upper layers, which might lead to early collapse of the
structure, and vice versa.

3.2. Lateral Supports

The 3D printed concrete structures in Group 1 in this study failed by buckling, so it was important
for the 3D printed concrete structures to resist buckling. The lateral supports printed inside the structure
could enhance the resistance to buckling failure along the long wall of the structures. Two types of
zigzag lateral supports were printed inside structures S4 and S5, as presented in Figure 2.

Structure S4 contained lateral supports that were printed inside the structure and connected
to the long wall by a contacting point. Structure S5 contained lateral supports inside the structure,
the arrangement of which was similar to that in structure S4, but they were connected to the long wall
by a contact with a width of 100 mm.

The test results showed that structure S4 was printed up to 22 layers and then collapsed by
buckling failure along the long wall. Moreover, 28 layers were stacked in structure S5, and then the
printing process was interrupted because of the tearing of the concrete in the top layer, as shown in
Figure 5e. Both structures S4 and S5 were printed with the same nozzle speed and RPM value of the
mixing screw. This implied that the types of connections of the lateral supports to the wall affected the
buckling resistance and thus the buildability of the printed structures. By incorporating the lateral
supports inside the structure, the long wall of the printed structure could be divided into several spans
along the wall. Depending on the types of connections of the lateral supports to the wall, the long
wall of structure S4 was divided into two spans with lengths of approximately 500 mm, whereas
the long wall of structure S5 was divided into two spans with lengths of approximately 400 mm.
This difference in the span length might result in a higher resistance to buckling for structure S5 than
that for structure S4.

Similarly, structure S6 was printed with lateral supports that were connected to the long wall by
contact points with a width of 100 mm. Structure S6 was stacked up to 33 layers prior to collapse,
although it was printed with a shorter interlayer interval time of 30 s than that of 55 s for structure S4.
The number of printed layers in structure S6 was higher than that in structure S4.

Structure S6 failed due to buckling because this structure was printed with a short interlayer
interval time.
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Therefore, the zigzag-shaped lateral supports printed inside the structure, especially with long
connecting widths, could increase the resistance to buckling failure in 3D printed concrete structures.
The test results in this study are in good agreement with those of a previous study [36], where 3D
printing reinforced by zigzag internal layers inside the structure improved not only the buildability of
the printed structure but also the resistance to buckling of the printed hardened structure.

A numerical model was developed to predict different failure modes based on the material
properties of the concrete in the fresh state and on the failure criterion by Wolfs et al. [40]. According to
their study, the failure of 3D printed concrete wall structures was categorized into elastic buckling and
plastic collapse. The parametric model used to predict the structural failure mode included the main
printing process parameters, which were the curing characteristics of the printing material, the printing
speed, the geometrical characteristics of the printed structure, its dead weight, its heterogeneous
strength and stiffness characteristics, and the presence of geometrical imperfections. Suiker et al. [36]
also demonstrated the practical applicability of the model for different wall structures fabricated by 3D
concrete printing.

This study originally focused on the experimental program and discussion of the test results in
terms of buildability. Prediction of the failure mode or numerical resistance for the structures printed
in this study could not be performed because the heterogeneous strength and stiffness characteristics
of the concrete used in this study, which are necessary to analyze the numerical resistance to failure,
could not be estimated from the green strength test. Therefore, numerical predictions of failure modes
based on the developed model should be investigated in a future study.

4. Mechanical Properties

4.1. Specimen Preparation and Testing Methods

In this study, after the printed structures were hardened, the walls of the 3D printed structure in
the hardened state from Group 3, as shown in Table 1, were cut into cubic and prismatic specimens
for compressive, splitting tensile, and flexural tensile tests. The printed structures were covered by
wet burlap until a curing age of 28 days after investigating the buildability of the 3D concrete printed
structures, and then they were cut into the cubic and prismatic specimens. Two methods to extract
the specimens from the 3D printed structures could be considered based on the time of extraction.
In the first method, the specimens are extracted by cutting the 3D printed structures at early ages in the
fresh state before the structures reach the final setting period of concrete. The specimens can be easily
extracted by cutting or sawing the structures in the early fresh state. However, extracting specimens at
early ages can cause hairline cracks in the specimens due to deformation and eventually affect the
stability of the specimen shape. In the worst case, the 3D printed structures may collapse when they
are cut in the fresh state. In the second method, the specimens are extracted by cutting the 3D printed
structures in the hardened state—e.g., by sawing. Sawing specimens in the hardened state can avoid
changes in specimen shape and accordingly the deformation of specimens. However, this approach
requires extensive skills of the experimental workers to secure the flatness of the cut surface on which
loading is applied for the strength test. This method was used in some previous studies [15,18,21,27]
and was also adopted in this study. The cut surfaces of some specimens was not sufficiently flat when
they were cut from the structures, and such specimens were excluded from the strength test.

A typical representation of specimens cut from a 3D printed concrete wall is shown in Figure 6a.
The cubic and prismatic specimens were extracted by saw-cutting three walls of structures S7 and S8
and four walls of structures S9 and S10, as presented in Figure 6b. For specimens cut out of the concrete
wall, the dimensions of 40 mm × 40 mm × 40 mm for the cube and 40 mm × 40 mm × 160 mm for the
prism were chosen because the bead width of the layers was approximately 40 mm. However, a surface
treatment was performed by using an accurate grinder to reduce the influence of the surface conditions
because the surface was uneven for the printed specimens. In addition, since the cross-sectional areas
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of the specimens were variable depending on the bead width and layer height of each specimen,
the cross-sectional area was actually calculated by measuring the length of each side of the specimens.
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In addition, the monolithic specimens were cast in dimensions of 50 mm × 50 mm × 50 mm for
the cubic specimens and 40 mm × 40 mm × 160 mm for the prismatic specimens, as proposed in ASTM
C109/C 109M-07 and C348-18 [41,42]. The monolithic specimens were moisture-cured for 24 h after
they were cast and then cured in a water tank until a curing age of 28 days was reached.

Unlike the monolithic specimens, the printed specimens had anisotropic mechanical properties
that depended on the different loading directions; this dependency was based on the layer stacking
directions of the 3D printed concrete. Accordingly, the printed specimens were tested in three mutually
perpendicular loading directions, as shown in Figure 7. The results from the printed specimens tested
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in the different loading directions were compared to those from the monolithic specimens cast during
the printing process of the structures.Materials 2020, 13, x FOR PEER REVIEW 15 of 26 
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The compressive strength test was performed on the cubic specimens. Before the compressive
strength testing of the monolithic and printed specimens was performed, the lengths of all sides of
the specimens were measured. The compressive strengths of the printed specimens were measured
in three loading directions, namely, I, II, and III. However, loading directions II and III were actually
the same, and thus, the compressive tests were performed in loading directions I and II. For each
loading direction, five monolithic and printed specimens were tested for their compressive strengths in
accordance with ASTM C109/C 109M-07 [41]. The compressive strengths of the monolithic and printed
specimens were calculated as follows:

f ′c =
P

l× b
(1)

where l is the length (mm), b is the width of the specimen (mm), and P is the maximum load (N).
The splitting tensile strength test was also determined for the cubic specimens. For the printed

specimens, splitting tensile tests were conducted in three loading directions, namely, I, II, and III.
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For each loading direction, five monolithic and printed cubic specimens were tested for their splitting
tensile strengths in accordance with ASTM C 496/C 496M-04 [43]. The splitting tensile strengths were
calculated as follows:

ft =
2× P
π× l× b

(2)

where l is the length of line contact of the load (mm), b is the nominal cross-sectional dimension (mm),
and P is the maximum load (N).

For the flexural tensile test, the test in loading direction III could not be performed because of
problems encountered while cutting the specimens out of the 3D printed structures. Five prismatic
specimens were used for the flexural tensile test in each loading direction (I and II) in accordance
with ASTM C348-18 [42]. The flexural tensile strengths of the prismatic specimens were calculated
as follows:

fr =
3× P× l

2× b3 (3)

where l is the distance between the supports (mm), b is the length of the squared section of the prism
specimen (mm), and P is the maximum load (N).

After five specimens were tested for each strength, the means and standard deviations of the test
results were calculated to estimate the strength properties of the monolithic and printed specimens.

4.2. Compressive Strength

Compressive strength tests were performed for both the monolithic and printed cube specimens.
The printed specimens were categorized into those without metal lath reinforcement and those
reinforced by metal lath reinforcement. The compressive test results are given in Table 3. A comparison
between the compressive strengths of the monolithic and printed specimens is also plotted in Figure 8.Materials 2020, 13, x FOR PEER REVIEW 18 of 26 
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Table 3. Test results for the mechanical properties.

Strength Loading
Direction

Monolithic Specimen
Printed Specimen

Without Metal Laths With Metal Laths

Number of
Specimens

Mean
(MPa)

SD
(MPa)

Number of
Specimens

Mean
(MPa)

SD
(MPa)

Number of
Specimens

Mean
(MPa)

SD
(MPa)

Compressive
strength ( f ′c )

Loading
direction I 5

72.8 9.0

5 23.5 9.8 5 24.6 0.7

Loading
direction II

(III)
5 5 31.0 8.3 5 24.0 3.5

Splitting
tensile

strength ( ft)

Loading
direction I 5

11.3 2.7

5 4.5 0.3 5 4.4 0.8

Loading
direction II 5 5 3.2 1.0 5 3.3 0.3

Loading
direction III 5 5 1.8 1.2 5 1.2 0.4

Flexural
tensile

strength ( fr)

Loading
direction I 5

11.9 1.1
5 6.5 0.8 5 18.5 4.0

Loading
direction II 5 5 6.1 0.4 5 11.0 1.7

Note: SD refers to the standard deviation.
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The compressive strength of the monolithic specimen was 72.8 MPa, while those of the printed
specimens without metal lath reinforcement in loading directions I and II were 23.5 and 31.0 MPa,
respectively. For the printed specimens reinforced by the metal lath, the compressive strengths
in loading directions I and II were 24.6 and 24.0 MPa, respectively. The compressive strengths
of the printed cubic specimens ranged from approximately 32.3 to 42.6% lower than those of the
monolithic specimens.

For loading direction I, the compressive strengths of the printed specimens with and without metal
lath reinforcement showed similar values. The failure patterns were accompanied by the propagation
of vertical cracks over the height of the specimens, as shown in Figure 9. This failure pattern implied
that the layer reinforcement in the printed specimens did not affect their compressive strengths in
loading direction I.
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For loading direction II (or III), the failure of the printed cubic specimens resulted from interface
failures between the layers. The failure pattern also indicated that the compressive strengths were highly
dependent on the bonding capacity at the interlayers of the printed specimens because the specimens
in this loading direction were subjected to lateral deformation under vertical compressive loading.

The compressive strength of the printed specimens without a metal lath was greater than that of
the specimens reinforced by a metal lath. This implied that the bonding performance of the printed
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specimens without a metal lath at the interlayers was higher than that of the printed specimens
reinforced by a metal lath at the interlayers. Metal lath reinforcements at the interlayers were expected
to improve the bonding and tensile performance of the 3D printed concrete. In contrast, the metal lath
reinforcement adversely affected the interlayer adhesion performance due to weak bonding between
the reinforcement and concrete filaments. The failure of the printed specimen reinforced by the metal
lath shown in Figure 9b actually showed that the printed layer and metal lath reinforcement were
separated at the failure interface. This failure pattern shown in the figure supported the compressive
strength test results.

4.3. Splitting Tensile Strength

Splitting tensile testing was performed on both the monolithic and printed specimens in different
loading directions. A comparison of the splitting tensile strengths for the monolithic and printed
specimens is shown in Figure 10. The splitting tensile strength of the monolithic specimens was
11.2 MPa, while those of the printed specimens without metal lath reinforcement were 4.5, 3.2,
and 1.8 MPa in loading directions I, II, and III, respectively. The splitting tensile strengths of the
printed specimens reinforced by metal laths at the interlayers in loading directions I, II, and III were
4.4, 3.3, and 1.2 MPa, respectively. The test results show that the splitting tensile strength of the printed
specimens was 11.1~39.7% lower than that of the monolithic specimen. This was because the weak
bonding strength at the interlayers led to the low splitting tensile strength of the printed specimens.
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Figure 10. Splitting tensile test results.

The splitting tensile strengths in loading directions I and II of the printed specimens with and
without metal laths were not significantly different. Therefore, the interlayer reinforcement hardly
affected the splitting tensile strength, although the metal lath reinforcement at the interlayers was
expected to improve the splitting tensile strength of the printed specimens. The failure pattern of the
printed specimens in loading direction II is shown in Figure 11. The splitting tensile failure in loading
direction II was accompanied by debonding of the interlayers in both the printed specimen without
metal lath reinforcement and the printed specimen reinforced by metal laths. This implied that the
adhesion between the concrete filaments and reinforcements played an important role and that the
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imperfect adhesion could not enhance the splitting tensile strength of the printed specimen reinforced
by the metal laths compared to that of the printed specimen without the metal laths.
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Figure 11. Splitting tensile failure of a printed specimen with and without metal lath in loading
directions II and III.

The effect of the imperfect adhesion between the concrete filaments and reinforcements on the
tensile strength was also observed in the splitting tensile strength in loading direction III. The splitting
tensile strength of the specimens reinforced by the metal laths was lower than that of the specimens
without the metal laths. The test results were different from the expectation that the metal lath
reinforcement at the interlayer would increase the splitting tensile strength of the printed specimens in
this loading direction. The failure pattern of the printed specimens in loading direction III is shown in
Figure 11. The splitting tensile failure in loading direction III was also accompanied by debonding
of the printed layers in both the printed specimen without metal laths and the printed specimen
reinforced by metal laths, such as in loading direction II.

Finally, the test results in this study implied that the bonding conditions between the concrete
filaments and reinforcements at the interlayers played a significant role in the splitting tensile behavior.
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Therefore, the adhesion between the concrete filaments and reinforcements should be confirmed to
improve the tensile behavior of 3D printed concrete structures.

4.4. Flexural Tensile Strength

The printed prismatic specimens with and without metal laths were tested in two different loading
directions, namely, I and II. The flexural strength testing of specimens in loading direction III was not
performed because of difficulties in preparing those specimens. A comparison of the flexural tensile
strength results for the monolithic and printed specimens is shown in Figure 12.
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Figure 12. Flexural tensile test results.

The flexural tensile strength of the monolithic specimen was 11.9 MPa, while those of the printed
specimens without metal lath reinforcement were 6.5 and 6.1 MPa in loading directions I and II,
respectively. The test results show that the flexural tensile strengths of the printed specimens without
reinforcement were approximately half that of the monolithic cast specimens.

In addition, the flexural tensile strengths of the printed specimens reinforced by metal laths
were 18.5 and 11.0 MPa for loading directions I and II, respectively. The flexural tensile strength of
the printed specimens without metal lath reinforcement was lower than that of printed specimens
reinforced by metal laths. This was because metal lath reinforcement in the tensile zone acted as a
tensile reinforcement. Accordingly, the metal lath reinforcement increased the flexural tensile behavior
of the 3D printed specimens in both loading directions I and II.

However, the flexural tensile behavior in loading direction II, as shown in Figure 13,
was accompanied by debonding between the printed interlayers, such as in the case of the splitting
tensile behavior described in the previous section. This result indicated that metal lath reinforcement
with incomplete interlayer adhesion did not increase the flexural tensile strength as much as expected.
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5. Conclusions

The buildability and mechanical properties of 3D printed concrete were investigated in this study.
Based on the extensive experimental results, the following conclusions can be drawn:

1. The interlayer interval time significantly influenced the buildability of 3D printed concrete.
The test results showed that an extended interlayer interval time of up to 300 s contributed
to the green strength of the 3D printed concrete and thus increased the buildability of the 3D
printed concrete.

2. The 3D printed concrete structures with lateral supports could increase the resistance to collapse
due to buckling failure. In particular, a wide connecting width between the lateral support and
the structure wall improved the capacity of layer decomposition in the 3D printed concrete.

3. The compressive strengths of the 3D printed cubic specimens were 32.3~42.6% lower than those of
the monolithic specimens. In addition, the weak bonding performance between the reinforcement
and concrete filaments caused the low compressive strength of the printed specimens in direction II.
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4. The splitting tensile strength of the 3D printed concrete specimens was 11.1~39.7% lower than that
of the monolithic specimens, depending on the loading directions. The splitting tensile failure
was accompanied by debonding between the printed layers, which implied that the bonding
performance between the concrete filaments and reinforcements should be confirmed when
interlayer reinforcements are included.

5. The flexural tensile strengths of the 3D printed specimens without reinforcements at the interlayers
were approximately half that of the monolithic cast specimens. The flexural tensile strength
of the printed specimens was improved by the metal lath reinforcements. The failure pattern
also revealed that the bonding between the interlayers and reinforcements might influence the
flexural strength.
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