
materials

Review

Joining of the Laminated Electrical Steels in Motor
Manufacturing: A Review

Cunjuan Xia, Hongze Wang * , Yi Wu and Haowei Wang

State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao
Tong University, No. 800 Dongchuan Road, Shanghai 200240, China; xiacunjuan@sjtu.edu.cn (C.X.);
eagle51@sjtu.edu.cn (Y.W.); hwwang@sjtu.edu.cn (H.W.)
* Correspondence: hz.wang@sjtu.edu.cn

Received: 3 September 2020; Accepted: 13 October 2020; Published: 15 October 2020
����������
�������

Abstract: In recent years, the motor has been increasingly used to replace the conventional gasoline
engine for carbon emission reduction, and the high-performance motor is urgently required. The stator
and rotor in a motor are made of hundreds of joined and laminated electrical steels. This paper covers
the current research in joining the laminated electrical steels for the motor application, together with
the critical assessment of our understanding. It includes the representative joining method, modeling
of the joining process, microstructure of the weld zone, mechanical strength and magnetic properties.
The gaps in the scientific understanding, and the research needs for the expansion of joining laminated
electrical steels, are provided.

Keywords: electrical steel; joining and welding; microstructure; magnetic property;
mechanical property

1. Introduction

As a machine to transform the electrical energy into mechanical energy, a motor has been widely
used as the traction machine in industry equipment [1–7], e.g., electrical vehicle, electrical airplane,
electric ship, and so on. Electrical steel [8–11], a high silicon (2–5.5 wt% Si) [12,13] and thin sheet
(0.2–0.65 mm) steel [14], is the soft magnetic material for the stator and rotor in a motor [15–17].
The addition of silicon to iron results in a decrease in coercivity and an increase in resistivity [12,18–22].
Furthermore, the reduction of the sheet thickness results in the reduction of the eddy current loss
in the electrical steel when put in the alternating magnetic field environment [14,23,24]. The stator
and rotor in a motor are made of hundreds of laminated and joined thin electrical steel sheets [25],
which could reduce the eddy current loss and improve efficiency. There are insulation coatings on both
sides of the electrical steel sheet to cut off the interlaminar eddy current when hundreds of electrical
steels are laminated in the motor application [26–36]. Generally, the goal of joining the laminated
electrical steels is to ensure the mechanical strength of the laminations [37], while the joining process
will lead to the degradation of the magnetic properties due to the damage of the insulation coating [38],
the modification of the microstructure [39,40], the introduction of the residual stress [41], and so on.
It is a great challenge to reach the trade-off between mechanical strength and magnetic properties [42].
Besides, the structure of the laminated electrical steels is different from the conventional lapped or
butted sample, and the conventional knowledge about joining may not work for joining the laminations.
Finally, it is important to study the joining of the laminated electrical steels, which could speed up the
roadmap towards high-quality motor manufacturing.

Figure 1 shows the number of papers in the Scopus database about the joining and welding of
laminated electrical steels. As shown, it is an emerging research topic with rapidly increasing speed in
the last decade. There is no doubt that more research about this topic will appear along with the rapid

Materials 2020, 13, 4583; doi:10.3390/ma13204583 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-8484-1805
http://www.mdpi.com/1996-1944/13/20/4583?type=check_update&version=1
http://dx.doi.org/10.3390/ma13204583
http://www.mdpi.com/journal/materials


Materials 2020, 13, 4583 2 of 21

increase of the electric vehicle market. In this manuscript, the current progress in joining the laminated
electrical steels is summarized, the gaps in the scientific understanding and the research needs in this
field are provided based on the authors’ research experiences.
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Figure 1. The number of papers in Scopus varying with the year when searching with the combined
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2. The Representative Joining Method

Currently, the joining method for the laminated electrical steels could be generally categorized into
three types: glue join [26,43], mechanical join [44] and fusion welding [45], as shown in Figure 2 [40].
The advantage of the glue-join method was that it did not destroy the insulation coating. Kaido et al. [26]
measured the magnetic and mechanical characteristics of adhesive coating non-oriented electrical steel
sheet cores in the conditions of motor and found that the deteriorations of iron losses and exciting
currents by adhesion were less than those by welding. Schoppa et al. [46] coated the electrical steel
laminations with the adhesive varnish, then the laminations were stuck together during a thermally
activated process. Their experimental results showed that the increase of the specific core loss after
sticking was very low, and they concluded that sticking was from the magnetic point of view one of
the best methods of assembling laminations into magnetic cores. The glue-join method also allowed
homogenous electrical isolation, reduced acoustic emission, and behaved high thermal conductivity
in service [26,43]. Generally, the composition of the glue varies with the supplier, including the
organic glue, inorganic glue and their combinations. However, the biggest obstacle for the large-scale
application of this technique was the concern about the mechanical failure of the adhesion under the
periodic load condition at an elevated temperature during the operation of the motor [47]. Besides,
the cost was also higher than the other joining methods [46].

Both mechanical joining [44,48–50] and fusion welding [37,38,46,51,52] are widely used to join the
laminated electrical steels at present. Senda et al. [44] compared the effects of two representative V-type
mechanical interlocking methods, dowel formation and dowel jointing on the magnetic properties
of the joined ring core sample made of the electrical steel laminations, they found that two methods
showed comparable contributions to iron loss increase at low frequencies (e.g., 50 Hz), whereas,
increases in iron loss due to dowel jointing were greater than those due to dowel formation at high
frequencies. Imamori et al. [49] investigated the influence of interlocking on the magnetic properties of
ring cores by measurement, and they observed that the inverse of permeability and iron loss increased
linearly with the number of interlocks. The mechanical joining process is usually combined with the
punching process in the progressive stamping die process. Finally, the cost of the mechanical joining
process is a bit lower than that of the welding process. The disadvantage of the mechanical joining
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method is the lower strength at the direction perpendicular to the electrical steel surface compared to
that of the fusion welded joint. Besides, the mechanically joined joint has a lower fatigue life under the
periodic loads than that of the welded joint. In the case with the high strength requirement, several
fusion welding passes were jointly used to enhance the strength of the mechanically joined sample.

The heat source used in fusion welding of the electrical steel laminations includes laser [37],
electron beams [53], plasma arcs [39], electric arcs (TIG, GTA, CMT) [51,54], and so on. As a high
efficiency and high-quality fusion welding method, laser welding was thought to be a potential method
for welding of the electrical steel laminations in the high-performance motor application [37,40,42,51,55].
Compared to the other fusion welding methods, laser welding could achieve a smaller heat affected
zone, induce lower residual stress, and finally obtain the welded electrical steel laminations with
higher magnetic properties. Figure 3 shows the schematic of laser welding of laminated electrical steel
laminations [40]. The moving energy beam melt the edge of the laminations continuously and the
effective joint was formed at the interfaces of the laminations.

Table 1 shows the representative research in the joining of laminated electrical steels. The critical
factors affecting joining the laminated electrical steel laminations are as follows: (a) the special structure
of the laminations made of hundreds of electrical steel sheets; (b) the insulation coating on both
sides of the electrical steel sheet, which affects the dynamics of the molten pool during the fusion
welding process because of the entrapped bubbles due to the pyrolysis of the coating and may induce
pores in the weld seam; (c) the comprehensive requirement of the strength and magnetic property.
The following sections will summarize the current research in joining of laminated electrical steels,
which provides a better understanding of the joining process with great demands from the industry.
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Table 1. Representative research in the joining of laminated electrical steels.

Joining Method Research Content Year Reference

Continuous laser welding

Strength: both the strength and the fatigue
behavior of the weld material showed no

appreciable difference to the base material;
Microstructure: completely ferritic in both

the base material and the weld seam;
Defect: pores observed in the weld seam

2014 [37]

Continuous laser welding

Model for torsion strength: mathematical
model with the function to estimate the

strength of the welded laminations based
on the welding parameters

2015 [56]

Continuous laser welding

Strength of the welded ring stator: increase
with the heat input; Microstructure ferrite

in the weld seam; Magnetic property:
deteriorate with the heat input

2016 [40]

Continuous laser welding

Simulation of temperature distribution:
discontinuous temperature distribution in
the heat affected zone due to the hinder of

the interface

2015 [47]

Continuous TIG welding

Strength, microstructure, magnetic
property: TIG welded joint has higher

strength, coarser grain and worse magnetic
property than laser welded joint

2017 [51]

Continuous welding
Magnetic property: mathematical model

and FEM model were developed to
estimate the eddy current loss

2017 [57]

Mechanical joining Interlaminar eddy currents mainly affect
the iron loss of the local zone. 2017 [49]

Glue

Mechanical property: critical adhesive
shear angle values of about 5◦ were
obtained for all laminate samples,

independent of the steel substrates used to
create the laminates

2018 [26]

Adaptive pulsed spot welding
Possibility of the adaptive pulsed spot
welding for laminated electrical steels

was proved.
2014 [55]

Statistical distribution of single
welding spots

The strategy of distributed welding spot
shows promising results to decrease the
magnetic deterioration, especially as an

approach for higher frequency applications

2018 [42]
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3. Characteristics of the Joined Zone

As high silicon (2–5.5 wt% Si) [12,13] and low carbon steel, the basic ferric phase appears in
the base material of the electrical steel. Wang et al. [40] investigated the surface morphology and
microstructure of the laser-welded electrical steel laminations joint. As shown in Figure 4, the surface
of the weld seam has a good quality and there is no obvious defect there. Because of the high content of
the silicon element, the weld seam zone is still made of the ferric phase even if it solidifies with a high
cooling rate. Epitaxial growth based on the grains at the base metal happens, and columnar grains
growing towards the direction of the temperature gradient appears in the weld seam zone. Small pore
defects are observed in the zone near the boundary of the weld seam [40]. This research provides an
insight into the microstructures at both the surface and the interior of the laser welded electrical steel
joint. Senda et al. [44] investigated the characteristics and hardness distribution of the mechanically
interlocked joint. As shown in Figure 5, the large local deformation at the edge of the dowel led to the
interlock between the laminations, and hardness of the edge zone increased due to the strengthening
effect. This research provides a clear insight into the shape and hardness of the mechanical interlocked
joint. However, current research about the characteristics of the joined zone of the electrical steel
laminations is still limited, much work is required to clarify the processing parameter window for
defect-free joint, the grain size and orientation, and so on.Materials 2020, 13, x FOR PEER REVIEW 7 of 23 
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Figure 5. Cross-sectional view and hardness distribution of the mechanical interlock joint: (a) Along
the short edge direction; (b) along the long edge direction [44]. The microhardness was measured
every 0.1 mm.

4. Simulation of the Joining Process

The simulation will act as a useful tool to reveal the mechanism underlying the process of joining
the laminated electrical steels. Though this method has been widely used in the field of joining
and welding of various materials [58,59], the research about the simulation of joining the laminated
electrical steels is still at the initial stage [47]. One of the difficulties in the simulation of welding the
laminated electrical steels is how to describe the effect of the interfaces on the heat transfer during
the welding process. Wang et al. [47] developed a thermal analysis finite element model in ANSYS to
calculate the temperature distribution and analyze the evolution of the interfaces during laser welding
of the laminated electrical steel laminations, as shown in Figure 6. In the model, the technique of
“birth” and “death” element was used to describe the effects of the interfaces on the heat transfer,
where two groups of values for the thermal contact conductance were used respectively to describe
the heat transfer ability of the interface before and after melting. Based on this model, the simulated
molten pool fit well with the experimental one. In the future, much work should be done to analyze the
flows of the material at the interface, the evolution of the temperature and residual stress, and so on.
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Figure 6. (a) Schematic of the heat transfer process at the longitudinal section of the weld seam during
the welding process; (b) simulated non-uniform temperature distribution at the longitudinal section
of the weld seam because of the hindrance of the interface on heat transfer; (c) simulated uniform
temperature distribution at the longitudinal section of the weld seam when the interface was melted
due to absorbing the energy of laser [47].
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5. Mechanical Properties

The greatest challenge in joining the laminated electrical steels is to achieve excellent mechanical
properties and magnetic properties at the same time. Though the stator and rotor in a motor do not
have high requirements for the joint strength between the laminations, it is still important to evaluate
the shear strength and the fracture shear strain of the joint. Figure 7 shows the schematics for measuring
the shear strength of the bonded laminations and the fracture strain. In the sample preparation stage,
the adhesive was first applied to square steel sheets using a doctor knife and was pre-crosslinked to a
non-sticky stage, then the steel sheets with pre-cured adhesive were stacked to form a 6-layer laminate
and cured at 160 ◦C for 90 min [26]. The three-point bending experiment was used to measure the
shear strength of the bonded laminations, and the shear fracture strain could be measured by the
digital image correlation method [26]. This is a useful method to evaluate the mechanical properties of
the bonded laminations, while may not work well for the mechanically interlocked or fusion-welded
ones due to the small joining area in these two methods.Materials 2020, 13, x FOR PEER REVIEW 9 of 23 
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Figure 7. Schematic illustration of surface discretization by facets required for full-field strain analysis
at an initial stage and an idealized deformed stage, before (left) and after (right) ultimate failure, the
schematic illustration of dynamic mechanical analysis setup in the three-point bending mode with
relevant support distance was also laid out at the left corner [26]. In this literature, the adhesive was
first applied to square steel sheets using a doctor knife and was pre-crosslinked to a non-sticky stage,
then the steel sheets with pre-cured adhesive were stacked to form a 6-layer laminate and cured at
160 ◦C for 90 min.

To measure the torsion strength of the fusion-welded ring electrical steel laminations,
Wang et al. [40] developed a three-jaw chuck adaptor, which was assembled with a torsion testing
machine, as shown in Figure 8. This system was successfully used to measure the torsion-property
of the laser welded ring sample, and could also be expanded to measure the torsion property of the
ring sample joined by mechanical interlock and glue, as well as the joined stator and rotor in an actual
motor. In the actual application, the rectangular electrical steel laminations sample has been widely
used at the stage of hunting the processing parameter window. To measure the shear strength of the
weld seam in the rectangular sample, Zhang et al. [51] designed a special structure, where two weld
seams were symmetrically distributed at each edge of the sample, as shown in Figure 9. These systems
act as useful tools to evaluate the strength of the joined laminations with different geometric shapes.
In the future, the digital image correlation method could also be used to measure the local strain during
the loading process.
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electrical steels [51]. Weld seams were set symmetrically at two sides of the specimen to keep the
balance during the lap shear process.

6. System to Measure the Magnetic Properties

Magnetic properties are the other indicators to evaluate the performance of the welded electrical
steel laminations except for the torsion strength. Wang et al. [40] adopted an experimental system to
measure the magnetic properties of the welded electrical steel laminations, as shown in Figure 10.
The measurement principle of the system was as follows [40]:
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(1) The iron loss of the welded laminations could be calculated by Equation (1):

Ps =
1
ρ1T

∫
t

H
dB
dt

dt (1)

where ρ1 was the density of the electrical steel sample, T was the period of time in the measurement.
(2) The magnetic field H was calculated by Equation (2):

H =
N1I1

L
(2)

where N1 was the primary winding turns, I1 was the current in the primary winding, and L was the
length of the equivalent magnetic circuit, which could be calculated by Equation (3):

L = π(D1 + D2)/2 (3)

where D1 was the external diameter of the ring laminations, and D2 was the internal diameter of the
ring laminations.

(3) the magnetic flux density through the laminations was calculated by Equation (4):

B = −
1

N2S

∫
U2dt (4)

where N2 was the secondary winding turns, U2 was the voltage between the secondary winding, and S
was the section area of the secondary winding, which could be calculated by Equation (5):

S = h(D1 −D2)/2 (5)

where h was the height of the ring laminations.
Before the experiment, the welded sample was winded, and the numbers of the primary

winding turns and the secondary winding turns were counted, respectively. The other papers also
mentioned similar experimental systems to measure the magnetic properties of the electrical steel
laminations [48,60,61], and all these systems were developed based on the same principle.
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The mechanical interlock and the fusion welding lead to the connection of the electrical steel 
laminations, which will increase the eddy current loss. Lamprecht et al. [62] developed a finite 
element model to identify the eddy current characteristics within the laminated stack and calculate 
the losses in the mechanically interlocked stack, the results showed that the eddy current losses 
increased for the interlocked sample in comparison to a perfectly insulated reference sample (Figure 
11a,b). They also addressed the combination of the stacking impact and an additional electrical 

Figure 10. System to measure the magnetic properties: (a) The schematic; (b) the winded sample [40].
I1 was the current in the primary winding, I(t) represented the module generating the current varying
with the time, R represented the resistance module, U2 was the voltage between the secondary winding,
A represented the analog signal processing module, D represented the digital signal processing module,
and PC represented the personal computer.
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7. Eddy Current Loss Increase Induced by the Joining Process

The mechanical interlock and the fusion welding lead to the connection of the electrical steel
laminations, which will increase the eddy current loss. Lamprecht et al. [62] developed a finite element
model to identify the eddy current characteristics within the laminated stack and calculate the losses
in the mechanically interlocked stack, the results showed that the eddy current losses increased
for the interlocked sample in comparison to a perfectly insulated reference sample (Figure 11a,b).
They also addressed the combination of the stacking impact and an additional electrical connection
of the laminations as it may occur when the stator cores were pressed into an electrically conductive
housing (Figure 11c,d). Wang et al. [57] developed a mathematical model based on the equivalent
circuit method to calculate the eddy current loss in the welded electrical steel laminations, and the
finite element model was also built to estimate the eddy current distribution in the local weld zone,
as shown in Figure 12. The estimated eddy current loss by the mathematical model fit well with that
by the finite element model, thus, the mathematical model could estimate the eddy current loss of the
welded laminations in the actual motor with high calculation efficiency, while the finite element model
could estimate the local distribution of the eddy current loss in the weld seam zone with high accuracy.
Finally, both the mathematical model and the finite element model could behave as a useful tool to
estimate the eddy current losses in the welded electrical steel laminations, towards high magnetic
property welding of the laminations.
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Figure 11. Cross-section view of: (a,b) interlocked electrical steel laminations; (c,d) with nickel coating
at the edge. (a,c) entire cross section. (b) interlock area detail of (a); (d) interlocking/nickel coating area
detail of (c) [62]. The arrows represent the eddy current density and direction, five laminations, 400
Hz/1.0 T. The length scales have been added to the figure and the font size of the eddy current scales
have been enlarged to make them more visable.
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Figure 12. (a) Schematic of the welded electrical steel laminations; (b) schematic of the eddy current
distribution at the cross section of the welded laminations under alternative magnetic field environment;
(c) simulated eddy current loss distribution at the cross section of the laminations without welding;
(d) simulated eddy current loss distribution at the cross section of the welded laminations through the
weld seam [57].

8. Stress Induced Magnetic Properties Degradation

Manufacturing process, e.g., punching or cutting [63–65], welding [46], pressing and
shrink-fitting [66] produced residual stress, which was also reported to lead to the degradation
of the magnetic properties [67–77]. Karthaus et al. [78] developed an approach for modeling
stress-dependent magnetic material properties such as magnetic flux density using a continuous
local material model, and the presented model allowed a simple determination of model parameters
by using stress-dependent magnetic material measurements, as shown in Figure 13a. The results of the
mechanical stress-dependent hysteresis curves for tensile stress for 50 Hz were shown in Figure 13b.
It can be observed that tensile stress caused a shear of the hysteresis curves. Thus, the magnetic
properties such as magnetic remanence or iron losses were altered by the mechanical stress [78].
The following model could describe the magnetic flux density degradation because of the motivation
of the mechanical stress [78], B(σ, H) = µ0H[µr(σ = 0, H) − ∆µσ(H)G(σ)], where H was the strength
of the magnetic field, σwas the impressed mechanical stress, µ0 was the magnetic permeability of a
vacuum, µr was the relative magnetic permeability of the material, ∆µσ reflected the degradation of
the magnetic permeability and G was the function describing the influence of the mechanical stress
on the magnetizability of the material. Other papers also discussed the effects of the microstructure
modified by the manufacturing process on the magnetic properties [79–93]. Generally, the hysteresis
loss decreased and excess loss increased with increasing grain size [81,82]. In the future, it is important
to correlate the magnetic properties with the microstructure of the material under different loads,
e.g., grain size, grain orientation and magnetic domain. Besides, in-situ observation of the dynamic
magnetic domain under the loading conditions will provide a better understanding of the magnetic
properties degradation induced by the manufacturing process [94–100].
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Figure 13. (a) Measurement principle for the load-related magnetic property; (b) measured hysteresis
curves at different tensile stresses at 50 Hz for M400-50A [78]. In the experimental system, the force was
loaded onto the specimens via the clamping jaws, where one side was fixed, and the other side was
moveable and controlled by the pressure cylinder. The stress and magnetic flux were applied collinearly.

9. Comparison between Current Fusion Welding Methods

Compared to mechanical interlock and glue join, fusion welding is the most reliable method to join
the electrical steel laminations for the high-performance motor application. Towards finding the best
welding solution, various researchers have compared the current fusion welding methods [42,51,54,55].
Zhang et al. [51] compared the microstructure, mechanical performance, residual stress and magnetic
properties of the electrical steel laminations welded by laser and TIG, as shown in Figure 14. Because of
the larger heat input, the geometry size of the weld bead in TIG welding was larger than that in laser
welding, which led to higher tensile shear strength. The eddy current loss in TIG-welded laminations
was larger than that in laser-welded laminations because of the larger connection area between the
laminations. Besides, the magnitude of the residual stress in TIG-welded laminations was also larger
than that in laser-welded laminations, which led to severe degradation of the hysteresis property.
To sum up, the heat input of laser was much more concentrated and controllable than that of TIG,
and laser should be a better heat source for high quality welding of the electrical steel laminations.
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Figure 14. Comparison between TIG welding and laser welding: (a) Maximum shear strength; (b) eddy
current distribution; (c) residual stress distribution; (d) hysteresis curve. The larger heat input in TIG
welding leads to a larger cross section in the welded laminations, which then leads to larger shear
strength and eddy current. The magnitude of the residual stress in TIG welding in the zone far away
from the weld seam is larger than that in laser welding, and the hysteresis property in TIG welded
sample has more severe degradation than that in laser-welded sample [51].

Leuning et al. [42] developed a novel welding strategy for electrical steel laminations using the
statistical distribution of single laser welding spots alongside common linear welding lines across the
entire height of the laminations, rather than the commonly used welding techniques of perpendicular
lines that connect the whole laminations. The authors compared the novel welding strategy with
the conventional ones, as shown in Figure 15. The experimental results showed that ring cores with
perpendicular welding lines had a lower loss and better magnetization than both regarded modifications
with distributed welding spots at low frequencies, which was due to the mechanical residual stress
state of the ring cores induced by the thermal impact of welding. Additionally, the volume of the
affected microstructure was smaller for the welding lines. At increasing frequencies, the eddy current
component became dominant and the relative loss increase became distinctly smaller for the spot
welded samples. The research result proved that the presented novel welding strategy was promising,
especially as an approach for the high frequency applications.
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enabled the precision welding at the interface of the electrical steel laminations. The experimental 
results showed that the developed pulsed spot welds produced lower specific power losses and 
increased the relative permeability of the samples in comparison with the conventional continuous 
laser welding that was widely used in industrial production. This method brought advantages to the 
production as well as to the final product and had great potential to be implemented in industry, 
though much work should be done for optimization. Ziegler et al. [101] concluded that quality control 
was also important for improving the welding quality, where process monitoring could be integrated 
into the welding system to control the quality and to optimize the parameters accordingly. The optical, 
spectral, thermal and acoustic sensors, which were increasingly being used separately or in 
combination, were particularly suitable for this purpose. For the evaluation of the measurement data, 
the intelligent approaches, e.g., machine learning, promised great potential. For the large-scale 
application of these novel welding technologies, it is important to have a comprehensive 
investigation about the welding quality, microstructure, mechanical properties and magnetic 
properties. Besides, the cost of both the welding system and welding each stator should also be 
considered, together with the robustness of the welding process and the life of the welding system. 

Figure 15. Comparison between line-welded laminations and spot-welded laminations: (a) Ring core 1,
two linear welding lines; (b) ring core 2, four linear welding lines; (c) ring core 3, spirally oriented
welding spots; (d) ring core 4, statistical distribution of welding spots; (e) cross section of the line weld;
(f) cross section of the spot weld; (g) magnetic loss at 50 Hz and 1000 Hz and magnetic induction
strength of 1.0 T for different cores. Magnetization curves of Ring cores 1–4 at different frequencies:
(h) 50 Hz; (i) 1000 Hz [42]. The inner diameter of the Ring laminations was 48 mm and the outer
diameter was 60 mm. As shown in (h,i), the magnetic polarization at a specific magnetic field strength
follows the descending order of Ringcore 1, Ringcore 2, Ringcore 3 and Ringcore 4.

Vegelj et al. [55] developed and presented an experimental system for a new technique of adaptive
and pulsed laser welding of electrical steel laminations, as shown in Figure 16. The system was
based on on-line monitoring of the gap positions between the electrical laminations and thus enabled
the precision welding at the interface of the electrical steel laminations. The experimental results
showed that the developed pulsed spot welds produced lower specific power losses and increased the
relative permeability of the samples in comparison with the conventional continuous laser welding
that was widely used in industrial production. This method brought advantages to the production
as well as to the final product and had great potential to be implemented in industry, though much
work should be done for optimization. Ziegler et al. [101] concluded that quality control was also
important for improving the welding quality, where process monitoring could be integrated into the
welding system to control the quality and to optimize the parameters accordingly. The optical, spectral,
thermal and acoustic sensors, which were increasingly being used separately or in combination,
were particularly suitable for this purpose. For the evaluation of the measurement data, the intelligent
approaches, e.g., machine learning, promised great potential. For the large-scale application of these
novel welding technologies, it is important to have a comprehensive investigation about the welding
quality, microstructure, mechanical properties and magnetic properties. Besides, the cost of both the
welding system and welding each stator should also be considered, together with the robustness of the
welding process and the life of the welding system.



Materials 2020, 13, 4583 15 of 21
Materials 2020, 13, x FOR PEER REVIEW 17 of 23 

 

 
Figure 16. Comparison between line-welded laminations and adaptive pulsed-laser spot welded 
laminations: (a) Classic continuous welding; (b) adaptive continuous welding; (c) classic pulsed 
welding; (d) adaptive pulsed welding. A typical weld on laminations produced by: (e) classic pulsed-
welding method; (f) adaptive pulsed-laser welding method. (g) the specific power losses (PS) and (h) 
the relative permeability (µr) as a function of the total-pulse energy for a real stack welded with the 
classic, continuous-welding technique (triangles) and adaptive pulsed method (squares) [55]. 

10. Summary and Future Development 

A comprehensive investigation about the effects of the joining process on the performance of the 
stator is required. The mechanical strength, fatigue life, and magnetic properties of the joined 
electrical steels are the indicators for the performance evaluation, especially the values of these 
indicators at an elevated temperature. Besides, the cost of each joining method also should be 
identified. 

Much more work should be conducted to reveal the mechanism for magnetic properties 
degradation. The in-situ experiment may be a useful method to measure the magnetic properties of 
the joined electrical steels. For example, the temperature distribution in the joined electrical steels 
may be in-situ measured by the thermal imager [102], which could be used to validate the energy loss 
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Figure 16. Comparison between line-welded laminations and adaptive pulsed-laser spot welded
laminations: (a) Classic continuous welding; (b) adaptive continuous welding; (c) classic pulsed
welding; (d) adaptive pulsed welding. A typical weld on laminations produced by: (e) classic
pulsed-welding method; (f) adaptive pulsed-laser welding method. (g) the specific power losses (PS)
and (h) the relative permeability (µr) as a function of the total-pulse energy for a real stack welded with
the classic, continuous-welding technique (triangles) and adaptive pulsed method (squares) [55].

10. Summary and Future Development

A comprehensive investigation about the effects of the joining process on the performance of the
stator is required. The mechanical strength, fatigue life, and magnetic properties of the joined electrical
steels are the indicators for the performance evaluation, especially the values of these indicators at an
elevated temperature. Besides, the cost of each joining method also should be identified.

Much more work should be conducted to reveal the mechanism for magnetic properties
degradation. The in-situ experiment may be a useful method to measure the magnetic properties of
the joined electrical steels. For example, the temperature distribution in the joined electrical steels
may be in-situ measured by the thermal imager [102], which could be used to validate the energy loss
distribution in the electrical steels calculated by the thermal finite element model. The variation of the
magnetic domain in the electrical steel at the external load condition under the alternating magnetic
field environment may be in-situ measured by the neutron grating interferometry [103], magnetic force
microscopy [104], magneto-optical indicator film [105], which could help understand the stress induced
magnetic properties degradation.

Besides, there is still a huge space to optimize the process of joining the laminated electrical steels.
More experiments could be conducted to build the relationship map between the process parameters
and performance of the joined laminations, and the simulation model could help to understand the
mechanism underlying the experimental phenomena.

In the current simulation model for welding of the laminated electrical steels, the birth and death
element technique was adopted to describe the rapid increase of the thermal contact conductance when
the interfaces between the laminations were melted due to laser irradiation. Though this method could
characterize the effects of interfaces on the heat transfer during the welding process, the gap filling
and residual stress evolution process still could not be analyzed. Finally, the thermal-mechanical-fluid
coupled model will be developed to have an in-depth understanding of this welding process.

Most of the current research focused on evaluating the performance of the welded laminations,
while did not reach the performance of the actual motor. The effects of the welding process on the
performance of the motor investigated by both experiment and simulation are the future trend [38],
which could build a direct relationship between the welding process and the final performance of
the motor.
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