

Supplementary Materials

Modified starch as a filter controller in water-based drilling fluids

Diana Soto ¹, Orietta León ^{1,*}, José Urdaneta ¹, Alexandra Muñoz-Bonilla ^{2,3} and Marta Fernández-García ^{2,3,*}

- ¹ Laboratorio de Polímeros y Reacciones, Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad del Zulia, Sector Grano de Oro, Maracaibo 4011, Venezuela; dsoto@fing.luz.edu.ve (D.S.); joseurdaneta1@hotmail.com (J.U.)
- ² Departamento de Química y Propiedades de Materiales Poliméricos, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; sbonilla@ictp.csic.es
- ³ Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
- * Correspondence: orleon@fing.luz.edu.ve (O.L.); martafg@ictp.csic.es (M.F.-G.); Tel.: +58-4246735743 (O.L.); +34-912587530 (M.F.-G.)

Received: 5 May 2020; Accepted: 18 June 2020; Published: 20 June 2020

Figure S1. ATR-FTIR spectra of (a) NCS, (b) S-g-IA_APS, and (c) PS.

Figure S2. (a) Thermograms and (b) derivative: a–NCS, b–S-g-IA_APS, and c–PS.

Figure S3. Schematic representation of the interactions between bentonite and S-g-IA_APS.

Figure S4. Comparison between VAPI and VHPHT of drilling fluids.

Table S1. Thermogravimetric parameters of starches.

Sample	Step	Temperature	T _{max}	Weight Loss	Ash at 800 °C	Ea
		Range (°C)	(°C)	(%)	(%)	(kJ/mol)
NCS	1	35-214	104	9.5		
	2	250-413	304	77.0	8	208
S-g-IA_APS	1	35-225	108	11.0		
	2	225-342	300	55.0		129
	3	342-483	413	12.0	17	18
PS	1	35-155	65	6.0		
	2	212-450	314	75.0	14	140

 T_{max} is the temperature at the highest rate of mass loss.

Table S2. Herschel-Bulkley parameters of WBDF.

Parameter	F1	F2	F3	F4
το (Pa)	4.531	5.491	4.518	5.757
k (Pa⋅s ⁿ)	0.013	0.105	0.060	0.084
n	0.978	0.569	0.724	0.698
\mathbb{R}^2	0.999	0.954	0.971	0.992

Table S3. Rheological and filtering parameters of aged WBDF.

Parameter	F2	F3	F4				
Fresh WBDF							
µ₁ (mPa·s)	10.5	13.0	16.0				
µ _P (mPa⋅s)	2.0	5.0	8.0				
Y _p (Pa)	8.7	8.2	8.2				
Y_{p}/μ_{p} (s ⁻¹)	4342	1635	1022				
Rg10 s (Pa)	5.6	4.6	7.2				
Rg10 min (Pa)	6.6	9.2	12.8				
Rg,10 min – Rg,10 s (Pa)	1.0	4.6	5.6				
Vapi (mL)	23	18	20				
Aged WBDF							
µ₁ (mPa·s)	11.0	10.0	11.5				
µ _P (mPa⋅s)	10.0	8.0	7.0				
Y _p (Pa)	2.0	4.0	9.0				
Y_{p}/μ_{p} (s ⁻¹)	200	500	1286				
Rg,10 s (Pa)	1.0	0.5	2.6				
Rg,10 min (Pa)	6.1	4.6	5.1				
Rg,10 min - Rg,10 s (Pa)	5.1	4.1	2.6				
Vapi (mL)	26	20	23				

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).