
materials

Article

Determination of Formation Energies and Phase
Diagrams of Transition Metal Oxides with DFT+U

Daniel Mutter 1,* , Daniel F. Urban 1 and Christian Elsässer 1,2

1 Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany;
daniel.urban@iwm.fraunhofer.de (D.F.U.); christian.elsaesser@iwm.fraunhofer.de (C.E.)

2 Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier- Straße 21,
79104 Freiburg, Germany

* Correspondence: daniel.mutter@iwm.fraunhofer.de

Received: 5 August 2020; Accepted: 23 September 2020; Published: 26 September 2020
����������
�������

Abstract: Knowledge about the formation energies of compounds is essential to derive phase diagrams
of multicomponent phases with respect to elemental reservoirs. The determination of formation
energies using common (semi-)local exchange-correlation approximations of the density functional
theory (DFT) exhibits well-known systematic errors if applied to oxide compounds containing
transition metal elements. In this work, we generalize, reevaluate, and discuss a set of approaches
proposed and widely applied in the literature to correct for errors arising from the over-binding of the
O2 molecule and from correlation effects of electrons in localized transition-metal orbitals. The DFT+U
method is exemplarily applied to iron oxide compounds, and a procedure is presented to obtain the
U values, which lead to formation energies and electronic band gaps comparable to the experimental
values. Using such corrected formation energies, we derive the phase diagrams for LaFeO3, Li5FeO4,
and NaFeO2, which are promising materials for energy conversion and storage devices. A scheme is
presented to transform the variables of the phase diagrams from the chemical potentials of elemental
phases to those of precursor compounds of a solid-state reaction, which represents the experimental
synthesis process more appropriately. The discussed workflow of the methods can directly be applied
to other transition metal oxides.

Keywords: transition metal oxides; density functional theory; DFT+U; materials modeling;
phase diagrams

1. Introduction

Due to their exceptional electronic, magnetic, or optical properties [1], transition metal oxide
(TMO) compounds are key components of many modern technologies. Next to many other applications,
TMOs are utilized as active anode and cathode materials in Li- and Na-ion batteries [2–5] and as
electrodes in solid-oxide fuel and electrolyzer cells [6–8] (SOFC and SOEC), where they enable the
catalytic reactions with oxygen. The decisive functional parameters of a TMO, such as the catalytic
activity and the electronic conductivity in the case of a solid-oxide cell electrode, can be tuned by
varying the stoichiometry, e.g., by external doping or the incorporation of intrinsic lattice defects [9–11].
A phase diagram with respect to elemental reservoirs determines the ranges of the experimental
synthesis conditions within which the desired compound can be stabilized and within which its
composition can be varied without unwanted competing phases being formed.

In order to derive such a phase diagram theoretically, formation energies need to be known
of all compound phases, which consist of a subset of the involved elements. Highly accurate
formation energies can, in principle, be calculated using the methods of density functional
theory (DFT) [12]. However, the determination of formation energies of TMOs using common
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(semi-)local exchange-correlation approximations of DFT (namely local-density or generalized-gradient
approximations, LDA or GGA) raises some fundamental issues leading to results that systematically
deviate from the experimental values [13–16]:

• The molecular state is the natural reference phase for oxygen. The well-known over-binding of
the O2 molecule in LDA and GGA [17] introduces an error in the formation energies of oxides.
A correction scheme was proposed by Wang et al. [13], which builds on a comparison between the
theoretical and experimental values of formation energies for a series of non-TM oxide compounds.
In the Materials Project (MP) database [18], for example, this scheme is applied and denoted by
the term anion corrections.

• The uncompensated electronic self-interaction imposed by approximate exchange-correlation
functionals immanent in DFT methods, especially in the case of TMOs, where strongly correlated
TM-d-electrons form the valence band, leads to incorrect total energies and underestimated band
gaps. There are different approaches to cope with this inaccuracy, such as the use of hybrid
functionals [19], a self-interaction correction (SIC) [20], or a Hubbard-U correction that acts on the
d-electrons of the TM as an effective potential (DFT+U) [21].

• In case that the DFT+U method is used to obtain a corrected total energy of a TMO, the formation
energy contains an error if the total energies of the elemental reference phases were calculated by
LDA or GGA, as it is generally done for the elemental phases and for compounds not containing
the TM elements. The error can be systematically corrected by applying a method worked out by
Jain et al. [14], where the total energies from the DFT+U calculations are shifted by a constant
amount per TM atom. The approach is used in the MP database [18], denoted by the term advanced
corrections, to obtain formation energies of TM-containing compounds.

This paper aims at providing a complete picture of the derivation of formation energies and phase
diagrams of TMOs based on DFT+U and the proposed correction schemes by evaluating, discussing,
and generalizing the approaches proposed in the literature. After a description of the employed
methods in Section 2, we first revisit the correction of the oxygen reference energy (Section 3.1).
The approach described in the literature [13] is extended by taking into account a larger set of non-TM
oxides from the alkali, alkaline earth, boron, and carbon groups of the periodic table of elements in
their ground state structures. The uncertainty of the resulting correction value is quantified and taken
into account in the following calculations. Explicitly for Fe-containing oxides, we review in Section 3.2
the commonly used scheme [14] to correct for the error arising when comparing total energies from
the DFT+U and DFT calculations. The underlying assumption, that the deviation between calculated
and experimentally determined formation energies linearly approaches zero with the decreasing TM
content, is checked by applying a general linear function and including ternary compounds with
lower TM contents in the procedure. We performed the analysis for different U values acting on the
3d orbitals at Fe sites, which directly led us to a way of finding an optimal U value by minimizing
the total mean squared deviation between the experimental and calculated formation energies for the
considered compounds (Section 3.3). The widely used UFe value of approximately 4 eV [13,22–26] is
confirmed, and it provides reasonable band gap predictions for the considered Fe oxides (Section 3.4).

Using the corrected formation energies, we determined the phase diagrams for LaFeO3, NaFeO2,
and Li5FeO4, which are technologically promising as materials for electrodes in SOFC/SOEC
devices [10,11], as positive electrodes in Na-ion batteries [27,28], and as multi-redox active cathodes
in Li-ion batteries [29], respectively. In the cited literature, these compounds are described to be
synthesized by solid-state reaction routes. This is a well-established technique to process ternary and
higher-component oxide compounds, where oxidic precursor phases are mechanically mixed and
exposed to an oxygen atmosphere of variable temperature and pressure [29]. In order to reflect this
process in phase diagrams, we present these in Section 3.5 not in the conventional way with respect to
elemental reservoir energies of the nongaseous components but with respect to the chemical potentials
of oxidic solid precursor compounds and molecular oxygen gas.
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The appendix provides a table listing experimental reference values and calculated formation
energies (Appendix A), a heuristic explanation of the dependence of oxidation energies on U
(Appendix B), a formal comparison of the method for determining an optimal U described in
Section 3.3 and the approach using oxidation energies described by Wang et al. [13] (Appendix C),
and a detailed description of the transformation of variables in the phase diagrams (Appendix D).

2. Methods

2.1. DFT(+U) Calculations of Total Energies

Total energies of elemental and compound phases were calculated using the method of density
functional theory (DFT). The plane-wave-based DFT code VASP [30] was used for this purpose,
with strict convergence criteria that ensure accurate results. A cutoff energy of 600 eV was set for the
plane-wave basis functions describing the valence electrons. The partial occupancies were set according
to the linear tetrahedron method with Blöchl corrections [31], except for the O2 molecule, for which
Gaussian smearing was applied with a width of 0.05 eV. The interaction with the core electrons was
modeled by projector-augmented-waves (PAW) pseudopotentials [32]. The generalized gradient
approximation (GGA) of Perdew et al. [33] was chosen for the exchange-correlation (xc) functional.
Electronic self-consistency loops were stopped when the energy difference between two steps was less
than 10−5 eV, and the structures were relaxed until the minimal force component acting on an atom was
below 10−4 eV/Å. Brillouin zone integrations were performed on grids with about 403/V k-points, with V
denoting the initial supercell volume in Å3. Cell volumes were optimized by total energy minimization,
as implemented in VASP. All calculations were performed for cells with periodic boundary conditions.
For the calculations of compounds containing Fe, the Hubbard-U correction of Dudarev et al. [34] was
applied to the Fe 3d orbitals in order to account for the artificial self-interaction and, concomitantly,
the too-weak localization of the strongly correlated 3d electrons. Spin-polarization was taken into
account, and for the following phases, the initial magnetic moments were set up according to the
known ground-state spin configurations: Fe (ferromagnetic (FM)), FeO (antiferromagnetic (AFM)),
Fe2O3 (AFM), Fe3O4 (ferrimagnetic), and LaFeO3 (AFM). All other considered iron compounds were
set up in FM spin configurations.

2.2. Correction of the O2 Over-Binding

Equation (1) defines the formation energy of one formula unit of a binary oxide compound AlOn

with respect to the elemental phases of a nonoxygen component A and oxygen:

Eform(AlOn) = Etotal(AlOn) −
[
lµ(0)(A) + nµ(0)(O)

]
. (1)

Etotal denotes the total energy per formula unit of the compound. The total energies per atom of
the elements in their ground states are expressed by the chemical potentials µ(0). Equation (1) can
straightforwardly be adapted to systems containing multiple nonoxygen components, e.g., AlA

′

l′ .
The natural reference state of oxygen is the O2 molecule, with the energy µ(0)(O) = 0.5µ(0)(O2).
If the energy of an isolated O atom is set to zero, µ(0)(O2) is the binding energy of the molecule.
Its absolute value is known to be overestimated in DFT using LDA or GGA, corresponding to a
too-strong binding [17]. Wang et al. [13] proposed a method to correct this error by comparing
calculated with experimentally determined values of formation energies for a series of oxides: Li2O
and Na2O, MgO and CaO, Al2O3, and SiO2. They chose compounds without transition metals to avoid
interference between the errors originating from the over-binding of O2 and from combining DFT with
the DFT+U results. The method is reevaluated and discussed in this work (Section 3.1) for a larger
set of oxides from the nontransition metals in the main groups I, II, III, and IV of the periodic table
of elements.
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2.3. Energy Correction Method for the Combined DFT and DFT+U Results

In addition to the O2 over-binding error, a systematic inaccuracy is introduced if one calculates the
formation energies of oxide compounds containing a transition metal element M, e.g., binary systems
MmOn or general compounds AlMmOn, by comparing the total energies of the oxide compounds
calculated by DFT+U to the total energies of the elemental phases, which are generally determined by
DFT. The application of U on the 3d orbitals of the transition-metal atoms M in the compound shifts
the reference energy. Hence, the results of calculations involving M obtained by the two different
methods cannot directly be compared. As described by Jain et al. [14], the value of this error can again
be systematically estimated by comparing calculated to experimental formation energy values for a set
of compounds {AlMmOn}. The concept behind this approach is that the formation energy differences
per atom,

∆e(AlMmOn) :=
[
Eform

DFT/DFT+U (AlMmOn) − Eform
exp . (AlMmOn)

]
/Nfu, (2)

between the combined DFT and DFT+U results and the experimental values are expected to depend
linearly on the fraction xM := m/Nfu of the transition metal M in the formula unit, which contains a
total number of Nfu = l + m + n atoms.

For the case of iron, i.e., M = Fe, the binary oxide compounds FeO, Fe2O3, and Fe3O4 were taken
into account in the original work [14], and their energies were calculated using a given, independently
determined UFe value of 4 eV [13]. The data points ∆e were fitted by a line through the origin,
∆efit,0(xFe) = m0 · xFe, justified by the argument that, without any transition metal atoms in the
compound, and considering an O2 over-binding correction as described in Section 2.2, there should
be zero deviation between the calculated and experimental results. This opens up the possibility to
correct the DFT/DFT+U combination error for any iron-containing oxide compound by using the
so-determined slope m0 of the best-fit line.

In this work (Section 3.2), we compare this method to a more general approach, where the best-fit
line is not forced through the origin, i.e., ∆efit(xFe) = m·xFe + c. It is shown that the line approximately
approaches the origin if both binary iron oxides and representative ternary compounds are taken
into account. In addition, we tested this method for five different values of UFe in order to discuss
its generality and applicability. A U value is derived, for which the corrected values are, on average,
as close as possible to the experimental results (Section 3.3). The oxygen correction derived in Section 3.1
was applied, and the effect of its uncertainty on the DFT/DFT+U correction is discussed.

2.4. Derivation of Phase Diagrams

The synthesis process of a material can be imagined as an exchange of elemental components
and precursor compounds between reservoirs and the forming phase. Assuming thermodynamic
equilibrium, the total energy of a solid phase—say , AlMmOn—can be expressed as the stoichiometric
sum of the reservoir energies per atom—namely, their chemical potentials µ. Using Equation (1),
this leads, in the case of elemental reservoirs, to a formation energy:

Eform(AlMmOn) = l∆µA + m∆µM + n∆µO. (3)

Here, ∆µi := ∆µi − µ
(0)
i , i.e., the chemical potentials are referenced to the energies of the elemental

ground state phases. This formulation allows to relate the theoretical definition to experimental
synthesis conditions, which can be described as “rich” in a component X, if ∆µX is close to zero, and as
“poor” in X, if ∆µX has a large negative value. In the X-rich case (∆µX = 0), the elemental phase X
forms in its ground state with energy µ(0)X , imposing the constraints ∆µX < 0 on the chemical potentials
of all involved elements for the formation of a single compound phase.

Analogously, to prevent the formation of competing, unwanted phases from a subset of the
provided components (e.g., Al′On′), the stoichiometric sum of the corresponding chemical potentials
must be lower than the formation energy of the wanted phase (e.g., l′∆µA + n′∆µO < Eform(Al′On′)).
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The phase diagram of AlMmOn is then defined by the space of chemical potentials fulfilling Equation (3)
together with every possible constraint of such a form. For a ternary compound, it can be visualized by
a 2-dimensional graph with two of the chemical potentials as axes and the third one sketched by contour
lines or color coding. In such a plot, lines represent the constraints confining the stability region.

The chemical potential of a gaseous phase, such as O2, can be formally expressed as a function of the
temperature and pressure of the gas [35]. If the synthesis takes place under a gas atmosphere, this links
the chemical potential directly to accessible experimental processing parameters. However, it is difficult
to give a quantitative interpretation of the chemical potentials of substances not provided as a gas during
the synthesis beyond statements of conditions being “rich” or “poor” in the respective component.

In order to reflect the solid-state reaction process in the phase diagram, where often precursor
compounds are mechanically mixed and heat-treated rather than nongaseous elemental phases, the axes
need to be transformed to the chemical potentials of such compound phases and ∆µO. The formalism is
explicitly demonstrated in the appendix (Appendix D) for the example of the synthesis of LaFeO3 from
La2O3 and Fe2O3. It can be adopted to describe various processing routes for arbitrary compounds.

3. Results and Discussion

3.1. O2 Correction

Using the computational DFT settings described in Section 2.1, the total energies were calculated
for binary oxide compounds composed of elements from the main groups I to IV of the periodic table:
A2O with A = Li–Cs, AO with A = Be–Ba, A2O3 with A = Al–Tl, and AO2 with A = Si–Pb. For those
compounds, we chose the most stable structures according to experimental observations at ambient
conditions (see Table A1 in Appendix A). We calculated the formation energies according to Equation (1)
from the total energies of the corresponding elemental ground-state phases (the chemical potentials
µ(0)). In Figure 1, the results are plotted against experimental values of the standard enthalpies of the
formation taken from References [36–39]. With the exception of Tl2O3 and PbO2, the points can be
represented by a line, y = x + b, which confirms the generality of the approach of Wang et al. [13],
where six arbitrarily chosen compounds were taken into consideration for this analysis.

Excluding Tl2O3 and PbO2, a fit of the data points leads to b = 0.64 eV, which can be regarded as
an average energy error per O atom in the simulations. The derived b is close to the value given by
Wang et al. of 0.68 eV/O [13] and to 0.7 eV/O, which is used in the (MP) database [18]. The correction
can now be applied by adding b to the chemical potential of oxygen:

µ
(0)
corrected(O) := µ(0)(O) + b. (4)

Performing the correction in this way reflects that the deviation of the formation energies from the
experimental values has its origin in an inaccuracy in µ(0)(O) rather than in Etotal(AlOn). However,
the same results are obtained for subtracting the product nb from Etotal and using the unchanged
µ(0)(O), as it is done in the MP approach (denoted there as “MP anion correction”).

From our results, clear trends of the data points belonging to different groups of the periodic table
cannot be identified, except for a clustering of group II compounds at the lower formation energy
values (blue squares) and a slight but systematic offset of the group IV compounds from the best-fit
line (yellow upward triangles).

Such an offset was reported by Wang et al. for SiO2 [13] as well and explained by the highly
covalent character of the Si–O bond. As in the case of the O2 molecule, the energy of such a bond is,
to some extent, affected by the over-binding tendency of oxygen, leading to partial error cancellation
and a formation energy of the compound closer to the experimental value. As apparent from our data,
this argument can be applied for GeO2 and SnO2 as well. Mixed bonding configurations in the oxides
of the heavy elements Pb and Tl could be the reason for an even stronger error cancellation in the
case of the formation energies of PbO2 and Tl2O3. As an alternative or complementary approach to
explain the deviation of these points from the best-fit line, we calculated the energies of the compounds
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PbO2 and Tl2O3 and reference phases Pb and Tl by taking into account spin-orbit coupling. This led to
energy shifts of the order of 0.1 eV/O in the direction of the best-fit line.
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Figure 1. Comparison between formation energies derived experimentally (standard enthalpies of
formation) and by density functional theory (DFT) calculations for a series of non-transition-metal
oxides. The continuous line is a linear fit through the data points (excluding Tl2O3 and PbO2): y = x+ b,
with b = 0.64 eV/O. The dashed line is the identity line (y = x).

The mean deviation of all considered data points from the best-fit line is ±0.09 eV/O, and the cited
values used by other research groups are within this range as well. This range of b values has to be
taken into account in further calculations using the O2 correction value. Next to numerical fluctuations,
which we reduced as much as possible by applying strict convergence criteria, uncertainties in the
experimental data may contribute to the uncertainty of the correction value as well.

Note that the measurements are carried out at ambient conditions, i.e., at room temperature
and atmospheric pressure. On the other hand, the calculated formation energies are derived at
zero temperature and pressure. An energy contribution ∆µ(O2; T, p) can, in principle, be added
to the ground state chemical potential of the oxygen in Equation (1). It can be formally derived
from statistical mechanics considering the entropy effects from the different degrees of freedom of
the O2 molecule [35]. However, such a correction must not be additionally included in the method
described above, since it is already compensated for by the shift b, which encompasses both the O2

over-binding error inherent in DFT, as well as energy contributions due to differing external conditions.
Analogously, this argumentation is valid for energy shifts ∆µ(A; T, p) of the nonoxygen components
and ∆Etotal(AlOn; T, p) of the compound of interest. In order to quantify separately the effects from
O2 over-binding and different external conditions, all of these contributions need to be explicitly
calculated, e.g., by considering volume changes with the temperature and applying an equation of
state or by performing thermodynamic integrations of heat capacities [15].

An alternative way to deal with the effect of O2 over-binding in DFT was recently reported by
Gautam and Carter [40]. They applied the strongly constrained and appropriately normed (SCAN)
approximation for the exchange-correlation functional and obtained formation energies of main group
oxide compounds, which agreed quite well with the experimental values without the need to perform
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any post-processing corrections. With our study, though, we aimed to evaluate and discuss common,
widely applied DFT methods, which are implemented in many of the available codes and which,
for example, were used to generate large sets of data as available in the MP database [18].

3.2. Energy Correction for the Combined DFT and DFT+U Results

Figure 2a depicts the differences ∆e defined in Equation (2) between the formation energies per
atom derived by using the results from the DFT and DFT+U calculations and the corresponding
experimental standard enthalpies of the formation of the binary compounds FeO, Fe2O3, and Fe3O4

and the ternary compounds Li5FeO4 and NaFeO2. The phases were set up in their experimentally
observed ground-state structures (see Table A1 in Appendix A).

Materials 2020, 13, x FOR PEER REVIEW 7 of 21 

 

experimental standard enthalpies of the formation of the binary compounds FeO, Fe2O3, and Fe3O4 
and the ternary compounds Li5FeO4 and NaFeO2. The phases were set up in their experimentally 
observed ground-state structures (see Table A1 in Appendix A). 

 
Figure 2. (a): Comparison of the calculated data for different U values with the experimental data. 
Symbols: energy differences ∆𝑒 between formation energies calculated with DFT and DFT+U and 
experimental values for different compounds containing Fe and for different values of UFe. The error 
bars shown exemplarily for the values for UFe = 3.1 eV originate from the uncertainty in the oxygen 
correction value 𝑏, described in Section 3.1. They are not to be understood in a statistical way but 
meant as upper and lower limits between which all of the data points consistently shift if 𝑏 is varied 
between −∆𝑏 and +∆𝑏. Data points represented by filled symbols were fitted by linear functions ∆𝑒 (𝑥 ) = 𝑚(𝑈)𝑥 + 𝑐(𝑈)  (solid lines) and ∆𝑒 , (𝑥 ) = 𝑚 (𝑈)𝑥  (dashed lines). The open 
symbols for LaFeO3 were not included in the fitting. (b): Slopes 𝑚(𝑈) and 𝑚 (𝑈). Again, the error 
bars depict the upper and lower limits of the values. They result from the limits of the data points in 
the graph in the left panel. (c): Square root of the mean square errors (MSE) between the fit function ∆𝑒 (𝑥 ) (∆𝑒 , (𝑥 )) and the data points ∆𝑒. The U values leading to the MSE minima are displayed 
by dashed vertical lines at 3.95 eV (∆𝑒 ) and 4.20 eV (∆𝑒 , ), together with bars encompassing again 
the range of values that result when the oxygen correction is consistently varied between 𝑏 − ∆𝑏 and 𝑏 + ∆𝑏. 

The ∆𝑒 values are plotted against 𝑥 , the fraction of Fe atoms in the compound. The ternary 
compounds were included to add more data points for the lower 𝑥  values. They were chosen based 
on the availability of the experimental data and such that they do not contain any further transition 
metal elements. The data points ∆𝑒 were fitted by a straight line ∆𝑒 (𝑥 ) = 𝑚 ∙ 𝑥 + 𝑐  (5)

for each of the five considered U values for Fe between 3.1 eV and 7.5 eV. A linear fit is well-justified 
for most of the data points, except for those belonging to Fe3O4 and FeO obtained with the higher U 
values. The lines ∆𝑒 (𝑥 ) have slopes 𝑚  and 𝑦-intercepts 𝑐 , which themselves exhibit linear 
trends as a function of U: 𝑚 = 𝑚(𝑈) ≈ 0.24 ∙ 𝑈 + (1.02 ∓ 0.04)  eV and 𝑐 = 𝑐(𝑈) ≈ 0.02 ∙ 𝑈 −(0.13 ± 0.04) eV. 𝑚(𝑈) is displayed in Figure 2b. The given ranges of the 𝑦-intercepts of 𝑚(𝑈) and 𝑐(𝑈)  stem from the uncertainty limits ±∆𝑏 in the O2 over-binding correction described in the 
previous section. By changing 𝑏 within these limits, the energy differences ∆𝑒 shown in Figure 2a 
are consistently shifted to higher or lower values between the limits, which, for the sake of clarity, 
are exemplarily depicted by error bars only for the data points corresponding to U = 3.1 eV. The 
presented numbers determining ∆𝑒 (𝑥 ) are, of course, sensitive to the incorporation of additional 

(a) (b) 

(c) 

Figure 2. (a): Comparison of the calculated data for different U values with the experimental data.
Symbols: energy differences ∆e between formation energies calculated with DFT and DFT+U and
experimental values for different compounds containing Fe and for different values of UFe. The error
bars shown exemplarily for the values for UFe = 3.1 eV originate from the uncertainty in the oxygen
correction value b, described in Section 3.1. They are not to be understood in a statistical way but
meant as upper and lower limits between which all of the data points consistently shift if b is varied
between −∆b and +∆b. Data points represented by filled symbols were fitted by linear functions
∆efit

U (xFe) = m(U)xFe + c(U) (solid lines) and ∆efit, 0
U (xFe) = m0(U)xFe (dashed lines). The open symbols

for LaFeO3 were not included in the fitting. (b): Slopes m(U) and m0(U). Again, the error bars depict
the upper and lower limits of the values. They result from the limits of the data points in the graph
in the left panel. (c): Square root of the mean square errors (MSE) between the fit function ∆efit

U (xFe)

(∆efit,0
U (xFe)) and the data points ∆e. The U values leading to the MSE minima are displayed by dashed

vertical lines at 3.95 eV (∆efit
U ) and 4.20 eV (∆efit,0

U ), together with bars encompassing again the range of
values that result when the oxygen correction is consistently varied between b− ∆b and b + ∆b.

The ∆e values are plotted against xFe, the fraction of Fe atoms in the compound. The ternary
compounds were included to add more data points for the lower xFe values. They were chosen based
on the availability of the experimental data and such that they do not contain any further transition
metal elements. The data points ∆e were fitted by a straight line

∆efit
U (xFe) = mU·xFe + cU (5)
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for each of the five considered U values for Fe between 3.1 eV and 7.5 eV. A linear fit is well-justified for
most of the data points, except for those belonging to Fe3O4 and FeO obtained with the higher U values.
The lines ∆efit

U (xFe) have slopes mU and y-intercepts cU, which themselves exhibit linear trends as a
function of U: mU = m(U) ≈ 0.24·U+(1.02∓ 0.04) eV and cU = c(U) ≈ 0.02·U − (0.13± 0.04) eV. m(U)

is displayed in Figure 2b. The given ranges of the y-intercepts of m(U) and c(U) stem from the
uncertainty limits±∆b in the O2 over-binding correction described in the previous section. By changing
b within these limits, the energy differences ∆e shown in Figure 2a are consistently shifted to higher or
lower values between the limits, which, for the sake of clarity, are exemplarily depicted by error bars
only for the data points corresponding to U = 3.1 eV. The presented numbers determining ∆efit

U (xFe)

are, of course, sensitive to the incorporation of additional ternary Fe-containing compounds in the
analysis. However, this effect is of minor influence, as long as the data points of additional compounds
do not deviate more strongly from the lines than those already considered.

∆efit
U (xFe) shifts the calculated formation energy per atom of an arbitrary oxide compound with a

fraction of xFe Fe atoms closer to its experimental value. Following the definition of the formation
energy (Equation (1)), this correction can be formally applied by changing the total energies calculated
with DFT+U at a given U, according to:

Etotal
U, corr(AlFemOn) := Etotal

U (AlFemOn) −Nfu∆efit
U (xFe). (6)

As a proof of principle, correcting the energies Etotal
U (LaFeO3) in this manner leads to formation

energies very close to the experimental values. This can be seen in Figure 2a, where the open symbols
corresponding to LaFeO3, which were not included in the fitting processes, closely match the values of
∆efit

U (xFe = 0.2) for all considered U values.
In order to compare this generalized approach for deriving the correction energy arising in the

combined DFT and DFT+U calculations to the method described by Jain et al. [14], we repeated the
whole analysis using best-fit lines through the origin,

∆efit, 0
U (xFe) = m0(U)·xFe, (7)

marked by the dashed lines in Figure 2a. For the higher U values, the lines hardly deviate from the
lines ∆efit

U (xFe). The slopes, which are the only correction parameters in this approach, are derived as
m0(U) = 0.29·U + (0.70∓ 0.13) eV (depicted in the Figure 2b). Their range of uncertainty that again
originates in the uncertainty limits ±∆b of the O2 over-binding correction, is enlarged, as compared to
the general method.

3.3. Determination of U

The data points ∆e and, therefore, the deviations δ := ∆e − ∆efit, follow linear trends with U
for each of the five iron compounds included in the fitting procedure. Using the corresponding fit
parameters, the average of the squared deviations, known as the mean squared error MSE, can be
obtained as a function of U:

MSE(U) =
1
5

∑5

i=1

[
δ
(
x(i)Fe , U

)]2
. (8)

The square root of this expression generally serves as a measure for the quality of the fits and,
specifically, here for the quality of the correction scheme. It is displayed in the Figure 2c for both types
of fitting discussed in Section 3.2. A difference is visible only for U values below 4.5 eV. Minimization
leads to UFe = (3.95 ± 0.17) eV and UFe = (4.20 ± 0.37) eV for the general fits and the fits through the
origin, respectively. The given ranges depicted by bars originate again from the uncertainty limits
of the oxygen correction value. Around these minima, the application of either of the two correction
schemes reproduces the experimental formation energies on average with an accuracy of about 0.03 eV
per atom. The general fit leads to slightly more accurate results, but this difference can be regarded as
insignificant, considering the uncertainties in the approaches.
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A U value for the 3d-electrons of Fe of 4.0 ± 0.1 eV was also derived by Wang et al. [13] following
a different but related approach. The authors calculated oxidation reaction energies E(r) between
the binary iron oxides FeO, Fe2O3, and Fe3O4. No elemental Fe phase is involved in these reactions.
Therefore, E(r) could be determined by balancing only the uncorrected total energies obtained by
DFT+U and the previously corrected chemical potential of oxygen. The change of E(r) with U,
which can be understood heuristically (see Appendix B), led to an apparently optimal U value where
the results for E(r) best matched the experimental reaction energies. E(r) depends linearly on the
formation energies of the involved compounds. Since these values also enter the method described in
this section, the approach of Wang et al. may be interpreted as being formally equivalent to the method
described above if only the binary oxides were included in the fitting. This is, however, not the case,
as is shown in detail in Appendix C.

A UFe value of approximately 4 eV is widely reported in the literature to lead to band gaps and
reaction energies of iron oxides in good agreement with experimentally derived values [13,22–26].
It has to be noted that, in all of the cited studies, as in this work, the DFT code VASP was used
together with the standard set of PAW pseudopotentials provided in the VASP package. In contrast,
Xu et al. [41] reported optimal values of UFe for the iron oxides, which were derived with the DFT
code Quantum ESPRESSO (QE) [42] by the linear response method [43]. With UFe between 3.47 eV
and 4.10 eV, the values they obtained using pseudopotentials from the original QE library were in
acceptable agreement with the VASP values. However, considerably different UFe values between
5.21 eV and 6.07 eV resulted from the application of QE with a different set of pseudopotentials [41],
namely those from the GBRV high-throughput library [44]. This shows that one has to be careful in
proposing and adopting universal element dependent U values, since they can strongly depend on
the choice of the pseudopotential and, additionally, may differ between DFT codes due to different
implementations of the Hubbard-U correction.

3.4. Band Gaps of the Iron Compounds

The usual approximations of DFT, LDA, or GGA insufficiently describe the correlated electrons in
3d-orbitals of transition metals, which, together with the oxygen 2p-orbitals, form the valence band edge
in transition metal oxide compounds. This leads to incorrect, generally underestimated, band gaps,
which can be opened up by applying U to localize the 3d-orbitals, making the electronic structure less
“metal-like”. Accordingly, an optimal U value can be found by tuning U until the experimental band
gap value is reproduced in the band-structure calculations [22]. To compare this approach to the one
described in Section 3.3, we calculated the band gaps of the considered compounds for the different
U values of iron. As shown in Figure 3, the band gaps exhibit the expected opening with increasing
UFe, following, in most cases, almost linear trends. For Fe3O4, a distinct bend of the line around U
≈ 5.3 eV is apparent. This is a significant feature that is visible, albeit much less pronounced, for the
other compounds as well. Very strict convergence criteria were applied to ensure that this effect is
not an artifact of numerical fluctuations but, rather, a characteristic feature of the DFT+U approach.
On a small scale, such a bending was also observed in the total energies and the quantities deduced
from them. This can be seen, for example, by closely examining the deviations of the data points
from the lines in Figure 2b. However, this is considered as insignificant in the approximate analysis
conducted there.

The following experimental band gap energy data were taken from the literature:
for Fe2O3 1.9 eV [45] and 2.2 eV [46], for FeO 1.15 eV [47], and for LaFeO3 2.1 eV [48] and 2.3 eV [49].
These data lie within 0.2 eV around the calculated values in the region of the previously optimized value
U ≈ 4 eV. The data are marked by the open symbols in Figure 3. Fe3O4 is known to be electronically
conductive in the cubic state, so there should be no band gap, which is reproduced by the DFT+U
calculations for U below about 3 eV. A small band gap of 0.07 eV is reported only for the monoclinically
distorted structure forming below the Verwey transition temperature [50]. The complex electronic
structure of Fe3O4 of mixed octahedrally coordinated Fe3+ and tetrahedrally coordinated Fe2+ ions
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cannot be sufficiently described by the same, single U value that is applied for the octahedrally
coordinated Fe ions in the same trivalent charge state in the other compounds. For Li5FeO4 and
NaFeO2, no experimental band gap values are reported, to the best of our knowledge. Hoang et al. [51]
derived a band gap of 4.4 eV for Li5FeO4 using hybrid-functional DFT calculations with nonoptimized
mixing or screening parameters. This value is considerably larger than the DFT+U results obtained
here. For NaFeO2, only one DFT+U calculation was found in the literature [52] with a band gap value
of 1.5 eV for UFe = 4 eV, in agreement with our results.
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Figure 3. Calculated band gap energies as functions of U. Filled symbols: band gaps of iron-oxide
compounds calculated with DFT+U for different U values. The lines connect the two outer data points,
indicating a more-or-less pronounced upwards shift of the values around U ≈ 5.3 eV. Open symbols,
exemplarily displayed at U = 4 eV, represent experimental band gap values of the respective
compounds [45–49].

3.5. Phase Diagrams of LaFeO3, Li5FeO4, and NaFeO2

In order to derive the phase diagrams for the ternary oxide compounds LaFeO3, Li5FeO4,
and NaFeO2, we calculated ground-state formation energies for a set of binary oxides and ternary iron
oxides containing the elements La, Li, or Na, respectively. A U value for Fe of 4 eV was applied, and the
corrections determined in Sections 3.2 and 3.3 were adopted. The choice of compounds was based
on phases listed in the MP database [18], with energies close to the convex hull. The way the phase
diagrams are presented in the following reflects the solid-state processing routes that were reported for
the considered materials.

3.5.1. LaFeO3

LaFeO3 was experimentally synthesized by a mechanical mixing treatment of La2O3 and Fe2O3

powders and calcination under an oxygen atmosphere [53,54], according to:

La2O3 + Fe2O3 −→ 2 LaFeO3.
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The phase diagram with variables ∆µ(La2O3) (∆µ(Fe2O3)) and ∆µ(O) is shown in Figure 4,
with an alternative y-axis assigned to the pressure of the oxygen gas at a temperature of 1400 K.
In addition to the binary iron oxides and La2O3 (space group Ia3), the phase La3FeO6 (Cmc21) was
taken into account. However, it turned out that the latter is not relevant for the phase diagram of
LaFeO3, since the corresponding phase separation line lies outside of the displayed region.
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Figure 4. Phase diagram of LaFeO3 with respect to the chemical potentials of the oxide components
La2O3 (Fe2O3) and oxygen. At a given temperature, which was chosen as 1400 K, in this case, ∆µO can
be expressed by the pressure of the oxygen gas (right vertical axis, logarithmic scaling in units of
p0 = 1 atm). The lines mark the transitions to the denoted competing phases.

Since the stability region is horizontally confined by the precursor compounds of the reaction,
the formation of an intermediate phase during the synthesis of LaFeO3 is not expected. Molecular oxygen
and metallic Fe can form at very high and at very low gas pressures, respectively. Lines corresponding
to metallic La, FeO, or Fe3O4 do not cross the stability region, indicating that no thermodynamic
condition can be realized under which LaFeO3 would be in equilibrium with either of these phases.
The functional dependencies between ∆µLa, ∆µFe, ∆µO, ∆µLa2O3 , and ∆µFe2O3 (see Appendix D) can
be applied to determine the chemical potentials of the metallic elements at each point in the phase
diagram, which are, e.g., needed for calculating the point defect formation energies involving these
elements. Heifets et al. [55] calculated and discussed the phase diagrams of LaFeO3 with respect to
the elemental chemical potentials ∆µLa and ∆µFe. The phase diagram that is derived there using the
experimental input data shows chemical potentials ∆µO between −3.2 and −2.8 eV along the ∆µFe= 0
line in agreement with our results in Figure 4. This is expected, since the calculated formation energies
we used for deriving the phase diagram are close to the experimental values because of the applied
correction procedure.

Although a representation of the phase diagram in the form of Figure 4 is closer to the reality of
the actual synthesis process than a representation with respect to elemental reservoir energies [56–59],
it remains a difficulty of adjusting and quantifying or, in general, interpreting ∆µLa2O3 and ∆µFe2O3 in
an experimental setup. In analogy to a gas phase, “rich” conditions correspond to a high chemical
reactivity, which can, for example, be realized by a high density of reactive surfaces, i.e., small and
densely packed grains.
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3.5.2. Li5FeO4

The experimental synthesis of Li5FeO4 was achieved by tempering a powder mixture of Li2O and
elemental Fe at 1000 ◦C and a low pressure of about 1 mPa [60], following the reaction:

4 Li2O + Fe → Li5FeO4 + 3 Li.

The corresponding phase diagram is shown in Figure 5, with variables ∆µ(Li2O) and p(O2)

for T = 1300 K. Since Fe is involved in the reaction, its chemical potential is of relevance as well.
This energy of the second reaction partner cannot be represented by an alternative horizontal axis,
as in the case of LaFeO3 (see Figure 4), due to the existence of an additional species (Li) in the reaction
(see detailed explanation in Appendix D). Instead, ∆µ(Fe) was made visible via color coding in the
stability region. Next to Li2O (space group Fm3m) and the binary iron oxides, the phases taken into
account were Li2O2 (P63mmc), Li2FeO2 (Immm), Li2FeO3 (C2), and LiFeO2 (Fd3m).
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1300 K (p0 = 1 atm). The chemical potential of Fe is visualized by color coding. The lines mark the
transitions to the denoted competing phases.

Based on the scale of the horizontal axis, Li5FeO4 can be expected to form only under very rich Li2O
conditions. The experimentally applied pressure of 10−8 atm corresponds to rather rich Fe conditions
as well. During the vaporization of Li5FeO4, the precipitation of solid LiFeO2 was observed [60],
accompanied by gaseous Li and O2. This is in agreement with the phase diagram, where LiFeO2

terminates the narrow stability region on one side. The Li gas cannot solidify, since the corresponding
line (∆µ(Li) = 0) lies far outside the Li5FeO4 region at unreasonably low oxygen gas pressures below
10−35 atm. In contrast to the situation of LaFeO3, the phase diagram indicates no equilibrium between
Li5FeO4 and a binary iron oxide. For example, the line ∆µ(Fe2O3) = 0, which is parallel to ∆µ(LiFeO2)

= 0, is located at ∆µ(Li2O) = −0.18 eV outside of the displayed region. This impedes a direct solid-state
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route, such as Li2O + Fe2O3→ 2 Li5FeO4, which, at rich Fe2O3 conditions, would lead to the formation
of LiFeO2 instead.

3.5.3. NaFeO2

NaFeO2 was experimentally synthesized by milling the precursor compounds Na2O2 (sodium
peroxide) and Fe3O4 and exposing the mixture to a temperature of about 900 K [27,28]. Due to
stoichiometric constraints, oxygen has to be released during this reaction:

3 Na2O2 + 2 Fe3O4 → 6 NaFeO2 + O2.

The phase diagram is presented with variables ∆µ(Na2O2), ∆µ(O), and p(O2) for T(O2) = 900 K
in Figure 6, with the chemical potential of Fe3O4 being depicted by a color code. Next to Na2O2 (space
group P62m) and the binary iron oxides, the phases taken into account were Na2O (Fm3m), NaO2

(Pnnm), Na2FeO3 (P1), Na3FeO3 (P21/c), Na4FeO4 (P1), and NaFeO2 (R3m). Further phases consisting
of Na, Fe, and O turned out to be irrelevant for the stability discussion of NaFeO2.
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transitions to the denoted secondary phases.

Under Fe3O4-rich conditions, NaFeO2 only forms at low pressures and Na2O2-poor conditions
(lower left part of the stability region). If the atmospheric pressure is too high, the oxidation of Fe3O4 to
Fe2O3 can occur, and if it is too low, a reduction to metallic Fe is expected. Under Na2O2-rich conditions
(upper right part of the stability region), NaFeO2 only forms at high oxygen pressures and Fe3O4-poor
conditions, and the phases NaO2 and Na4FeO4 are likely to emerge. Based on the phase diagram,
two alternatively plausible processing routes can be proposed: Na3FeO3 + Fe2O3 → 3 NaFeO2 and
Na2O + Fe2O3→ 2 NaFeO2. The latter does not include the complication of preliminarily having to
synthesize Na3FeO3, but it can only be realized under not-too-rich Na2O conditions. A reaction of
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metallic Fe with sodium superoxide (NaO2) appears possible as well, but due to the high reactivity
of NaO2 with water and a costly production process, this route is presumably inexpedient from a
practical point of view.

4. Summary and Conclusions

In the first part of this work, we compiled, reconsidered, and reevaluated a set of correction
methods previously described in the literature and applied in a frequently accessed materials database
(Materials Project, MP), which deals with inaccuracies of the usual LDA or GGA calculations of DFT in
deriving accurate formation energies of transition metal oxide compounds. Common to these methods
is the incorporation of physically justified and generally applicable parameters for systematic error
corrections, which can be tuned to minimize an average deviation of computed and experimentally
determined energies for a variety of compounds. We come to the following conclusions:

• The method to correct the formation energy error due to the over-binding of the O2 molecule
remains valid if a larger set of non-transition metal oxide compounds from the groups I to IV of
the periodic table is considered instead of the previously chosen smaller subset. The magnitude
of the energy correction we derived (0.64 eV) agrees within 0.1 eV with the reported values,
which reflects the uncertainty range we determined for the approach. Experimental enthalpies of
the formations for the considered compounds can be reasonably reproduced within 0% to 5%,
except for Tl2O3 and PbO2, for which the values deviate more. A possible explanation is given.

• For the binary iron oxide compounds, we confirmed that it is well-justified to correct the error
arising in combining the results of DFT and DFT+U calculations by adding a value proportional
to the Fe content to the formation energy. While it was originally derived considering only the
binary oxides for a fixed U value for Fe, we strengthened and generalized the scheme by (a) taking
into account ternary compounds, (b) not a priori constraining the correction value to be zero for
hypothetical compounds without Fe, and (c) considering different values of U.

• Our U-dependent correction value offers a new possibility to determine an optimal U value
for Fe for which the experimental formation energies are reproduced best. With this approach,
we confirmed the frequently used value of U ≈ 4 eV, which additionally turned out to reproduce
experimental band gaps of the considered compounds within 0.3 eV.

In the second part of this work, by applying the above-mentioned correction schemes, we
calculated the formation energies for a set of binary oxide and ternary iron oxide compounds
containing La, Li, or Na in order to derive the phase diagrams for LaFeO3, Li5FeO4, and NaFeO2

with respect to the reservoir energies (chemical potentials) of elements and/or precursor compounds.
Our representation of the phase diagrams corresponds closely to actual solid-state synthesis routes
reported in the experimental literature. This allows for motivating the experimental adjustments of
pressures, for predicting the phase transformations upon changing the synthesis conditions, and for
explaining the phases found after vaporization, which are demonstrated for the described compounds.
In addition, alternative synthesis routes can be proposed and compared.
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Appendix A : List of Calculated and Experimental Formation Energies

Table A1. Formation energies of oxide compounds in their ground state crystal structure (specified by the
space group (SG) in Hermann-Mauguin notation) with respect to the elemental phases in eV per formula
unit. Experimental standard enthalpies of the formation (Eform

exp . ) are taken from References [38] (Rb2O
and Cs2O); (Ga2O3, In2O3, GeO2, SnO2, and PbO2) [37]; (Tl2O3) [39]; (LaFeO3) [53]; (Li5FeO4) [60];
(NaFeO2) [61]; and [36] (all other compounds). Calculated formation energies from DFT (non-TM
oxides) and DFT+U for UFe = 4 eV (TM oxides) are given without any corrections (Eform

uncorr.), considering
the oxygen over-binding corrections (Eform

ox ) and considering the oxygen over-binding together with
DFT/DFT+U combination corrections (Eform

ox+U). δ denotes the absolute value of the relative deviation of
the calculated and totally corrected value from the experimental value.

Compound SG Eform
exp. Eform

uncorr. Eform
ox Eform

ox+U δ (%)

Non-TM oxides
Li2O Fm3m −6.21 −5.62 −6.26 - 0.8
Na2O Fm3m −4.33 −3.59 −4.23 - 2.3
K2O Fm3m −3.76 −3.11 −3.75 - 0.3
Rb2O R3m −3.43 −2.77 −3.42 - 0.3
Cs2O R3m −3.59 −2.99 −3.63 - 1.1
BeO P63mc −6.31 −5.53 −6.17 - 2.2
MgO Fm3m −6.23 −5.45 −6.09 - 2.2
CaO Fm3m −6.58 −5.96 −6.60 - 0.3
SrO Fm3m −6.14 −5.49 −6.14 - 0.0
BaO Fm3m −5.68 −4.98 −5.62 - 1.1

Al2O3 R3c −17.37 −15.16 −17.08 - 1.7
Ga2O3 C2/m −11.29 −9.25 −11.17 - 1.1
In2O3 Ia3 −9.60 −7.99 −9.91 - 3.2
Tl2O3 Ia3 −4.09 −3.43 −5.35 - 30.8
SiO2 I42d −9.44 −8.48 −9.76 - 3.4
GeO2 P3121 −6.01 −4.88 −6.16 - 2.5
SnO2 P42mnm −5.99 −5.00 −6.28 - 4.8
PbO2 P42mnm −2.88 −2.52 −3.80 - 31.9

TM oxides
FeO Fd3m −2.82 −0.31 −0.95 −2.83 0.4

Fe2O3 R3c −8.56 −3.04 −4.96 −8.69 1.5
Fe3O4 Fd3m −11.62 −3.35 −5.92 −11.53 0.8

LaFeO3 Pnma −14.24 −10.59 −12.51 −14.27 0.2
Li5FeO4 Pbca −20.21 −16.34 −18.91 −20.45 1.2
NaFeO2 R3m −7.23 −3.96 −5.24 −7.05 2.5

Appendix B : Dependence of Oxidation Energies on U

In order to understand the dependence of the calculated oxidation reaction energy values on U,
we consider, as an example, the reaction between FeO and Fe2O3, where Fe changes its oxidation state
from 2+ to 3+:

2 FeO + 0.5 O2 → Fe2O3. (A1)

The corresponding reaction energy per formula unit can be expressed as:

E(r) = Etotal(Fe2O3) −
[
2Etotal(FeO) + 0.5µ(O2)

]
. (A2)

The application of U changes the total energies. We define

δFe3+ :=
1
2

[
Etotal

U>
(Fe2O3) − Etotal

U<
(Fe2O3)

]
, (A3)
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and analogously δFe2+ (for FeO) as the differences of the total energies per Fe atom in the compounds
for a fixed difference between a higher (U>) and a lower U value (U<). By applying higher U values,
the correlated electrons, which become too delocalized by LDA or GGA, are forced to a higher
localization, which increases the energy of the system due to Coulomb repulsion. Therefore, δFe3+ > 0
and δFe2+ > 0.

With higher oxidation states, the number of correlated electrons is increased, so U has a stronger
influence on the change in the energy: δFe3+ > δFe2+ . A comparison of the reaction energies for different
U values then leads to:

E(r)
U>
− E(r)

U<
= 2

(
δFe3+ − δFe2+

)
> 0. (A4)

This implies, that oxidation reaction energies increase with the increasing U, which is confirmed by
our results for iron oxides and by the results of Wang et al. [13] for vanadium, chromium, manganese,
iron, cobalt, nickel, and copper oxides.

Appendix C : Comparison of Methods for the Determination of U

In this section, two conceptually different approaches are explicitly described to derive an optimal
U value by comparing the experimental and calculated formation and oxidation energies of iron oxides.
The first method is equivalent to the procedure worked out in Section 3.2, except that now only the
energies of the binary iron oxide phases are taken into account. The function to be minimized with
respect to U is:

f (U) =
3∑

i=1

[
∆ei(U) − ∆efit,0

i (U)
]2

. (A5)

with ∆e as defined in Equation (2). For the fitting, the linear functions ∆efit,0 through the origin are
chosen, since the difference between ∆efit,0 and the general linear fit ∆efit is insignificant in the U region
where f is minimal (see Figure 2a). The sum runs over Fe2O3, Fe3O4, and FeO. With xFe ≡ x, the fit
lines can be expressed as:

∆efit,0
i (U) = xim0(U) = xi

∑
j x j∆e j(U)∑

j x2
j

. (A6)

By expressing the energy differences as linear functions of U: ∆ei(U) = aiU + bi, only the parameters
xi, ai, and bi enter the function f (U). Minimization leads to:

Umin = −

∑
i(ai − αxi)(bi − βxi)∑

i(ai − αxi)
2 , (A7)

with α :=
∑

i xiai/x2
i and β :=

∑
i xibi/x2

i .
In the approach by Wang et al. [13], the energies of the oxidation reactions

(r1) 2 FeO + 0.5 O2 → Fe2O3

(r2) 3 FeO + 0.5 O2 → Fe3O4

are compared to the experimental values. These reaction equations can be obtained by linear
combinations of the formation equations of the compounds from the pure elemental phases.
For example, subtracting the reaction Fe + 0.5 O2 → FeO twice from 2 Fe + 1.5 O2 → Fe2O3 yields
(r1). The corresponding energies can be combined accordingly. The oxidation energies per atom
(e(r1) and e(r2)) are related to the formation energies of the oxides from the elemental phases per atom
(ei) via: (

e(r1)

e(r2)

)
=

(
1 0 −4/5
0 1 −6/7

)
e1

e2

e3

 := T


e1

e2

e3

, (A8)
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if i = 1, 2, 3 stands for Fe2O3, Fe3O4, and FeO, respectively. Since this relation holds for the calculated,
as well as for the experimental, values, it can be formulated for their respective differences ∆e(r1,r2) and
∆e1,2,3. Note that changing the energies e1,2,3 by any correction proportional to the number of Fe atoms
involved cancels out and has no effect on e(r1,r2), so it is irrelevant whether or not the correction of
the combined DFT and DFT+U data described in Section 3.2 is considered here. Therefore, we can
apply the linear dependencies ∆ei(U) = aiU + bi with the same set of parameters as above in the first
approach, which leads to Equation (A7).

Materials 2020, 13, x FOR PEER REVIEW 17 of 21 

 

and ∆𝑒 , , . Note that changing the energies 𝑒 , ,  by any correction proportional to the number of Fe 
atoms involved cancels out and has no effect on 𝑒( , ), so it is irrelevant whether or not the correction 
of the combined DFT and DFT+U data described in Section 3.2 is considered here. Therefore, we can 
apply the linear dependencies ∆𝑒 (𝑈) = 𝑎 𝑈 + 𝑏  with the same set of parameters as above in the first 
approach, which leads to Equation (A6). 

 
Figure A1. Deviation functions of formation energy differences between the calculated and 
experimental values from the linear fit ( 𝑓(𝑈) ) and of calculated oxidation energies from the 
corresponding experimental values (𝑔(𝑈)). 

The function to be minimized to find the closest match between the calculated and experimental 
oxidation energies is: 𝑔(𝑈) = ∆𝑒( )(𝑈) + ∆𝑒( )(𝑈) . (A9)

With the definitions �⃗� ≔ (𝑎 , 𝑎 , 𝑎 ) and �⃗� ≔ (𝑏 , 𝑏 , 𝑏 ), the U value where 𝑔 is minimal can be 
found as: 

𝑈 = − (𝑇�⃗�) ∙ 𝑇𝑏(𝑇�⃗�) , (A10) 

with the matrix 𝑇 as defined in Equation (A7). 
From the data points ∆𝑒 (𝑈) shown in Figure 2a, one obtains �⃗� = (0.132, 0.153, 0.105) eV/U 

and 𝑏 = (0.198, 0.209, 0.523) eV, leading to 𝑈 = 4.00 eV and 𝑈 = 4.05 eV for the first (Equation 
(A6)) and second approach (Equation (A9)), respectively. The functions 𝑓(𝑈) and 𝑔(𝑈) are shown 
in Figure A1, indicating that the two approaches are indeed different from each other, even though 
they use the same set of calculated and experimental input data and lead to very close minima. 

Appendix D: Phase Diagram with Respect to the Precursor Compounds 

This section explicitly describes for the example of LaFeO3 (LFO), how a phase diagram can be 
derived with respect to reservoir energies of binary compounds and molecular oxygen instead of the 
usual representation considering only the elemental phases. The latter corresponds to a hypothetical 
solid-state reaction La + Fe + (3/2)O2  LaFeO3. In a more realistic synthesis scenario, stable oxide 
compounds for LFO, e.g., La2O3 and Fe2O3, are mixed by mechanical and/or chemical treatment and 
exposed to an oxygen atmosphere [53,54]. In an analogy to Equations (1) and (3), 𝐸  given in 
Equation (A11) expresses the formation energy of LFO with respect to the binary oxides in their 
ground-state phases, which are again labeled by the superscript (0): 𝐸 (LFO) = 𝐸 (LFO) − 12 𝜇( )(La O ) + 𝜇( )(Fe O )= 12 ∆𝜇(La O ) + 12 ∆𝜇(Fe O ). (A11) 

Figure A1. Deviation functions of formation energy differences between the calculated and experimental
values from the linear fit ( f (U)) and of calculated oxidation energies from the corresponding
experimental values (g(U)).

The function to be minimized to find the closest match between the calculated and experimental
oxidation energies is:

g(U) =
[
∆e(r1)(U)

]2
+

[
∆e(r2)(U)

]2
. (A9)

With the definitions
→
a :=(a1, a2, a3) and

→

b :=(b1, b2, b3), the U value where g is minimal can be found as:

Umin = −

(
T
→
a
)
·

(
T
→

b
)

(
T
→
a
)2 , (A10)

with the matrix T as defined in Equation (A8).
From the data points ∆ei(U) shown in Figure 2a, one obtains

→
a = (0.132, 0.153, 0.105) eV/U

and
→

b = (0.198, 0.209, 0.523) eV, leading to Umin= 4.00 eV and Umin= 4.05 eV for the first (Equation
(A7)) and second approach (Equation (A10)), respectively. The functions f (U) and g(U) are shown in
Figure A1, indicating that the two approaches are indeed different from each other, even though they
use the same set of calculated and experimental input data and lead to very close minima.

Appendix D : Phase Diagram with Respect to the Precursor Compounds

This section explicitly describes for the example of LaFeO3 (LFO), how a phase diagram can be
derived with respect to reservoir energies of binary compounds and molecular oxygen instead of the
usual representation considering only the elemental phases. The latter corresponds to a hypothetical
solid-state reaction La + Fe + (3/2)O2→ LaFeO3. In a more realistic synthesis scenario, stable oxide
compounds for LFO, e.g., La2O3 and Fe2O3, are mixed by mechanical and/or chemical treatment
and exposed to an oxygen atmosphere [53,54]. In an analogy to Equations (1) and (3), Eform

c given
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in Equation (A11) expresses the formation energy of LFO with respect to the binary oxides in their
ground-state phases, which are again labeled by the superscript (0):

Eform
c (LFO) = Etotal(LFO) − 1

2

[
µ(0)(La2O3) + µ(0)(Fe2O3)

]
= 1

2 ∆µ(La2O3) +
1
2 ∆µ(Fe2O3).

(A11)

Since Eform
c (LFO) has a fixed value, the second equation of Equation (A11) contains only one free

variable, which implies that fixing the value of one chemical potential, e.g., ∆µ(La2O3) (i.e., setting the
conditions in this compound in terms of rich or poor), defines the chemical potential/conditions of the
other compound (∆µ(Fe2O3)). However, processing under an oxygen atmosphere results in a constant
exchange of oxygen atoms between the compound phases and the atmospheric reservoir, which also
produces free non-oxygen elements (La and Fe) at certain energies. This can be formally taken into
account by expressing one of the chemical potentials of the precursor compounds, say µ(Fe2O3), by the
respective energies of its elemental components, leading to:

∆µ(Fe2O3) = µ(Fe2O3) − µ(0)(Fe2O3) = 2µ(Fe) + 3µ(O) − µ(0)(Fe2O3) =

2
[
µ(0)(Fe) + ∆µ(Fe)

]
+ 3

[
µ(0)(O) + ∆µ(O)

]
− µ(0)(Fe2O3).

(A12)

With this expression, Equation (A11) can be reformulated:

∆µ(La2O3) + 2∆µ(Fe) + 3∆µ(O) = 2Eform
c (LFO) + Eform(Fe2O3), (A13)

with Eform(Fe2O3) according to Equation (1) (note that µ(0)(Fe2O3) = Etotal(Fe2O3) for the
ground-state phase).

Equation (A13) now defines the phase space of LFO with the free variables ∆µ(La2O3) and
∆µ(O), which can be visualized in a two-dimensional diagram, e.g., with axes x = ∆µ(La2O3)

and y = ∆µ(O). Following Equation (A11), an appropriate second x-axis can then be chosen as
x′ = ∆µ(Fe2O3) = 2Eform

c (LFO) − x. Lines y(x) constraining the phase space of LFO with respect
to other phases LalFemOn can be obtained by expressing ∆µ(La) and ∆µ(Fe) in the formation
energy of LalFemOn according to Equation (3) by x and y. For example, Equation (A13) yields
∆µ(Fe) = Eform

c (LFO) + 0.5 Eform(Fe2O3) − 0.5x− 1.5y. On the other hand, expressing ∆µ(La2O3) by
the elemental chemical potentials in analogy to Equation (A12) and using Equation (A11) leads to
∆µ(La) = 0.5 Eform(La2O3) + 0.5x− 1.5y. It then follows from Equation (3):

x[−l + m] + y[3l + 3m− 2n] = Klmn, (A14)

with
Klmn := 2mEform

c (LFO) + lEform(La2O3) + mEform(Fe2O3) − 2Eform(LalFemOn). (A15)

For example, the line in the phase diagram separating LFO from elemental Fe (l = n = 0, m = 1,
Eform(Fe) = 0) is given by x + 3y = Eform

c (LFO) + Eform(Fe2O3), and the line between LFO and O2 by
y = 0 is consistent with the definition of y. The formation energies used in Equations (A13) and (A15)
are calculated with the corrections described in Section 2.3 (Equation (4)) and Section 2.4 (Equation (6)).

The procedure described here for LFO is transferable to other solid-state processing routes and
arbitrary ternary compounds, such as Li5FeO4 and NaFeO2 considered in this study. Note that the
chemical potentials of the elemental phases need to be included in the formulation of the formation
energy with respect to the compound phases (Eform

c ) corresponding to Equation (A11) if the elemental
phases are part of the reaction due to the stoichiometric constraints (see Sections 3.5.2 and 3.5.3). This,
however, does not change the methodology following Equations (A12)–(A15). For example, the starting
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point for deriving the phase diagram of Li5FeO4 with respect to ∆µ(Li2O) and ∆µ(O2) would be in
analogy to Equation (A11):

Eform
c (Li5FeO4) = 4∆µ(Li2O) + ∆µ(Fe) − 3∆µ(Li), (A16)

according to the reaction 4 Li2O + Fe −→ Li5FeO4 + 3 Li . The procedure then follows the steps
described above. However, in contrast to the situation for LaFeO3 and Equation (A11), Equation (A16)
contains two free variables. Therefore, choosing ∆µ(Li2O) as the horizontal (x)-axis of the phase
diagram does not allow for an alternative horizontal axis x′ = ∆µ(Fe) or x′ = ∆µ(Li). Instead,
these quantities can be represented by height functions in the phase diagram, and, e.g., illustrated by
color coding, as shown in Figures 5 and 6.
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