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Abstract: This paper reports the results of the influence of the energy of laser pulses during laser
ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is
found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge
carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge
carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material
effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the
material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained
at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer
length compared to samples with a V sublayer. Based on the obtained results, the architecture
of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA
under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to
estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter.
Obtained results are promising for the development of efficient energy converters for alternative
energy devices based on lead-free ferroelectric films.

Keywords: nanoelectronics; laser ablation; lead-free ferroelectrics; carbon nanotubes; thin films;
energy conversion devices

1. Introduction

Despite a significant improvement in the performance of computing system components, essential
progress in the fabrication of high-efficiency batteries has not yet been achieved [1]. The increase in
performance has led to an increase in power consumption, which leads to a reduction in battery life,
significantly limits the functionality of modern electronic devices, and increases the weight and size
parameters of the power supply elements [2]. In addition, battery life is limited compared to the duty
cycle of the device. Replacing or recharging batteries is often ineffective and sometimes impossible.
Therefore, the collection and conversion of environmental energy into electric energy is considered
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today as an alternative to electrochemical batteries and can be used as an autonomous energy source
for portable devices and wireless sensors [3–6]. Advances in wireless technology and MEMS have
made it possible to use power converters as an alternative to conventional electrochemical batteries,
which are already used as power sources for portable electronics [7].

Today, there are several possible ways to obtain electrical energy from environmental
energy: the use of solar energy [8], electromagnetic induction [9], electrostatic generation [10],
dielectric elastomers [11], and piezoelectric materials [12]. Each of the methods can power devices
with a small amount of energy. However, the complex systems based on piezoelectric materials have
become attractive due to their ability to convert mechanical energy (deformation energy) into useful
electrical power [13–15].

Energy conversion in a piezoelectric material is possible due to the existence of a local charge
separation called an electric dipole [16]. When mechanical stress is applied to a piezoelectric material,
a dipole deforms to generate an electric charge that can be used to supply various portable electronic
devices [17,18]. This effect is used in sensing elements based on piezoelectric materials in accelerometers,
microphones, strain gauges, etc. The same approach is used to generate electricity, but instead of
dissipating energy, it is used to power a device.

The process of collecting energy from the environment and converting it into electrical power
is called energy harvesting [19,20]. The conversion efficiency depends not only on the piezoelectric
coefficients but also on the applied mechanical stress (deformation). The magnitude of the generated
electric power also depends on the elastic and fracture properties of the piezoelectric material,
which determine the ability to withstand deformations. The efficiency of piezoelectric energy converters
can be increased by modifying the properties of the active layer, the topology of the contact system,
direction of polarization, geometric parameters of the active layer, and creating additional mechanical
stresses to improve adhesion and increase deformation [17]. In addition, extra attention is paid to
the multi-component ferroelectric oxides and carbon nanostructures., To increase the area of energy
harvesting, experimental studies were carried out to create a “skeleton” based on carbon nanotubes
(CNTs), which was covered with LiNbO3. The use of vertically oriented CNTs makes it possible to
increase the effective coverage area of LiNbO3 due to the greater development of the CNT surface as
compared to the formation of a piezoelectric layer on a flat substrate. The parameters and geometries
of CNTs can be varied by the tuning of CNTs growth regimes and by using different contact materials.
The use of hybrid structures leads to withstanding significant deformation gradients, thereby increasing
the conversion efficiency. Moreover, the area of the possible application of energy harvesters can be
significantly expanded by using lead-free piezoelectric materials [21]. Lithium niobate (LiNbO3) is one
of the prospective materials for piezoelectric energy harvesters because it has a high Curie temperature
and does not contain lead [22]. One of the key tasks in the formation of thin multicomponent oxide
films is the control of the processes that affect the preservation of the stoichiometric composition, as it
determines the structural and electro-physical properties of the formed films [23].

Currently, LiNbO3 thin films can be obtained by following technological methods compatible
with modern integrated technologies of micro- and nanoelectronics: epitaxy [24], chemical vapor
deposition [25], Radio Frequencysputtering [26], pulsed laser deposition [27–30], and the sol–gel
process [31].

Pulsed laser deposition (PLD) is mostly used for the growth of complex oxides [32–35] and when
a particular threshold value of the laser power density is exceeded, stoichiometric growth of films
is possible [36]. However, the physical mechanisms underlying this phenomenon have not yet been
clarified [37]. Thus, the purpose of this work was to experimentally study the influence of laser
pulse energy under the deposition of LiNbO3 films by PLD on their morphology and electro-physical
parameters, and to evaluate the possibility of using the obtained films in piezoelectric converters based
on hybrid nanostructures.
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2. Materials and Methods

For LiNbO3 film formation by PLD (Figure 1), the nanotechnological cluster complex
NANOFAB NTK-9 (NT-MDT, Zelenograd, Russia), with the Pioneer 180 PLD module (Neocera
Co., Beltsville, MD, USA) was used. The LiNbO3 congruent target (Kurt J. Lasker, 99.9% purity) was
ablated by excimer KrF laser (λ = 248 nm) (Coherent Inc., Santa Clara, CA, USA) with a pulse length
of 20 ns. The laser pulse energy was varied in the range from 180 to 220 mJ in this case, while the
target–substrate distance (80 mm), the number of pulses (50,000), the repetition rate (10 Hz), and the
background oxygen pressure in the growth chamber (1 × 10−2 Torr) remained unchanged. LiNbO3

films with a thickness of 132.3 ± 8.8 nm–153.9 ± 10.5 nm were obtained at a temperature of 600 ◦C on
single-crystal silicon substrates.
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Figure 1. Schematic representation of the pulsed laser deposition process.

The formation of catalytic centers and the growth of carbon nanotubes (CNT) were carried out in
the plasma-enhanced chemical vapor deposition (PECVD) module (NT-MDT, Zelenograd, Russia),
designed for the catalytic plasma-chemical deposition of arrays of carbon nanotubes on flat plates.
The deposition of CNTs took place in a plasma obtained at low pressure by means of a direct current
electric discharge only on previously prepared catalytic structures with a structure suitable for CNT
synthesis. Previously [38,39], we carried out the necessary studies of the growth modes of CNTs by
PECVD, which made it possible to determine the optimal technological parameters of their growth.
CNTs were grown on Si (100) samples coated with contact V or Cr (50 nm) and catalytic Ni layers
(10 nm). The deposition was carried out in a flow of ammonia (210 sccm) and acetylene (70 sccm) at a
pressure of 4.5 Torr. During the growth process, a plasma with a power of 2 W was initiated employing
an electric discharge with a direct current of 5 mA at a voltage of 420 V. The gap between the electrodes
was 10 mm. The range of growth times was from 1 to 10 min.

The morphology of the obtained films was studied by scanning electron microscopy (SEM) and
atomic force microscopy (AFM) in semi-contact mode using a Nova Nanolab 600 scanning electron
microscope (FEI. Co., Eindhoven, The Netherlands) and the Ntegra probe nanolaboratory (NT-MDT,
Zelenograd, Russia), respectively [23]. The crystal structure of the obtained LiNbO3 films was studied
by the X-ray diffraction (XRD) method using a Rigaku MiniFlex 600 (Rigaku Co., Tokyo, Japan).
The charge carrier concentration and mobility were measured using the Hall effect technique by an
Ecopia HMS-3000 measurement system (Ecopia Co., Anyang, Korea) [28].

3. Results

3.1. LiNbO3 Thin Film Growth

Figure 2 shows the dependence of film thickness of the obtained LiNbO3 on laser pulse energy.
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Figure 2. Dependence of the thickness of the obtained LiNbO3 films on the laser pulse energy.

Our results indicate that with an increase in the laser pulse energy from 180 to 220 mJ, the thickness
of the LiNbO3 films increased from 132.3 ± 8.8 nm (the deposition rate of the film was 1.47 nm/min) to
153.9 ± 10.5 nm (film deposition rate 1.71 nm/min).

Figure 3 shows the X-ray diffraction patterns of films obtained at laser pulse energies of 180 and
220 mJ.
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Figure 3. X-ray spectra of LiNbO3 films obtained at laser pulse energies of 180 and 220 mJ.

We can conclude that the obtained films predominantly consist of LiNbO3—the double peak at
about 69◦ refers to phases (018) and (214), and the higher peak intensity in the 220 mJ sample indicates
a greater film thickness obtained at a laser pulse energy of 220 mJ. The 220 mJ X-ray diffraction pattern
also shows the presence of a peak corresponding to phase (211). Thus, the additional energy of the
laser beam changes the mobility of ablated particles, intensifies the growth process, and leads to the
formation of a thicker film with higher crystallinity. In addition, an increased number of collisions at
higher energy also stimulates variation in the growth direction [37] as it is indicated by the appearance
of the (211) peak. The spectra of the films are shifted to the right by ~5◦ relative to the spectra presented
in [40–42]. Such a shift can be explained by stress applied to LiNbO3 films by Si substrates. Figure 4
shows AFM images of LiNbO3 films obtained at different laser pulse energies.
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Figure 4. Atomic force microscopy (AFM) images of LiNbO3 films fabricated by pulsed laser deposition
(PLD) at different laser pulse energies: 180 mJ (a), 200 mJ (b).

An increase in the grain size can be related to an increase in the kinetic energy of the ablated
particles and the intensification of coalescence processes (Figure 5) [37]. A further increase in the
energy of laser pulses above 200 mJ leads to the formation of smaller ablated particles, which results in
the formation of a fine-grained film (Figure 6).
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Increasing the laser pulse energy from 180 to 220 mJ results in a decrease of charge carrier
concentration from 8.6 × 1015 to 1.0 × 1013 cm−3. The mobility of charge carriers increases from 0.43
up to 17.4 cm2/(V·s), which can be associated with an increase in stoichiometry during heat and mass
transfer in the transit space and a decrease in the defectiveness of films [43]. This indicates a transition
from the evaporation mode to ablation (Figure 7). The structural changes of fabricated films deposited
at different laser pulse energies can be attributed to the diffusion character of incident particles on the
substrate [39,44].
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The dependencies of polarization on the field strength exhibit hysteresis, which characterizes
these films as ferroelectric with spontaneous polarization.

3.2. CNT Growth

In addition, experimental studies of the sublayer material effect on the geometric parameters of
CNTs were performed. Ni(10 nm)/V(20 nm)/Si and Ni(10 nm)/Cr(20 nm)/Si were chosen.

Figure 9 shows SEM images of the obtained CNT arrays on the Ni/V/Si and Ni/Cr/Si structures.
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Figure 10. Dependence of the carbon nanotube (CNT) array height on the growth time, at the minimum
plasma power.

It was found that the material of the lower electrode had a significant effect on the formation of
CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer had a smaller diameter
and a longer length compared to samples with a V sublayer. According to the results of experiments,
an array of carbon nanotubes with the following parameters with a vertical orientation of 40–70 nm in
diameter, and heights of 4.5–5 µm, was obtained. The density of the tubes in the array was around
3.68 × 105 cm−2.
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3.3. Piezoelectric Energy Harvester

Based on the obtained results, the architecture of the piezoelectric nanogenerator based on a
hybrid carbon nanostructure was developed. As an active element it uses a CNT coated with a LiNbO3

film with ferroelectric and piezoelectric properties. Figure 11 shows a schematic representation of the
developed nanogenerator.
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Figure 11. Schematic representation of the proposed nanogenerator.

The generated current were measurement measured by the force mode of the Ntegra probe
nanolaboratory when the mechanical force were applied (Figure 11) [45]. The Si/Ti hybrid carbon
nanostructure was used for measurements. An NSG11/Pt conducting AFM cantilever probe was used
as the upper electrode. The pressing force of the NSG11/Pt AFM cantilever probe changed from 0
to 600 nN. The deformation of the structure was formed under the action of an AFM probe during
force spectroscopy.

The current value was reproducibly reduced to zero (Figure 12), with the removal of the
mechanical impact.
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The piezoelectric effect creates an electric field within the structure: a stretched part with positive
strain creates a positive electrical potential, while a compressed part with negative strain creates a
negative electrical potential. This effect is associated with the relative displacement of cations relative
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to anions. As a result, a potential difference is created at the top of the nanostructure and distributed
over the surface of the structure. However, the base of the nanostructure remains electrically neutral.

Figure 13 shows the results of studying the stability of the output parameters under multiple
deforming cycles.
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It was found that the hybrid-carbon-nanostructure-based nanogenerator generated a current
of about 18 nA when mechanical stress of 600 nN was applied. In addition, under the influence of
multiple deforming cycles, the nanogenerator retained its ability to generate current, despite the gradual
degradation of its parameters that began after cycle 218. One of the possible ways to increase the
stability of the nanogenerator parameters is the use of a polymeric material such as dimethicone (PDMS)
as a flexible filler, which would perform a protective function without violating the elastic properties.

To test the integral effects associated with an increase in the generated energy with an increase in
the number of hybrid carbon structures in the array, COMSOL Multiphysics 5.2 software (COMSOL
Inc., Los Altos, CA, USA) was used. The established COMSOL model was based on the piezoelectricity,
solid mechanics, electrostatics, and electric circuit modules. As a boundary condition, it was assumed
that the bottom facet of the hybrid nanostructures was mechanically fixed and electrostatically
neutral. In the same manner as in the experimental study, mechanical stress was applied from the
side of the nanostructure array. We performed the estimated calculations of the parameters of the
proposed structure and obtained the distribution of the electric potential in the piezoelectric transducer,
which consisted of 100 hybrid carbon nanostructures. Figure 14 shows the calculated electrical potential
distribution at mechanical stress of 1 N.
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The generated voltage of the proposed piezoelectric transducer based on hybrid carbon
nanostructures was at the level of modern transducers presented in the literature [46–52]. The active
layers based on the hybrid carbon nanostructures make it possible to increase the generated voltage
by a factor of 10 in comparison with a LiNbO3-based converter [52]. In addition, the absence of
lead in the composition of the converter allows implementation of biocompatible energy harvesters
on the same basis, which makes it possible to significantly expand the areas of their potential
application, including for use as part of wearable electronic devices, medical equipment, and potential
integration into clothes. The correctness of the model was verified by comparing the calculation
results with the experimentally investigated characteristics of the nanogenerator. It was found that
the calculated voltage peak generated by the piezoelectric structure was 3.5 V, which agrees with the
experimental results.

4. Conclusions

Experimental studies of the parameters of lithium niobate films formed by PLD have shown that the
laser pulse energy has an essential effect on the structure and properties of the films. The experiments
have shown that films obtained in the range of laser pulse energies from 180 to 220 mJ exhibit
ferroelectric properties. It was found that increasing laser pulse energy from 180 to 220 mJ resulted in
decreasing charge carrier concentration of LiNbO3 films from 8.6 × 1015 to 1.0 × 1013 cm−3, while the
mobility of charge carriers increased from 0.43 up to 17.4 cm2/(V·s).

Based on the results obtained, the structure of the nanogenerator has been proposed. The proposed
generator creates a current of 18 nA at mechanical stress of 600 nN. The conducted studies of the
stability of the parameters of the hybrid-carbon-nanostructure-based nanogenerator have shown
that the nanogenerator retains the ability to generate current despite the gradual degradation of its
properties that significantly appears after 218 cycles. Based on the modeling it was found that an array
of 100 nanostructures can generate a voltage of about 3.5 V.

The influence of laser pulse energy during PLD has been experimentally studied, which allowed
LiNbO3 films with controlled parameters to be obtained. The obtained theoretical and experimental
results enable fabrication of LiNbO3 films that can be used as a key element of the promising lead-free
energy converters for “green” energy and IoT devices.
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