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Abstract: Cu-Al-Cu laminated composite was prepared with cold roll bonding process and annealing
was carried out to study the phase evolution during the annealing process and its effect on the
mechanical properties of the composite. The experimental results showed that after annealing the
brittle intermetallics in the interface mainly includes Al4Cu9, AlCu and Al2Cu. With the increase of
annealing temperature, the tensile strength of the composite decreases and the elongation shows a
different variation which increases at the beginning and then decreases after a critical point. This
phenomenon is related to the evolution of intermetallic compounds in the interface of the composite.
It was also found that the crack source of the tensile sample is in the interface and delamination
appeared at high annealing temperature (450 ◦C).
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1. Introduction

Cu/Al clad laminated composites have been successfully utilized in the fields of electrical and
electronic components, coins and decorative materials, due to their advantages associated with high
conductivity, low density, good surface performance and price competitiveness over copper and copper
alloys [1–3]. A Cu/Al clad laminated composite can reduce up to 50% in weight in comparison to
equivalent electrical and thermal conductivity of some copper alloys and, the cost can be reduced by
30–50% compared with copper [4]. With both weight reduction and cost saving, Cu/Al clad laminated
composite has the ability to replace Cu and Cu alloys in many fields. The research work on the Cu/Al
clad laminated composite is still a hot topic and has attracted the interest of many investigators and
engineers. Studies on the diffusion bonding, friction-stir welding, hot rolling and cold rolling [3–7] to
prepare Cu/Al clad laminated composite have been extensively carried out. Cold rolling has proven to
be a successful method to produce Cu/Al clad laminated composites due to the controlled intermetallics
layer. Reduction ratio [8] is one of the key parameters for the cold roll bonding process and reduction
of 60% of a single pass is usually needed for successful bonding. Asymmetrical cold rolling [9,10] was
further developed to produce Cu/Al clad laminated composites with better bonding effect. It was
shown that asymmetrical cold rolling provides a remarkable cross shear stress, contributing to the good
bonding of the composite. However, a high mismatch speed ratio can reduce the interface bonding
strength due to the decrease of rolling force [11]. For the cold rolled Cu/Al clad laminated composites,
annealing is needed to soften the material and control the intermetallics layer for the application or
further deformation. During the annealing process there will be a brittle CuxAly intermetallics layer
in the interface due to the mutual diffusion of Cu and Al [12]. However, the formation of brittle
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CuxAly intermetallic compound at elevated temperature could deteriorate the mechanical and electrical
reliability of Cu/Al clad composites. Interfacial structure and properties of Cu/Al clad composites have
been studied by many investigators [13–15]. Sasaki [16] found that there are continuous intermetallic
phases of Al2Cu, AlCu and Al4Cu9 formed at the Cu/Al interface and drawing after annealing results
in the formation of ultra-fine copper grains with an approximate diameter of 200 nm near the newly
created Cu/Al interface. Hwang et al. [3] and Bellido et al. [12] found that the Cu/Al interface is a
three-layer structure including Al2Cu, AlCu + Al3Cu4 and Al4Cu9. The effect of annealing on the
intermetallic phases was also extensively investigated and it was concluded that the thickness of
the intermetallics layer increases with increasing annealing temperature, prolonging the annealing
time. The mechanical properties of laminated composites was also studied and it was found that the
yield strength of the laminated composites follows the law of mixtures [17,18]. However, the effect of
interfacial intermetallics on the mechanical properties and further plastic deformation of Cu/Al clad
composites fabricated by cold rolling is still under i0nvestigation and the corresponding literature
is still limited. In the present work, the Cu/Al/Cu sandwich composites were prepared with cold
roll bonding process. The annealing process was carried out to study the evolution of intermetallics
during the annealing process, its effect on the mechanical properties and further deformation of the
annealed composite.

2. Experimental Procedure

Commercial aluminum alloy AA 1060 and pure copper (99.95%) sheets were used as components
of the laminated alloys. The initial thicknesses of Cu and Al sheets are 1 mm and 2 mm, respectively.
They were cut into specimens with 60 mm in width and 300 mm in length. After surface treatment
(brushing and degreasing), Cu-Al-Cu sandwich sheet materials were subjected to cold roll bonding
with different reduction ratios ranging between 40% and 80% to prepare Cu/Al/Cu clad sandwich
composites. Figure 1a shows the schematic illustration of cold roll bonding process. The as-rolled
laminates (with reduction of 80%, final thickness 0.8 mm) were annealed at 200, 250, 300, 325, 350, 400
and 450 ◦C, respectively, for 60 min in a resistance furnace with Ar protection. Then the annealed
composite was further rolled to 0.4 mm with 3 passes. Peel strength of the laminated composite was
measured using the peel test [19]. Peel test was performed using SHIMADZU tensile testing machine
with a crosshead speed of 5 mm/min. Average peel strength (average load/bond width, N/mm) was
used as the peel strength. The dimension of sample for peel test is width 10 mm and length 100 mm.
Figure 1b shows the schematic illustration of the peel test.Materials 2020, 13, x FOR PEER REVIEW 3 of 10 
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Figure 1. Schematic illustration of the cold roll bonding of sandwich composites (a) and the peel test (b).

Microhardness test was performed on the polished Cu-Al-Cu laminated composite by using a
micro hardness tester (Cratos W50S, Bright, London, UK) and the load applied during the test was 10g.
The average of three tests was used as the microhardness value of the corresponding area. The tensile
test samples were selected along the rolling direction and the average of three tests was used as the
value of tensile properties for each annealing condition.
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The tensile test was carried out using SHIMADZU tensile testing machine (Shimadzu, Kyoto,
Japan) with a crosshead speed of 2 mm/min at room temperature. The gage width and gage length for
the testing specimen were 6 mm and 25 mm, respectively. SEM (scanning electron microscope), XRD
(x-ray diffraction), EDX (energy dispersive x-Ray spectroscopy) and OM (optical microscope) were
used to investigate the intermetallics in the interface.

3. Results and Discussions

3.1. Effect of Reduction on the Peel Strength of Cu-Al-Cu Laminated Composite

The cold roll bonding process was used to prepare Cu-Al-Cu laminated composite. Reduction
ratio is one of the key parameters affecting the peel strength. As shown in Figure 2, when the reduction
is below 40%, the successful bonding cannot be achieved. In the reduction range of 40 to 50%, bonding
of some samples can be achieved although the success ratio is very low. When the reduction is equal or
above 60% the successful bonding of the composite can be successfully achieved. When the reduction
is below 50% the peel strength is very low, indicating a bad bonding of Cu and Al. With the increase
of the reduction, the peel strength keeps increasing and there is a sharp increase between 50% to
60% of the reduction. Based on this, the reduction for the cold roll bonding of Cu-Al-Cu laminated
composite should be higher than 60%. Larger reduction can result in better bonding of the composite.
It is believed that a higher reduction during cold roll bonding process can provide a flatter asperity
that provides a larger contact area between the layers of Cu and Al. In the present work, the highest
peel strength of 9.3 N/mm was achieved when the reduction is 80%.
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At the reduction of 80%, the composite shows a good bonding without holes or gaps in the interface
as shown in OM photo, Figure 3a, and secondary electron image of SEM, Figure 3b. Hereinafter, the
Cu-Al-Cu laminated composite prepared by cold roll bonding process with reduction of 80% was used
for annealing and further deformation.
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Figure 3. The structure of Cu/Al laminated composite prepared by cold roll bonding with the reduction
of 80%: (a) OM photo; (b) secondary electron image of SEM.

3.2. Effect of Annealing on the Intermetallics in the Interface

For the cold roll bonded Cu/Al laminated composite, annealing is usually needed to get the
controlled properties for the application or further deformation. It is understood that both Al and Cu
atoms are thermally activated and the intermetallics layers are formed through diffusion during the
annealing process. Figure 4a shows a typical trilaminar intermetallics structure (with the thickness of
17 µm) of the Cu-Al-Cu laminated composite annealed at 450 ◦C for 60 min. The dotted line represents
the linear scan position and the dot represents the position of the spot of EDX analysis. Figure 4b
shows the line scanning from layer A(Cu) to layer E(Al) shown in Figure 4a. The both blue vertical
dash-lines in Figure 4b indicate the start point and the end point when we calculate the thickness of the
intermetallics layer. The intermetallic compound in the interface region is determined by XRD through
scanning the peeled surface of the metal. The XRD and line scanning results show that layers A, B, C,
D and E are Cu matrices, Al4Cu9, AlCu, Al2Cu and Al, respectively. The layers B, C and D in Figure 4a
correspond to rectangular regions B, C and D in Figure 4b. Hwang et al. [3] also found the Al3Cu4 layer
between Al4Cu9 and AlCu in the Cu/Al laminated composite annealed at 500 ◦C for 180 min. In the
present work Al3Cu4 layer was not found, which could be due to the lower annealing temperature
(450 ◦C and below) and short annealing time (60 min). As shown in Figure 4a, the thicknesses of the
layers follow the sequence of Al2Cu > Al4Cu9 > AlCu. As the diffusion of Cu in Al is faster than that
of Al in Cu [3,20], Al2Cu is presumed to be formed more quickly than the phase of Al4Cu9. Therefore,
the layer of Al2Cu is thicker than Al4Cu9. After the formation of Al2Cu and Al4Cu9, AlCu forms in
between. Figure 4d shows the microhardness of different intermetallics in the interface of Cu and
Al. Combining Figure 4b, the hardness of the Cu matrix, Al4Cu9, AlCu, Al2Cu, and Al matrix is
60.8 ± 8.4, 595.4 ± 50.4, 432.8 ± 30.8, 208.4 ± 20.5 and 19.5 ± 2.5 HV, respectively. It can be seen that the
intermetallics of the interface is much harder than the Cu matrix and the Al matrix.

Figure 5 shows the interface development of Cu/Al laminated composite with the increase of
annealing temperature. The variation of the thickness of intermetallics layers as a function of annealing
temperature is shown in Figure 6. For the as-bonded composite, no obvious interface development can
be observed, as shown in Figure 3. For the annealed composite, when the annealing temperature is
250 ◦C, an interfacial layer with a thickness about 1.0 µm developed, as shown in Figure 5a. As the
annealing temperature increases to 300, 350, 400 and 450 ◦C, the thickness of the interfacial layer
increases to 2.4, 4.4, 9.2, and 17 µm, respectively, as shown in Figures 5b–d and 4b. It needs to be noted
that we measured the thickness in three spots and did linear scanning with EDS at one spot to confirm
the thickness of the intermetallics layer. The value of the thickness is based on the line scanning results,
as shown in Figures 4b and 5.
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It is clear that under annealing conditions, the interface is a three-layer structure and the thickness
of the intermetallics layer increases with the increase of annealing temperature. As shown by the
fitted curve in Figure 6, the thickness of the intermetallics layer increases following an exponential
relationship in the temperature range between 200 ◦C (473 K) and 450 ◦C (723 K). The relationship is
mainly attributed to increased thermal energy of Cu and Al atoms at higher temperature [21]. With
the increase of annealing temperature, the Cu and Al atoms can obtain more thermal energy to break
through the barrier of diffusion energy, which can achieve a wide range of free migration and accelerate
the growth of the diffusion layer. The relationship between the growth thickness D of the intermetallic
compound and the heat treatment temperature T obeys the Arrhenius equation. According to the data
in the text, it can be specifically described as Equation (1):

D = 0.47541 + 0.0007674e(
T

72.464 ), (1)

where D is the thickness of the intermetallics layer and T is the annealing temperature (K).

3.3. Effect of Annealing on the Mechanical Properties

Figure 7 shows the stress–strain curves of the composites annealed at different temperatures and
Figure 8 shows the variation of the strength and elongation as a function of annealing temperature.
For the as-bonded composite, the tensile strength and elongation are 270 MPa and 5.5%, respectively.
For the annealed composite, with the increase of annealing temperature, the tensile strength decreases
slowly at the beginning, and then quickly, and there is a sharp decrease from 220 MPa to 164 MPa in the
annealing temperature range of 300–325 ◦C. After 325 ◦C, further increasing the annealing temperature
just leads to a slight decrease of the tensile strength. In the case of elongation, when the composite
is annealed at 200 ◦C, the elongation shows a slight decrease compared with that of the as-bonded
composite. With increasing the annealing temperature in the range of 200–350 ◦C the elongation keeps
increasing and there is a sharp increase from 11.5% to 26% when the annealing temperature increases
from 300 ◦C to 325 ◦C. The peak of the elongation, 32.5%, appears at 350 ◦C. However, with further
increasing annealing temperature, the elongation begins to decrease. With regard to elongation, the
proper annealing temperature range is from 325–400 ◦C and at 350 ◦C the highest elongation was
obtained in the present work.
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Figure 7. Stress-strain curves of the composites annealed at different temperatures: (a) 200–325 ◦C;
(b) 325–450 ◦C.
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Figure 8. Variation of the strength and elongation as a function of annealing temperature.

It is understood that the decrease of tensile strength and the increase of elongation with increasing
the annealing temperature is due to the recovery and recrystallization during the annealing process.
The decrease of the elongation when the annealing temperature is over 350 ◦C could be related to
the evolution of intermetallics in the Cu/Al interface. In order to clearly understand the mechanism,
the variation of intermetallics in the interface close to the fracture plane of the tensile samples was
observed in secondary electron image of SEM. The results are shown in Figure 9.

It can be seen there are some cracks in the interface of the sample after tensile test and the size
of the cracks increases with the increase of annealing temperature. Due to the high brittleness of
intermetallics, the cracks initiates at the intermetallics layer during stretching process. Once the
intermetallics layer is broken, the broken intermetallics keep being bonded on the matrix metal and
stress concentration is generated near the matrix metal surface in the crack gap. The necking therefore
appears in the matrix metal of Cu and Al, as clearly shown by the arrows in Figure 9d,e. With a high
annealing temperature (450 ◦C), serious delamination was also observed. Some composite samples
even separates to three individual layers after tensile test. Figure 9e,f gives a typical delamination
structure of the stretched tensile sample annealed at 450 ◦C.
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were annealed at (a) 300 ◦C; (b) 325 ◦C; (c) 350 ◦C; (d) 400 ◦C; (e) and (f) 450 ◦C.

Lower ductility of intermetallics than that of the Al and Cu matrix is believed to be one of the
main reasons for delamination. EDX results showed that layers 1, 2 and 3 in Figure 9f are Al2Cu, AlCu
and Al4Cu9, respectively. Interfacial delamination usually initiates in the CuAl intermetallics layer and
mostly in the interface of Al2Cu and AlCu. As reported by Ferreira [22], Cu-rich intermetallics have a
smaller atomic volume and will generate a volumetric shrinkage during the formation of these phases.
Higher annealing temperature leads to the formation of a higher volume of Cu-rich intermetallics and
consequently larger volumetric shrinkage. This is expected to cause a large internal stress during the
annealing process and consequently contribute to the formation of delamination. The difference of
the ductility of different intermetallics could also contribute to the formation of delamination. When
the annealing temperature is 400 ◦C no obvious delamination is observed, although there are some
micro-delaminations (interlayer crack) as indicated by the circle in Figure 9d. When the annealing
temperature is 350 ◦C and below, there is no delamination.

At higher annealing temperatures, the brittle intermetallics layer becomes thicker. During the
stretching process, brittle intermetallics are broken first and then cracks form. With further stretching,
the necking of the matrix metal in the crack occurs. This could be the main reason for the reduced
elongation at high annealing temperatures. Furthermore, delamination appeared at a high annealing
temperature (450 ◦C). Due to the delamination, the constraint of the interlayer disappears, which is
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also believed to contribute to the decrease of elongation. In addition, when the annealing temperature
is high, the elongation of copper and aluminum can be mismatched. The shear stress, due to mismatch
elongation, can causes further damage to the interface during the tensile process.

3.4. Evolution of Intermetallics after Further Plastic Deformation

As discussed in Section 3.3, the thick intermetallics layer can lead to the delamination and
the decrease of elongation, which is unwanted for further cold rolling. It is therefore important to
investigate the effect of intermetallics on the further cold rolling. The cold rolling with total reduction
of 50% was carried out to the annealed composite and the intermetallics after further cold rolling was
observed. As shown in Figure 10, with further cold rolling, the intermetallics are broken and are still
distribute along the interface. The newly formed interface can also be clearly observed. For the sample
annealed at 450 ◦C, after further cold rolling, some of the broken intermetallics rotate at an angle as
indicated by the arrows in Figure 10c. No obvious delamination and voids were observed, although
the intermetallics are broken during the cold rolling process. For the samples annealed at 350 ◦C and
400 ◦C, after further cold rolling the composite shows a similar behavior, but a much thinner thickness
and smaller size of broken intermetallics is present.
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4. Conclusions

Cu-Al-Cu laminated composite was prepared with cold rolling process and annealing was carried
out to study the phase evolution during the annealing process and its effect on the mechanical properties
of the composite. After annealing the brittle intermetallics in the interface mainly include Al4Cu9,
AlCu and Al2Cu. With the increase of the annealing temperature, the thickness of the internetallics
layer increases following an exponential relationship in the temperature range between 200 ◦C (473 K)
and 450 ◦C (723 K). With the increase of the annealing temperature, the strength keeps decreasing,
while the elongation shows an increasing trend at the beginning and then a decreasing trend after
the peak of 32.5% (annealed at 350 ◦C). Large thickness of brittle intermetallics layer, cracks of the
brittle intermetallics during stretching and necking of the matrix metal in the crack gap are believed
to be the main reasons for the reduction of elongation at high annealing temperatures. In addition,
delamination appeared at a high annealing temperature (450 ◦C), which is also believed to contribute
to the decrease of elongation. With further cold rolling of the annealed composite, the intermetallics
are broken, and a new bonding interface forms without the formation of delamination and void.
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