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Abstract: This study aimed to compare bone healing and implant stability for three types of dental
implants: a threaded implant, a three-dimensional (3D)-printed implant without spikes, and a
3D-printed implant with spikes. In four beagle dogs, left and right mandibular premolars (2nd, 3rd,
and 4th) and 1st molars were removed. Twelve weeks later, three types of titanium implants (threaded
implant, 3D-printed implant without spikes, and 3D-printed implant with spikes) were randomly
inserted into the edentulous ridges of each dog. Implant stability measurements and radiographic
recordings were taken every two weeks following implant placement. Twelve weeks after implant
surgery, the dogs were sacrificed and bone-to-implant contact (BIC) and bone area fraction occupied
(BAFO) were compared between groups. At implant surgery, the primary stability was lower for the
3D-printed implant with spikes (74.05 ± 5.61) than for the threaded implant (83.71 ± 2.90) (p = 0.005).
Afterwards, no significant difference in implants’ stability was observed between groups up to
post-surgery week 12. Histomorphometrical analysis did not reveal a significant difference between
the three implants for BIC (p = 0.101) or BAFO (p = 0.288). Within the limits of this study, 3D-printed
implants without spikes and threaded implants showed comparable implant stability measurements,
BIC, and BAFO.

Keywords: 3D printing; computer-aided design; customized dental implant; patient matched;
implant stability

1. Introduction

Various types of dental implants have been developed to replace edentulous areas. Endosseous
blade implants and disk implants designed in the 1960s disappeared from the market because of
their low survival rate and the extensive bone destruction that would occur around the implant [1,2].
Endosseous dental implants have been considered as the current standard shape, and the surface in
contact with the bone is subjected to large shear forces under load [3].
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The most widely used implants on the market today are threaded implants. However, such
implants are limited in design owing to the need for mass production. Close contact between the
recipient site and the implant is essential for proper osseointegration [4]. Therefore, the current
implants cannot completely satisfy the requirements of individual patients [5]. Titanium implants with
high surface porosity and high core density may allow better load adaptation, while avoiding stress
shielding and pressure-induced bone loss [6–8]. However, the manufacturing of personalized implants
with this structure is considerably challenging and expensive. In contrast, if a three-dimensional (3D)
printing method is used, personalized implants with a complex structure can be manufactured at a
lower cost and with more simplicity [9].

Recently, the application of 3D printing technology in dentistry has grown at a rapid pace.
The reasons for this rapid development are the possibility of savings on small-scale productions,
the ability to manufacture personalized products, the ease of sharing and handling patient imaging
data, and the increased number of people who understand and can carry out this process [10]. 3D
printing technology is gaining increased attention in the dentistry field thanks to advances in 3D
imaging and modeling technologies, such as intraoral scanning and cone-beam computed tomography,
and the increasing use of computer-aided design & computer-aided manufacturing (CAD/CAM)
technology [11]. 3D printing is also known as additive manufacturing, in which rapid prototyping uses
a focused laser beam to create complex shapes layer-by-layer [12]. Implants made using 3D printing
technology are custom designed to accommodate the geometry of each individual’s anatomic structure,
preserving soft and hard tissue and reducing the duration of the healing period [5,13]. The technology
makes it easier to create an implant with complex structures. In addition, unlike the cutting or milling
process, 3D printing can be conducted without molds or other tools, which is more economical and
reduces material loss [14].

Although 3D printing technology is used in many aspects of the dental field, clinical data are
still limited regarding the manufacturing of dental implants. The purpose of this study was to
compare the sequential implant stability and histologic differences between 3D-printed implants and
threaded implants.

2. Materials and Methods

2.1. Animals

The study protocol was approved by the Institutional Animal Care and Use Committee (IACUC),
Seoul National University (IACUC No. SNU-190226-4), and the study was conducted in compliance
with guidelines of the Institute of Laboratory Animal Resources, Seoul National University. This research
regulated by the principle of the 3Rs (replacement, reduction, and refinement). Four male beagle
dogs, at 1 year of age and a weight between 10 and 12 kg, were used in the study. At the time of
recruitment, all animals were healthy and the dentition was normal. Before the experiment, the beagle
dogs were acclimated to the facility for 1 week. The dogs were individually housed in 90 cm × 80 cm ×
80 cm (width × depth × height) indoor kennels. They drank freely and were fed a standard pellet dog
food diet (HappyRang, Seoulfeed, Korea) or a crushed diet after the implants were placed. The study
outline is presented in Figure 1.
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Figure 1. Outline of the experiment. At baseline, the second, third, and fourth premolars and first 
molars were extracted from the left and right sides of the mandible. After 12 weeks, three different 
implants were randomly placed in the healing ridges. 

2.2. Study Implants 

Titanium implants with three different designs, but with similar dimensions, were used in this 
study (Figure 2): a threaded implant (Superline, Dentium, Seoul, Korea), which was a two-piece 
bone level implant with 3.7 mm in diameter and 8 mm in length (T; control); a 3D-printed implant 
without spikes, which was a one-piece tissue level implant with 3.8 mm in diameter and 8 mm in 
length (3D; test 1); and a 3D-printed implant with spikes, which was a one-piece tissue level implant 
with 3.8 mm in diameter and 8 mm in length (3DS; test 2). 

 
Figure 2. Three implants with different designs. (a): SuperLine Fixture (FXS 36 08); (b): 3D-printed 
implant without spikes; (c): 3D-printed implant with spikes. 

The 3D-printed implant used a dodecahedron lattice structure with a porosity of 70% and a 
lattice thickness of 250 μm (Figure 3). They were designed with and without spikes to compare the 
influence of the spikes on implant stability. The spikes’ structure was designed in order to provide 
additional fixation on the extraction site and sidewalls. The 3D-printed implants were printed on a 
3D printer Mlab200R (Concept Laser, Lichtenfels, Germany) using Ti-Gr2 (ConceptLaser, 
Lichtenfels, Germany). The 3D printer uses direct metal laser melting (DMLM) technology to create 
complex metal 3D geometries. For the surface of the 3D-printed implant, only blasting was 
performed without any surface treatment. The T implant encompasses sandblasting with large grits 
and acid etching (SLA) surface and is made of Ti-Gr5. 

Figure 1. Outline of the experiment. At baseline, the second, third, and fourth premolars and first
molars were extracted from the left and right sides of the mandible. After 12 weeks, three different
implants were randomly placed in the healing ridges.



Materials 2020, 13, 4815 3 of 10

2.2. Study Implants

Titanium implants with three different designs, but with similar dimensions, were used in this
study (Figure 2): a threaded implant (Superline, Dentium, Seoul, Korea), which was a two-piece bone
level implant with 3.7 mm in diameter and 8 mm in length (T; control); a 3D-printed implant without
spikes, which was a one-piece tissue level implant with 3.8 mm in diameter and 8 mm in length
(3D; test 1); and a 3D-printed implant with spikes, which was a one-piece tissue level implant with
3.8 mm in diameter and 8 mm in length (3DS; test 2).
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Figure 2. Three implants with different designs. (a): SuperLine Fixture (FXS 36 08); (b): 3D-printed
implant without spikes; (c): 3D-printed implant with spikes.

The 3D-printed implant used a dodecahedron lattice structure with a porosity of 70% and a
lattice thickness of 250 µm (Figure 3). They were designed with and without spikes to compare the
influence of the spikes on implant stability. The spikes’ structure was designed in order to provide
additional fixation on the extraction site and sidewalls. The 3D-printed implants were printed on a
3D printer Mlab200R (Concept Laser, Lichtenfels, Germany) using Ti-Gr2 (ConceptLaser, Lichtenfels,
Germany). The 3D printer uses direct metal laser melting (DMLM) technology to create complex metal
3D geometries. For the surface of the 3D-printed implant, only blasting was performed without any
surface treatment. The T implant encompasses sandblasting with large grits and acid etching (SLA)
surface and is made of Ti-Gr5.Materials 2020, 13, x FOR PEER REVIEW 4 of 11 
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Figure 3. Scanning electron microscopy (SEM) image of the 3D-printed implant without spikes
macroporous structure. Both 3D-printed implants feature the same surface.

In order to identify the precision of the 3D-printed products, five rectangular parallelepipedons
having a width of 15 mm, a length of 15 mm, and a height of 6 mm were manufactured. When measuring
the length of the manufactured rectangular parallelepiped, the maximum error was 9.7 µm (Table 1).
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Table 1. Accuracy analysis of 3D-printed products.

Test
x (mm) y (mm) z (mm)

Reference
Values Measures Error Reference

Values Measures Error Reference
Values Measures Error

1

15.0000

15.0097 0.0097

15.0000

15.0045 0.0045

6.0000

6.0034 0.0034
2 15.0081 0.0081 15.0067 0.0067 6.0029 0.0029
3 15.0061 0.0061 15.0018 0.0018 6.0011 0.0011
4 15.0042 0.0042 15.0061 0.0061 6.0005 0.0005
5 15.0084 0.0084 15.0052 0.0052 6.0044 0.0044

Mean 15.0073 0.0073 15.0049 00049 6.0025 0.0025

2.3. Surgical Procedure

All surgical procedures were performed under general anesthesia with an intravenous injection
of Zoletil® (5 mg/kg; Virbac, Carros, France), Rompun® (2.3 mg/kg; Bayer Korea, Ansan, Korea),
and atropine sulfate (0.05 mg/kg; Jeil Pharm., Daegu, Korea). A complementary local anesthesia was
performed at surgical sites with 2% lidocaine HCL with epinephrine (1:1,000,000) (20 mg/kg; Huons,
Seongnam, Korea). On the left and right side of the mandible in all dogs, the second, third, and
fourth premolars (PM2, PM3, and PM4, respectively) and the first molars (M1) were atraumatically
extracted with flap elevation. To reduce damage to the alveolar bone, a hemisection was made in the
buccolingual direction of the teeth with diamond fissure burs. The surgical site was closed with a
suture (Monosyn 5/0, B Braun Aesculap, Tuttlingen, Germany), and the suture was removed after
1 week.

At 12 weeks after tooth extraction, an incision was made in the crest to place the implants
(Figure 4a,b). A full-thickness flap was reflected and drilled for the placement of three different
implants. The drilling sequence for the T implant was accomplished following the manufacturer’s
recommendations. The drilling sequence for the 3D implant started from the initial drill (2.2 mm
diameter), a second drill (2.6 mm diameter), two twist drills (2.9 mm and 3.35 mm in diameter), and
then ended with the countersink drill (3.6 mm diameter). The drilling sequence for the 3DS implant
started from the initial drill (2.2 mm diameter), a second drill (2.6 mm diameter), three twist drills (2.9
mm, 3.35 mm, and 3.85 mm in diameter), and then ended with the countersink drill (4.5 mm diameter).
The implants were randomly placed at three positions on each of the left side and the right side of the
mandible (six implants per dog). A random sequence was generated using the simple method of the
www.random.org website. T implants were placed using a motor-driven handpiece (EXPERTsurg™
LUX, KaVo, Germany) and 3D and 3DS implants heads were directly tapped using a surgical mallet.
Subsequently, the T implants were secured with a cover screw. The flap was repositioned and sutured
with 5/0 Monosyn® (B Braun Aesculap, Tuttlingen, Germany), and the sutures were removed 1 week
later. The surgical procedures were performed by one periodontist.

2.4. Postoperative Management

To mitigate postoperative pain and inflammation, antibiotics (Cefazoline 20 mg/kg; Chongkundang
Pharm., Seoul, Korea), analgesics (Toranzin 5 mg/kg; Samsung Pharm., Gyeonggi-do, Korea),
and antispasmodics (atropine sulfate 0.05 mg/kg; Jeil Pharm., Daegu, Korea) were intravenously
injected after tooth extraction and implant placement. In addition, antibiotics (amoxicillin 500 mg;
Chongkundang Pharm., Seoul, Korea) and analgesics (ibuprofen 400 mg, Daewoong Pharm., Seoul,
Korea) were mixed with the animals’ diet three days after the operations. All dogs were placed under
soft diet for one month after surgery to avoid any mechanical interference with the postsurgical healing,
and surgical areas were checked twice per week to confirm whether any complications had occurred.
Meanwhile, all the surgical sites were rinsed with 0.12% chlorhexidine gluconate solution after feeding
(Hexamedine®, Bukwang Pharm., Seoul, Korea).

www.random.org
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(b) horizontal incision and flap reflection, (c) 8 weeks after implant placement, and (d) periapical
radiograph of three different types of implants after 8 weeks of healing.

2.5. Implant Stability Measurements

As a result of limitations of resonance frequency analysis in measuring the 3D-printed implants’
stability, damping capacity analysis (Anycheck, Neobiotech, Seoul, Korea) was used for implant
stability analysis [15]. The implant stability measurements and periapical radiographic recordings
were performed every two weeks following implant placement under general anesthesia. Each implant
was measured five times on the buccal side. The average value of the measurements from the five
times was considered as representative for each implant.

2.6. Histologic Observation and Histomorphometric Analysis

At 12 weeks after implant placement, the beagle dogs were sacrificed by carotid injection with
potassium chloride (75 mg/kg; Jeil Pharm., Daegu, Korea). Block biopsies including the extraction
sites were collected for histologic observation and histomorphometric analysis. The specimens were
placed in a fixative solution containing 10% neutral formalin buffer for 1 week, and subsequently
dehydrated in graded ethanol solution. Thereafter, the samples were embedded in resin blocks
(Technovit 7200; Heraeus Kulzer, Hanau, Germany) with a UV embedding system (KULZER EXAKT
520, Hanau, Germany) according to the manufacturer’s recommendation. The sectioning procedure was
performed using a diamond saw. Thereafter, the sections were ground and polished to approximately
80 ± 5 µm, and then stained with Goldner trichrome. On slide scans produced at 20×magnification,
histomorphometric analysis was performed using ImageJ 1.51j8 (National Institutes of Health, Bethesda,
MD, USA) to measure bone-to-implant contact (BIC) and bone area fraction occupied (BAFO) in a
region of interest (ROI) set to the coronal half of each implant (Figure 5).

2.7. Statistical Analyses

The sample size of eight per group was obtained by power analysis under the assumption of a
mean difference of 20 among a control group and two experimental groups, with a common sd of 12
(effect size: Cohen’s f = 0.786) and 90.0% of power, 0.05 alpha level using GPower version 3.1.9.2.

Statistical analyses were performed using SPSS version 25 (IBM Software, Armonk, NY, USA).
Descriptive statistics are expressed as the mean ± standard deviation. The Kruskal–Wallis test was
used to compare the effect of different implant designs with the results of implant stability values
and histomorphometric data (BIC and BAFO) at an alpha level of 0.05. In the case of statistically
significant differences, pairwise post hoc comparisons were performed at p = 0.017 significance level
using the Mann–Whitney test under the Bonferroni-corrected significance level. The values tested
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every two weeks were used to observe the correlation of the implant stability values between the three
different implants.
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Figure 5. Schematic illustration of histomorphometric analysis in the region of interest (ROI). The ROI
was set at the coronal half of each implant (b). Areas of the mineralized bone (green) were defined
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3. Results

3.1. Clinical and Radiographic Observations

The healing of the implants was uneventful, with no clinical signs of inflammation except at two
PM2 sites—a T implant placed on the right side and a 3D implant placed on the left side.

3.2. Implant Stability Measurements

Except for two implants, the stability values for all other implants ranged from 71.18 ± 5.06 to
82.63 ± 4.09 (Table 2). There were significant differences between the three implant types at the time
of surgery (p = 0.007) and at 2 weeks post-surgery (p = 0.048). The pairwise post hoc comparisons
showed that the initial fixation force was lower for 3DS implant than for T implant (p = 0.005), but
no difference was observed after 2 weeks. In addition, no significant differences in mean implant
stability were observed from weeks 4 to 12 (Table 2). In 3D and 3DS groups, the implant stability
values decreased at the 2-week observation compared with the time of surgery; however, the values
gradually increased from week 4 to week 12. In the T group, the implant stability values decreased
until 4 weeks post-surgery, but then gradually increased from week 6 to week 12 (Figure 5).

Table 2. Comparison of implant stability measurements among the three different implants.

Time Threaded Implant
(N = 7)

3D-Printed Implant
without Spikes

(N = 7)

3D-Printed Implant
with Spikes

(N = 8)
p-Value

Surgery 83.71 ± 2.90 a) 79.49 ± 3.94 a),b) 74.05 ± 5.61 b) 0.007
2 weeks 76.29 ± 2.90 77.06 ± 2.90 71.18 ± 5.06 0.048
4 weeks 75.23 ± 3.22 77.80 ± 2.45 72.28 ± 5.52 0.112
6 weeks 75.86 ± 3.95 78.89 ± 1.37 76.00 ± 4.61 0.221
8 weeks 75.37 ± 5.29 77.89 ± 1.86 76.98 ± 3.57 0.815

10 weeks 76.11 ± 3.79 78.80 ± 1.89 77.75 ± 3.50 0.319
12 weeks 77.00 ± 4.30 80.17 ± 2.97 79.45 ± 2.74 0.349

Values are presented as the mean ± standard deviation. p-values were calculated using the Kruskal–Wallis test to
compare implant stability values among the threaded implant, 3D-printed implant without spikes, and 3D-printed
implant with spikes (p < 0.05). Pairwise post hoc comparisons were performed using the Mann–Whitney test under
the Bonferroni-corrected significance level (p < 0.017). a) b) Significant difference under pairwise post hoc test.
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3.3. Histologic Observations

A significant bone loss was found in the implants placed in the PM2 sites (a T implant and a
3D implant). These two implants were not included in the measurements. There was no evidence
of inflammatory response in any specimen examined, except for the two implants. The coronal area
of the implant showed more bone-to-implant contact, while the apical area showed relatively more
contact between bone marrow and the surface of the implants. The region within threads and within
lattices were occupied with new bone. Primary bone remodeling had nearly ceased, while secondary
remodeling was ongoing around all types of implants (Figure 6).
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3.4. Histomorphometric Analysis

Mean values (± standard deviation) of BIC and BAFO are presented in Table 3. With regard to
BIC, the T implant, the 3D implant, and the 3DS implant averaged 52.27 ± 13.78%, 59.43 ± 16.98%, and
44.28 ± 15.99%, respectively. There were no significant differences in the BICs between the three groups
(p = 0.101). The mean BAFO was 56.79 ± 11.25%, 56.98 ± 12.48%, and 45.58 ± 10.77% in T group, in
3D group, and 3DS group, respectively. No significant differences were observed between the three
groups (p = 0.288).

Table 3. Bone-to-implant contact and bone area fraction occupied in the three implant groups.

Parameter Thread Implant
(N = 7)

3D-Printed Implant
without Spikes

(N = 7)

3D-Printed Implant
with Spikes

(N = 8)
p-Value

BIC 52.27 ± 13.78 59.43 ± 16.98 44.28 ± 15.99 0.101
BAFO 56.79 ± 11.25 56.98 ± 12.48 45.58 ± 10.77 0.288

Values are presented as the mean ± standard deviation. BIC: bone-to-implant contact, BAFO: bone area fraction
occupied. p-values were calculated using the Kruskal–Wallis test (p < 0.05).

4. Discussion

In the present study, 3D-printed implants and conventional threaded implants were compared
through stability measurements and histological analysis. Overall, comparable results were found
in terms of implant stability, BIC, and BAFO irrespective of the studied implant. However, in this
study, the two-dimensional histological assessment of the bone–implant interface was performed.
This should be complemented by a 3D evaluation allowing a more accurate comparative analysis.

The lattice structure in the 3D-printed implants (3D and 3DS) did not appear to affect their stability
in bone (Table 2). Hence, the 3D implant achieved and preserved primary stability similar to the T
implant. A significant difference was found between the primary stability of the 3DS implant and
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T implant. This might be explained by the surgical preparation of the 3DS implant bed requiring a
larger osteotomy for the spikes. In turn, a gap was created between the bony walls of the surgical bed
and the surface of the 3DS implant, translating into lower implant stability measures. These values,
however, remain within the favorable range for primary stability [16]. Thereafter, the stability values
described a trend toward a decrease followed by an increase over time. This observation is related to the
discrepancy that exists between the rate of primary stability decrease and the rise of secondary stability
throughout the healing process [17,18], as reported with threaded implants [19–21]. The outcomes
from the previous studies, obtained using the resonance frequency analysis, are in line with the results
herein, although the latter were produced with the damping capacity analysis [15–22].

Several studies have previously reported the outcomes of 3D-printed titanium implants in
pre-clinical and clinical settings. Stubinger et al. [23] used the sheep pelvis model to analyze the in vivo
characteristics of implants made by direct metal laser sintering. The implants made by this technology
had a porous structure, and when compared with controls with standard machined, sandblasted, and
etched surfaces after 2 and 8 weeks, the direct metal laser sintering implant did not show significant
differences in BIC as compared with the other implants. Between the two observation time points, the
direct metal laser sintering implant showed the highest increase in BIC. Compared with the machined
implant and sandblasted and etched implant, the removal torque test of the direct metal laser sintering
implant surface showed a significant improvement in the fixed strength after 8 weeks. In the study by
Witek et al. [24] comparing a Ti-6Al-4V threaded type implant made by laser sintering to a control
group with alumina blast and acid-etched surface after 1, 3, and 6 weeks, the BIC and BAFO values of
the laser-sintered implant were higher at 1 week compared with the control group and did not show a
significant difference at 3 and 6 weeks. In addition, after 1 and 6 weeks, the laser sintering implant
showed a significantly higher removal torque value. Likewise, in a 1-year follow-up of 3D-printed
custom-made implants in humans, no impairment of stability or signs of infection were observed
simultaneously with a complete function and aesthetic integration [6–25]. Another 3-year follow-up
clinical trial reported a survival rate of 94.5% and a crown success rate of 94.3% with 3D-printed
implants [26]. Although the direct comparison of the previous studies might be questioned with regard
to the different experimental protocols and implants used, the reported results overall indicate that the
bone around implants made by 3D-printing displays favorable remodeling features and biomechanical
stability. It can also be seen that the 3D printing manufacturing process does not adversely modify the
biological or chemical properties of the material.

The microscopic factors and macroscopic factors of the implant are essential factors for implant
stability and biological response [27]. To stimulate the growth of new bone into the pores, a materials’
porosity superior to 60% is required [28]. This porosity can lead to interconnected porous structures,
which facilitates cell ingrowth into porous spaces and facilitates vascularization and metabolite
transport [28]. The three-dimensional lattice structure was used to increase the surface area of the
3D-printed implants. Therefore, the lattice structure surface with a porosity of 70% used in this
study promotes the growth of new bone into pores to increase bone fixation. To mitigate bacterial
colonization around the implant–bone interface, a lattice structure was not used at the top 1.5 mm of
the implant texture. The implant with the SLA surface has better cell adhesion and bone neoformation
than the machined surface [29]. In this study, 3D-printed implants with untreated surface and threaded
implants with SLA surface were compared, and there was no statistically significant difference in
histological and biomechanical properties. It is the lack of this research that brings micro and macro
factors into the equation. In a follow-up study, SLA surface treatment will be performed on the
3D-printed implant to compensate for the limitation of this pilot study. Several animal models have
been used for evaluating the biocompatibility of implants, but the canine model is known to be the
most appropriate for implant material testing thanks to its close similarity in bone composition to
humans [30,31]. A small amount of research has been conducted thus far on 3D-printed dental implants.
In this perspective, the present study provides useful data for the characterization of bone healing at
the surface of 3D-printed implants.
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5. Conclusions

Within the limits of this study, both types of 3D-printed implants tested in the present study (3D
and 3DS) showed comparable implant stability as well as BIC and BAFO values with T implants up to
12 weeks following insertion.

Author Contributions: Conceptualization, J.L. and K.-T.K.; methodology, Y.-M.L., P.K., and B.K.; software, J.L.
and L.L.; validation, H.B.A. and K.-S.L.; formal analysis, J.L and L.L.; investigation, L.L.; resources, K.-T.K.; data
curation, L.L.; writing—original draft preparation, L.L. and J.L.; writing—review and editing, H.B.A., J.-B.L.,
K.-S.L., S.-W.S., Y.-M.L., P.K., B.K., and K.-T.K.; visualization, J.-B.L. and L.L.; supervision, J.L. and K.-T.K.; project
administration, S.-W.S. and K.-T.K.; funding acquisition, S.-W.S. and K.-T.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Industrial Strategic Technology Development Program—Development
of Material Component Technology (20001221, “Development of high strength and fatigue resistance metal and
manufacturing technology for root analogue dental implants”) funded by the Ministry of Trade, Industry, &
Energy (MOTIE, Korea).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Smithloff, M.; Fritz, M.E. The Use of Blade Implants in a Selected Population of Partially Edentulous Adults:
A Ten-Year Report. J. Periodontol. 1982, 53, 413–418. [CrossRef] [PubMed]

2. Scortecci, G. Immediate function of cortically anchored disk-design implants without bone augmentation in
moderately to severely resorbed completely edentulous maxillae. J. Oral Implant. 1999, 25, 70–79. [CrossRef]

3. Gaviria, L.; Salcido, J.P.; Guda, T.; Ong, J.L. Current trends in dental implants. J. Korean Assoc. Oral Maxillofac.
Surg. 2014, 40, 50–60. [CrossRef] [PubMed]

4. Harris, W.H.; White, R.E.; McCarthy, J.C.; Walker, P.S.; Weinberg, E.H. Bony Ingrowth Fixation of the
Acetabular Component in Canine Hip Joint Arthroplasty. Clin. Orthop. Relat. Res. 1983, 1983, 7–11.
[CrossRef]

5. Chen, J.; Zhang, Z.; Chen, X.; Zhang, C.; Zhang, G.; Xu, Z. Design and manufacture of customized dental
implants by using reverse engineering and selective laser melting technology. J. Prosthet. Dent. 2014, 112,
1088–1095.e1. [CrossRef] [PubMed]

6. Mangano, F.G.; Cirotti, B.; Sammons, R.L.; Mangano, C. Custom-made, root-analogue direct laser metal
forming implant: A case report. Lasers Med. Sci. 2012, 27, 1241–1245. [CrossRef] [PubMed]

7. Mangano, C.; Mangano, F.G.; Shibli, J.A.; Ricci, M.; Perrotti, V.; D’Avila, S.; Piattelli, A. Immediate Loading of
Mandibular Overdentures Supported by Unsplinted Direct Laser Metal-Forming Implants: Results From a
1-Year Prospective Study. J. Periodontol. 2012, 83, 70–78. [CrossRef] [PubMed]

8. Traini, T.; Mangano, C.; Sammons, R.; Macchi, A.; Piattelli, A. Direct laser metal sintering as a new approach to
fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.
Dent. Mater. 2008, 24, 1525–1533. [CrossRef]

9. Ciocca, L.; Fantini, M.; De Crescenzio, F.; Corinaldesi, G.; Scotti, R. Direct metal laser sintering (DMLS)
of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches.
Med. Biol. Eng. Comput. 2011, 49, 1347–1352. [CrossRef]
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