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Abstract: Hysteresis of the actuators based on magnetostrictive materials influences the control
performance of the application systems. It is of importance and significance to establish an effective
hysteresis model for the magnetostrictive actuators for precision engineering. In this paper, based on
the analysis of the Duhem model, a first-order inertial system with hysteresis characteristic under
harmonic input is used to describe the hysteresis caused by the inertia of the magnetic domains of
magnetostrictive materials. Shape function is employed to describe the pinning of domain walls,
the interactions of different magnetic domains of magnetostrictive materials, and the saturation
properties of the hysteresis. Specifically, under an architecture of “inertial system + shape function”
(ISSF-Duhem model), firstly a new hysteresis model is proposed for magnetostrictive actuators.
The formulation of the inertial system is constructed based on its general expression, which is capable
of describing the hysteresis characteristics of magnetostrictive actuators. Then, the developed models
with a Grompertz function-based shape function, a modified hyperbolic tangent function-based
shape function employing an exponential function as an offset function, a one-sided dead-zone
operator-based shape function are compared with each other, and further compared with the classic
modified Prandtl–Ishlinskii model with a one-sided dead-zone operator. Sequentially, feasibility and
capability of the proposed hysteresis model are verified and evaluated by describing and predicting
the hysteresis characteristics of a commercial magnetostrictive actuator.

Keywords: magnetostriction; hysteresis; Duhem model; inertial system; shape function

1. Introduction

Magnetostrictive materials, a smart material, produce mechanical stress and strain when
exposed to external magnetic fields [1]. Because of high energy density, large output strain/force,
and ultrafast response (within several microseconds), magnetostrictive materials have been widely
developed/studied in various applications, such as active vibration control [2] and ultrasonic
positioning [3]. However, similar to other smart material-based actuators [4–8], such as piezoelectric
ceramic-based actuators and shape memory alloy-based actuators, the magnetostrictive actuators
behave strong hysteresis nonlinearity [9,10]. Such hysteresis nonlinearity would decrease the actuating
accuracy and degrade control system performance.

Physical mechanism of the magnetostriction is shown in Figure 1 (where H, Hs, λ, and λs are the
magnetic field, saturation magnetic field, magnetostriction strain, and saturation magnetostriction
strain, respectively). The magnetic domains of magnetostrictive materials generate motion when
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exposed to external magnetic fields, which involves the motion of the domain walls and the rotation
of the magnetic domains [11]. Firstly, impedances to domain wall motion due to pinning sites
encountered by the domain walls as they move are the reasons for the magnetostrictive hysteresis.
Secondly, the magnetic domain itself has inertia. During the motion, the magnetic domain is inevitably
affected by its own inertia. Inertia would be one reason for the magnetostrictive hysteresis. Because of
the non-uniformity of magnetostrictive materials, the effect of inertia on different magnetic domains is
also different with each other. Thirdly, during the motion, interactions between different magnetic
domains of magnetostrictive materials occur, which also appear as hysteresis macroscopically. It can
also be seen from Figure 1c that the magnetostrictive material has a maximal magnetostrictive strain.
This can be used to explain the saturation characteristics of magnetostrictive hysteresis.

Investigations on the nonlinearity of magnetostrictive actuators and hysteresis models have
been conducted for years. Jiles–Atherton (J–A) model [11] and its extended models [12–17] were
proposed to capture the hysteresis nonlinearity via the domain wall theory. However, the J-A model
shows disadvantages in describing minor loops [16]. The extended J–A models are actually mainly
aiming at solving such issue. In reference [18], a modified Jiles–Atherton–Sablik model is constructed
for asymmetry in magnetomechanical effect under tensile and compressive stress. Operator-based
hysteresis models in the phenomenological hysteresis models describe the nonlinearity by weighted
superposition of elementary hysteresis operators with simple mathematical forms. The typical
operator-based hysteresis models are the relay operator of the Preisach model [10,19–22], the KP kernel
of the Krasnoselskii–Pokrovskii model [7,23], and the play/stop operator of the Prandtl–Ishlinskii
model [24–28]. The disadvantages of the operator-based hysteresis models are the characteristics of the
model, including symmetry and saturation, depend on the elementary hysteresis operator. The more
complex the shape is, the more the number of operators will be used. In reference [29], the modified
Prandtl–Ishlinskii model is constructed with a one-sided dead-zone operator (PD-Model) and used
to model complex hysteresis. Another kind of phenomenological hysteresis model—differential
equation-based hysteresis models—need only one auxiliary nonlinear differential equation to describe
the hysteretic behavior, which shows the advantage of higher efficiency [30]. In reference [31],
the Bouc–Wen model was used to describe the hysteresis nonlinearity of magnetostrictive actuators.
In references [32,33], a new Duhem model is established by incorporating a shape function to describe
the hysteresis of magnetorheological fluid actuators. The Duhem model describing the hysteresis
characteristics of ferromagnetically soft materials was given in reference [34] but has not been found
for the hysteresis characteristics of magnetostrictive materials.

The Duhem model uses a differential equation to characterize the output change with the input
direction [35]. The specific input–output relationship is

dw
dt

= f1(u(t), w(t))
.
u+(t) − f2(u(t), w(t))

.
u−(t) (1)

.
u±(t) =

∣∣∣ .
u(t)

∣∣∣± .
u(t)

2
(2)

where f1(u(t), w(t)) and f2(u(t), w(t)) ∈ C0
(
R2

)
; w(t) and u(t), the output and input functions, are

continuous differentiable functions, respectively. When the input function u(t) increases, the output
function w(t) increases along a path, and when u(t) decreases, w(t) decreases along another path.

Construction of the functions f1(u(t), w(t)) and f2(u(t), w(t)) is important for describing the
system hysteresis when employing the Duhem model. The Duhem model has defined the properties of
the functions f1(u(t), w(t)) and f2(u(t), w(t)), but it is still challenging to construct a suitable function
based on hysteresis characteristics in practice.
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Figure 1. Schematic of the physical mechanism of magnetostriction. (a) H = 0; (b) H , 0 (c) H = Hs.

Based on the analysis and literature reviewed above, especially the analysis of the physical
mechanism of the hysteresis of magnetostrictive actuators, the technical contribution of this paper
is that a hysteresis modeling methodology based on a first-order inertial system and shape function
(ISSF-Duhem model) is constructed for magnetostrictive actuators with properties of asymmetry and
saturation hysteresis. Specifically, a differential equation of the inertial system is used to represent
the hysteresis caused by the inertia in the motion of magnetic domains, and a general expression of
the inertial system describing the hysteresis is established. As compared with the original Duhem
model, the constructed expression reduces the number of unknown functions. For the hysteresis
caused by the pinning of domain walls, the interactions between the magnetic domains and the
saturation characteristics of the hysteresis, a shape function is incorporated to correct the hysteresis
curve represented by the inertial system. The hysteresis model will be verified and evaluated based on
the description and prediction of the hysteresis of a commercial magnetostrictive actuator through
experimental tests. In this study, the obtained simulation results using an ISSF-Duhem model with
different shape functions (Grompertz function-based shape function, modified hyperbolic tangent
function-based shape function, and one-sided dead-zone operator-based shape function) will be
compared with the results obtained by using a PD-model.

2. ISSF-Duhem Model

According to Equation (1), the Duhem model essentially represents the hysteresis as the
input-output relationship of a first-order system. Based on this, this study starts from the analysis of
the hysteresis phenomenon of the inertial system and then constructs a new hysteresis model.

2.1. Hysteresis in an Inertial System

The first-order inertial system can be expressed as

.
w
T
+ w = u (3)

where u, w, and T are the input, output, and the system parameter, respectively. According to
Equation (3), Figure 2 presents the hysteresis performance of the inertial system. As seen from the
figure, the hysteresis is related to the system parameter T.
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Figure 2. The hysteresis characteristics of the inertial system with input: u = 1.5sin(2πt), when T = 2,
5 and 10.

2.2. Construction of Inertial System

As shown in Figure 1, the magnetic domains of magnetostrictive materials generate motion when
exposed to external magnetic fields. The effect of inertia on different magnetic domains is also different
with each other because of the non-uniformity of magnetostrictive materials. If the hysteresis system is
considered to be a first-order inertial system, then the parameter T of the system is variable.

Based on reference [36], let
T = αg

( .
u
)

(4)

where
.
u is the input rate of the system; g

( .
u
)

represents the function of the input rate, which is positively
homogeneous; α is a constant related to the characteristics of the system.

Substituting Equation (4) into Equation (3), and to adapt to different hysteresis phenomena,
expression is given as

.
w + αg

( .
u
)
w = αγg

( .
u
)

f (u) (5)

where f1(u(t), w(t)) is a function of u and is related to the characteristics of the hysteresis itself; γ
is a constant.

Let g
( .
u
)
=

∣∣∣ .
u
∣∣∣, then Equation (5) can be rewritten as

.
w + α

∣∣∣ .
u
∣∣∣w = αγ

∣∣∣ .
u
∣∣∣ f (u) (6)

Equation (6) represents the inertial system hysteresis model, and its input–output relationship can
be further expressed as

.
w = α

∣∣∣ .
u
∣∣∣( β
α

f (u) −w
)

(7)

where β = αγ.
Equation (7) can be further rewritten as dwU

du = β f (u) − αwU
.
u > 0

dwD
du = −β f (u) + αwD

.
u < 0

(8)

where wU represents the value on the rising curve of the hysteresis loop; wD represents the value on
the falling curve of the hysteresis loop. Assuming that the two endpoints of the hysteresis loop are
(uL, wL) and (uR, wR), the function expression of the hysteresis loop rise and fall curves obtained by
Equation (8) are

wU(u) =
β

α
f (u) +

[
wL −

β

α
f (uL)

]
e−α(u−uL) −

β

α
e−αu

∫ u

uL

f ′(ε)eαεdε u ∈ (uL, uR) (9)
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wD(u) =
β

α
f (u) −

[
wR −

β

α
f (uR)

]
e−α(uR−u)

−
β

α
eαu

∫ uR

u
f ′(ε)e−αεdε u ∈ (uL, uR) (10)

In Equation (9), f ′(ε)eαε is bounded within (uL, uR), then∣∣∣∣∣∣
[
wL −

β

α
f (uL)

]
e−α(u−uL) −

β

α
e−αu

∫ u

uL

f ′(ε)eαεdε

∣∣∣∣∣∣ ≤
[
wL −

β

α
f (uL)

]
+
β

α
f ′(τ)eατ(uR − uL) = ρL (11)

where τ ∈ (uL, uR) and is a constant; ρL is the maximal value of the absolute value of the hysteretic
part on the rising curve of the hysteresis loop.

Similarly, it can be obtained by Equation (10),∣∣∣∣∣∣−
[
wR −

β

α
f (uR)

]
e−α(uR−u)

−
β

α
eαu

∫ uR

u
f ′(ε)e−αεdε

∣∣∣∣∣∣ ≤
[
wR −

β

α
f (uR)

]
+
β

α
f ′(ε)e−αϕ(uR − uL) = ρR (12)

where ϕ ∈ (uL, uR) and is a constant; ρR is the maximal value of the absolute value of the hysteretic
part on the falling curve of the hysteresis loop.

Rewrite Equations (11) and (12) as

w(u) =
β

α
f (u) + σ(u) (13)

σ(u) =


[
wL −

β
α f (uL)

]
e−αu

−
β
αe−αu

∫ u
uL

f ′(ε)eαεdε

−

[
wR −

β
α f (uR)

]
e−α(uR−u)

−
β
αeαu

∫ uR
u f ′(ε)e−αεdε

(14)

where ∣∣∣σ(u)∣∣∣ ≤ ρ = maxρL,ρR (15)

In Equation (7), f (u) is a monotone increasing, piecewise smooth, odd function with a bounded
derivative, that is, lim

u→∞
f ′(u) is bounded. According to these conditions, the following function

is selected
f (u) = u (16)

Then, Equation (7) can be rewritten as

.
w = α

∣∣∣ .
u
∣∣∣( β
α

u−w) (17)

2.3. Construction of Shape Function

The hysteresis curve of the inertial system represented by Equation (17) exhibits centrosymmetry.
However, the hysteresis curve of the magnetostrictive actuators has the characteristics of asymmetry
and saturation, due to the pinning of domain walls, the interactions between different magnetic
domains of the magnetostrictive materials during motion, and the saturation characteristics of the
magnetostrictive strain. A shape function is necessary to be incorporated to correct the hysteresis curve
represented by the inertial system. In general, sigmoid functions and one-sided dead-zone operator are
often used to describe the hysteresis of the magnetostrictive actuators. In this study, we construct shape
functions based on these functions. It is noted that the Grompertz function, the hyperbolic tangent
function, and the one-sided dead-zone operator are chosen as the basic functions for constructing the
shape functions as examples; other similar functions can also be used.

2.3.1. Grompertz Function-Based Shape Function

Grompertz function is employed as the shape function in this study. It is expressed as

z1(x) = −1 + 2e−e−µ1x−µ2 (18)
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where µ1 and µ2 are both constants determining the shape of the Grompertz function output. The
function z1(x) is within the range of [−1, 1].

When x = 0,
z1(0) = −1 + 2e−e−µ2 (19)

It is seen that z1(0) is dependent on the value of µ2. In order to describe the hysteresis of
magnetostrictive actuators, Equation (18) can be given by

z1(x) = z1(x) − z1(0) = 2e−e−µ1x−µ2
− 2e−e−µ2 (20)

Combining Equations (17) and (20) and using w in Equation (17) as the input of the shape function,
considering that the hysteresis of magnetostrictive actuators generally contains a linear component,
the ISSF-Duhem model with Grompertz function-based shape function (G-Model) describing the
hysteresis of magnetostrictive actuators can be given by

.
w = α

∣∣∣ .
u
∣∣∣( βαu−w)

z1(w) = 2e−e−µ1w−µ2
− 2e−e−µ2

y = k1u + k2z1

(21)

where y represents the displacement of magnetostrictive actuators; k1 and k2 are both constants.
The schematic of the proposed ISSF-Duhem hysteresis model approach is presented in Figure 3.

As compared with the Duhem model represented by Equation (1), the ISSF-Duhem model reduces
the number of unknown functions. Only a suitable shape function is necessary to be selected
according to the shape characteristics of the hysteresis curve to completely determine the model. As
compared with continuous-time dynamic model of a class of backlash-like hysteresis in reference [37],
formally Equation (7) of the ISSF-Duhem model is a specific case of Equation (4) of the mentioned
research. However, Equation (7) has a clearer physical meaning since it is derived based on the analysis
of the hysteresis of the magnetostrictive actuator, combined with characteristics of the first-order inertial
system. At the same time, the hysteresis curve represented by Equation (7) is corrected by the shape
function, making the ISSF-Duhem model more suitable for describing the hysteresis characteristics of
magnetostrictive actuators.

Figure 3. The proposed ISSF-Duhem model.

2.3.2. Modified Hyperbolic Tangent Function-Based Shape Function

To compare, a shape function based on the hyperbolic tangent function [38] is constructed as

z2(x) = tanh(δx) (22)

where δ is a constant determining the slope of the hyperbolic tangent function.
The function z2(x) within the range of [−1, 1] cannot be directly used as a shape function because of

its centrosymmetry. A modified shape function is constructed based on the hyperbolic tangent function:

z2(x) = 1 + 2tanh(−e−µ3x−µ4) (23)

where µ3 and µ4 are both constants.
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The modified hyperbolic tangent function is not centrosymmetric, which is actually constructed
through offsetting the hyperbolic tangent function by exponential function e−x. In addition, the range
of modified hyperbolic tangent function is still [−1, 1] by the coefficients.

Similar to the Grompertz function, the modified hyperbolic tangent function z2(x) depends on µ4,
when x = 0. To describe the hysteresis of magnetostrictive actuators, Equation (23) can be rewritten as

z2(x) = 2tanh(−e−µ3x−µ4) − 2tanh(−e−µ4) (24)

Using Equation (24) with the input of w in Equation (17) instead of z1(w) in Equation (21),
the ISSF-Duhem model with modified hyperbolic tangent function-based shape function (M-Model)
can be given by 

.
w = α|

.
u|( βαu−w)

z2(w) = 2tanh(−e−µ3w−µ4) − 2tanh(−e−µ4)

y = k1u + k2z2

(25)

2.3.3. One-Sided Dead-Zone Operator-Based Shape Function

To further compare, the one-sided dead-zone operator is employed as the shape function. The
one-sided dead-zone operator [29] is expressed as

Γri [x] =


max(x− ri, 0) for ri > 0

x for ri = 0
min(x− ri, 0) for ri < 0

(26)

where ri represents the threshold of the one-sided dead-zone operator; Γri represents the output of the
one-sided dead-zone operator with the threshold ri.

Using Equation (26) with the input of w in Equation (17) instead of z1(w) in Equation (21),
the ISSF-Duhem model with a one-sided dead-zone operator-based shape function (D-Model) can be
given by 

.
w = α|

.
u|( βαu−w)

z3(w) =
n∑

i=−n
giΓri [w]

y = k1u + k2z3

(27)

where n represents the number of one-sided dead-zone operators; gi represents the weighting factor of
the i-th one-sided dead-zone operator.

When ri ≥ 0, the thresholds and weighting factors of one-sided dead-zone operators are selected as

ri = µ5i i = 0, 1, · · · , n (28)

gi = −µ6e−µ7i (29)

When ri < 0, the thresholds and weighting factors of one-sided dead-zone operators are selected as

ri = µ8i i = −n, · · · ,−n + 1,−1 (30)

gi = µ9e−µ10i (31)

where µ5, µ6, µ7, µ8, µ9, and µ10 are all constants.

3. Experimental Validation

Aiming at verifying the performance of the ISSF-Duhem model for describing and predicting
the hysteresis of magnetostrictive actuators, (i) the input–output characteristics of a commercial
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magnetostrictive actuator under different excitations are tested; and (ii) the ISSF-Duhem model is
verified and evaluated with the measured experimental data.

3.1. Experimental Setup and Hysteresis Loop Test

Figure 4 shows the experimental setup for the hysteresis of the magnetostrictive actuator. The core
component of the magnetostrictive actuator is a Terfenol-D rod with a length of 79.6 mm, a diameter of
20 mm, and the cut-off frequency of 76.07–380.34 Hz, which is prestressed about 3.023 MPa by a preload
spring, and provided a bias magnetic field of about 3.2 kA/m by permanent magnets. The displacement
of the magnetostrictive actuator is measured by an LVDT (Linear Variable Differential Transformer,
Type: GA-2), which is a rebound type with a relatively small-stiffness spring. The excitation signal
generated by LabVIEW software (version: 2014, National Instruments, Austin, TX, USA) and NI
CompactRIO-9030, and amplified by a controllable current driver, is applied to the actuator. The input
current and output displacement signals of the magnetostrictive actuator are acquired via the data
acquisition system (Type: DEWE-501). The resonance of the mechanical setup is about 159.12 Hz.

Figure 5 presents the experimental tests in profile of the displacement versus current, when the
magnetostrictive actuator is under harmonic input with different currents (1–6 A with an interval
of 1 A). It can be seen that both the hysteresis and its asymmetry of the magnetostrictive actuator
increases with the increase of excitation current.

Figure 6a,b present the triangle excitation current with various amplitudes of 6–1 A (with a
decrement of 1 A) and output displacement of the magnetostrictive actuator under the excitation current,
respectively. Observing Figure 6b, both the hysteresis and its asymmetry of the magnetostrictive
actuator decrease with the decrease of the current.

Figure 4. Experimental setup for characteristic tests of the magnetostrictive actuator: (a) the photograph
and (b) the schematic.
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Figure 5. Displacement–current relationship of the magnetostrictive actuator with different excitations:
u(t) = Amsin(2πt), Am = 1, 2, 3, 4, 5, and 6 A.

Figure 6. Tests of the magnetostrictive actuator under triangle excitation current: (a) the excitation
current with different amplitudes and (b) the output displacement.
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3.2. Parameter Identification

Using the experimental data of the magnetostrictive actuator under harmonic input
u(t) = Amsin(2πt), Am = 2, 3, 4 and 5 A, the multi-islands genetic algorithm (GA) is used to fit
the established ISSF-Duhem model parameters [39]. Then, the performance of the ISSF-Duhem model
is evaluated by comparing the model-based fitted results with the experimental results.

Because of the complexity and nonlinearity of the models as represented by Equations (21),
(25), and (27), and the hysteresis itself as a relatively complex nonlinear phenomenon,
parameter identification becomes a key issue in this study. There are many existing methods for
parameter identification, such as a least square method, modified Gauss–Newton method, differential
evolution method, particle swarm algorithm, and GA. GA originates from computer simulation
study on the biological evolution systems and follows the principle of natural selection and survival
of the fittest. The multi-islands GA in ISIGHT software is employed for parameter identification.
The specific process of parameter identification given in Figure 7 consists of two parts. One is the
fitting of experimental data and the other is the update of the model parameters. The fitting process
is implemented in MATLAB software, and then the fitted result is transmitted to ISIGHT software
(version: 5.9.2, Dassault Systèmes Simulia Corp., Providence, RI, USA). The multi-islands GA in the
ISIGHT software adjusts the values of the parameters according to the received fitted results and
transmits them to the MATLAB software (version: R2014b, the Mathworks, Inc., Natick, MA, USA).
Finally, the parameter identification is realized by the joint calculation of the two software programs.
The results of the parameter identification are listed in Table 1. The accuracy of the hysteresis of the
magnetostrictive actuator described by the ISSF-Duhem model is evaluated with the mean square error
(MSE), the maximal error (Emax), and relative error (Erelative). MSE, Emax, and Erelative are given by

MSE =
1
m

m∑
i=1

(Dispsim,i −Dispexp,i)
2 (32)

Emax = max
∣∣∣Dispsim, i −Dispexp, i

∣∣∣ (i = 1, . . . , m) (33)

Erelative =
Emax

max
(
Dispexp,i

)
−min

(
Dispexp,i

) (34)

where m represents the number of data; Dispsim,i and Dispexp, i represent i-th fitted and experimental
displacement value, respectively; Emax is the maximal error;

∣∣∣Dispsim, i −Dispexp, i
∣∣∣ represents the

absolute value.

Figure 7. The process of parameter identification for the models.
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Table 1. Parameter identification results for ISSF-Duhem model with three shape functions under
1 Hz harmonic input with different currents. G-Model: the ISSF-Duhem model with Grompertz
function-based shape function; M-Model: the ISSF-Duhem model with modified hyperbolic tangent
function-based shape function; D-Model: the ISSF-Duhem model with a one-sided dead-zone
operator-based shape function.

Parameters G-Model M-Model D-Model

k1 3.037 2.950 2.979
k2 34.925 33.102 0.778
α 0.593 0.612 0.575
β 3.468 3.322 1.859
µ1 0.059 — —
µ2 0.988 — —
µ3 — 0.061 —
µ4 — 1.251 —
µ5 — — 0.452
µ6 — — 2.378
µ7 — — 0.098
µ8 — — 0.587
µ9 — — 3.997
µ10 — — 0.214
n — — 6

Figure 8 presents the comparison between the fitted results of the ISSF-Duhem model with
different shape functions as well as the PD-Model and the experimental tests in the profile of the
displacement versus current, when the magnetostrictive actuator is under excitation u(t) = Am sin(2πt)
with Am = 2, 3, 4, and 5 A. Observing Figure 8a, the ISSF-Duhem model can effectively describe the
relationship between the displacement and current of the magnetostrictive actuator when the excitation
current is 2 A. However, the fitted results of the ISSF-Duhem model with different shape functions are
different. Comparing with the G-Model and M-Model, the fitted results of the D-Model are better for
approximating the experimental results. At the same time, it can be seen that the fitted results of the
D-Model and M-Model are better than those of the PD-Model for approximating the experimental
results. Figure 8b (when Am = 3), 8c (when Am = 4) and 8d (when Am = 5) show the similar results.

Figure 8. Cont.
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Figure 8. Comparison of the experimental data and the fitted results of the established ISSF-Duhem
model and the PD-Model when the magnetostrictive actuator under 1 Hz harmonic input with
different currents: (a) 2 A, (b) 3 A, (c) 4 A, and (d) 5 A. G-Model: the ISSF-Duhem model with
Grompertz function-based shape function; M-Model: the ISSF-Duhem model with modified hyperbolic
tangent function-based shape function; D-Model: the ISSF-Duhem model with a one-sided dead-zone
operator-based shape function; PD-Model: the modified Prandtl–Ishlinskii model with a one-sided
dead-zone operator.
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Figure 9 presents the comparison between the fitted results of the ISSF-Duhem model with
different shape functions as well as the PD-Model and the experimental tests in profile of the error
versus time, when the magnetostrictive actuator is under excitation u(t) = Am sin(2πt) with Am = 2,
3, 4 and 5 A. As shown in Figure 9, all the G-Model, the M-Model, the D-Model, and the PD-Model
can effectively track the displacement time history of the magnetostrictive actuator and effectively
describe the hysteresis with less than 3 µm error. In other words, the ISSF-Duhem model can describe
the hysteresis of magnetostrictive actuators as well as the PD-Model.

Figure 9. Cont.
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Figure 9. Time history of the displacement difference between experimental results and the fitted results
of the established ISSF-Duhem model and the PD-Model when the magnetostrictive actuator under
1 Hz harmonic input with different currents: (a) G-Model: the ISSF-Duhem model with Grompertz
function-based shape function, (b) M-Model: the ISSF-Duhem model with modified hyperbolic tangent
function-based shape function, (c) D-Model: the ISSF-Duhem model with a one-sided dead-zone
operator-based shape function, and (d) PD-Model: the modified Prandtl–Ishlinskii model with a
one-sided dead-zone operator.

In order to analyze the effectiveness of the ISSF-Duhem model more in depth, the fitted results of
the ISSF-Duhem model and the PD-Model are further analyzed with respect to experimental results.
MSE, Emax, and Erelative between the fitted and experimental displacement under different excitations
are calculated respectively, as shown in Figure 10. MSE reflects the overall condition of the fitted
results of the ISSF-Duhem model and the PD-Model with respect to the experimental results. As seen
from Figure 10a, MSE gradually increases with the increase of excitation current. When the excitation
current is 5 A, MSE with a relatively small value is the largest, indicating that the ISSF-Duhem model is
quite fair for the overall condition of the simulation of the hysteresis of the magnetostrictive actuator as
well as the PD-Model. As shown in Figure 10a, MSE of the D-Model is smaller than that of the G-Model
and M-Model. It can be concluded that, as compared with the Grompertz function-based and the
modified hyperbolic tangent function-based shape function, the one-sided dead-zone operator-based
shape function can enhance the performance of the ISSF-Duhem model. As seen from Figure 10a,
the ISSF-Duhem model with the modified hyperbolic tangent function-based and the one-sided
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dead-zone operator-based shape function show better performance than the PD-Model. Emax and
Erelative reflect the local condition of the fitted results of the ISSF-Duhem model and the PD-Model
with respect to experimental results. Observing Figure 10b, with the increase of excitation current,
Emax gradually increases, but Erelative decreases for the G-Model and the M-Model and increases for
the D-Model slightly. In Figure 10b, Emax and Erelative of the D-Model are smaller than those of the
G-Model, the M-Model, and the PD-model when the excitation current is less than 5 A. It indicates
that the one-sided dead-zone operator-based shape function would enhance the performance of the
ISSF-Duhem model. When the excitation current is 5A, Emax and Erelative of the M-Model is the smallest
among the four models. Observing Figure 10a,b, the ISSF-Duhem model with the modified hyperbolic
tangent function-based and the one-sided dead-zone operator-based shape function provide superior
performance over the PD-Model.

Figure 10. Displacement difference between experimental data and the fitted results of the established
ISSF-Duhem model and the PD-Model when the magnetostrictive actuator under 1 Hz harmonic input
with different currents: (a) MSE versus current; (b) Emax and Erelative versus current. Emax: bars, Erelative:
lines. G-Model: the ISSF-Duhem model with Grompertz function-based shape function; M-Model:
the ISSF-Duhem model with modified hyperbolic tangent function-based shape function; D-Model:
the ISSF-Duhem model with a one-sided dead-zone operator-based shape function; PD-Model: the
modified Prandtl–Ishlinskii model with a one-sided dead-zone operator.
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3.3. Prediction Performance

Based on the identified parameters of the ISSF-Duhem model and the PD-Model in Section 3.2,
the ISSF-Duhem model and the PD-Model are used to predict the hysteresis of the magnetostrictive
actuator under two excitations: (i) u(t) = Amsin(2πt), Am = 1 and 6 A; (ii) triangle excitation current
with various amplitudes of 6–1 A (with a decrement of 1 A). Then, the performance of the ISSF-Duhem
model is further evaluated by comparing the model-based predicted results with those of the PD-Model
and with the experimental results.

Figure 11a–f present the comparison between the predicted results of the ISSF-Duhem model
with different shape functions as well as the PD-Model with the experimental tests in profiles of the
displacement versus current, the displacement versus time and the error versus time, respectively,
when the magnetostrictive actuator is under excitation u(t) = Amsin(2πt) with Am = 1 A and 6 A.
As shown in Figure 11a–e, the ISSF-Duhem model can effectively predict the hysteresis of the
magnetostrictive actuator when the excitation currents are 1 A and 6 A as well as the PD-Model.
As shown in Figure 11c, when the excitation current is 1 A, the prediction errors of the M-Model,
the D-Model, and the PD-Model are similar, and all smaller than the G-Model. However, when the
excitation current increases to 6 A, the prediction error of the PD-Model is larger than that of the
M-Model and the D-Model, as shown in Figure 11f.

Figure 11. Cont.
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Figure 11. Comparison of the experimental data and the predicted results of the established ISSF-Duhem
model and the PD-Model when the magnetostrictive actuator under 1 Hz harmonic input with different
currents: (a) the displacement versus current with the current of 1 A, (b) the displacement versus time
with the current of 1 A, (c) the error versus time with the current of 1 A, (d) the displacement versus
current with the current of 6 A, (e) the displacement versus time with the current of 6 A, and (f) the error
versus time with the current of 6 A. G-Model: the ISSF-Duhem model with Grompertz function-based
shape function; M-Model: the ISSF-Duhem model with modified hyperbolic tangent function-based
shape function; D-Model: the ISSF-Duhem model with a one-sided dead-zone operator-based shape
function; PD-Model: the modified Prandtl–Ishlinskii model with a one-sided dead-zone operator.

Figure 12a–c presents the comparison between the predicted results of the ISSF-Duhem model
with different shape functions as well as the PD-Model and the experimental tests in profiles of the
displacement versus current, the displacement versus time, and the error versus time, respectively,
when the magnetostrictive actuator is under the triangle excitation current with various amplitudes.
Observing Figure 12, the ISSF-Duhem model can effectively predict the hysteresis of the magnetostrictive
actuator under the triangle excitation and the PD-Model.

Figure 12. Cont.
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Figure 12. Comparison of experimental data and the predicted results of the established ISSF-Duhem
model and the PD-Model when the magnetostrictive actuator under the triangle excitation current
with various amplitudes: (a) the displacement versus current, (b) the displacement versus time,
and (c) the error versus time. G-Model: the ISSF-Duhem model with Grompertz function-based shape
function; M-Model: the ISSF-Duhem model with modified hyperbolic tangent function-based shape
function; D-Model: the ISSF-Duhem model with a one-sided dead-zone operator-based shape function;
PD-Model: the modified Prandtl–Ishlinskii model with a one-sided dead-zone operator.

For the predicted results shown in Figures 11 and 12, MSE, Emax, and Erelative between the
predicted and the experimental displacements are calculated, as listed in Table 2. It is seen that the
ISSF-Duhem model with different shape functions has different prediction accuracy for the hysteresis
of the magnetostrictive actuator under different excitations. When the harmonic excitation current
is 1 A, MSE of the D-Model of the predicted result is smaller than those of predicted results of
the G-Model, M-Model, and PD-Model. Emax and Erelative of the predicted results of the D-Model,
the M-Model, and the PD-Model are almost the same, but all lower than that of the G-Model. When the
harmonic excitation current is 6 A, MSE of the D-Model predicted result is also smaller than those of
the predicted results of the G-Model, the M-Model, and the PD-Model, but Emax and Erelative of the
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M-Model predicted result are the smallest. When the excitation current is altered to the triangle form
as shown in Figure 6a, MSE, Emax, and Erelative of the D-Model predicted results are smaller than those
of predicted results of the G-Model, the M-Model, and the PD-Model.

Table 2. MSE, Emax and Erelative of the displacement difference between the predicted results of the
ISSF-Duhem model and PD-Model with the identified parameters and the experimental tests when
the magnetostrictive actuator is under 1 Hz harmonic input at different currents: 1 A and 6 A, and
the triangle excitation current with various amplitudes. G-Model: the ISSF-Duhem model with
Grompertz function-based shape function; M-Model: the ISSF-Duhem model with modified hyperbolic
tangent function-based shape function; D-Model: the ISSF-Duhem model with a one-sided dead-zone
operator-based shape function; PD-Model: the modified Prandtl–Ishlinskii model with a one-sided
dead-zone operator. Tri: the triangle excitation current with various amplitudes.

Model

Error MSE Emax (µm) Erelative (%)

1 A 6 A Tri 1 A 6 A Tri 1 A 6 A Tri

G-Model 0.123 2.8783 2.8227 0.5583 2.9368 4.6929 7.20 3.46 5.50
M-Model 0.0184 1.6529 1.1267 0.2504 1.9796 2.9526 3.23 2.34 3.46
D-Model 0.0097 1.5047 0.9210 0.2584 2.5032 1.2861 3.24 2.95 1.53
PD-Model 0.014 2.1883 1.4272 0.2613 3.2383 2.3738 3.72 3.82 2.82

To sum up, MSE, Emax, and Erelative of the fitted and predicted results are comprehensively
analyzed and shown in Figure 13. It can be seen from Figure 13a that MSE of the predicted result
of the excitation current of 6 A is significantly larger than that of the fitted result of the excitation
current of 5 A. The main reason is that the hysteresis increases with the excitation current increasing.
As seen from Figure 13, the one-sided dead-zone operator-based shape function can enhance the
performance of the ISSF-Duhem model as compared to the Grompertz function-based and the modified
hyperbolic tangent function-based shape function. However, as shown in Figure 13b, the one-sided
dead-zone operator-based shape function cannot make the performance of the ISSF-Duhem model
as good as the modified hyperbolic tangent function-based shape function in some local condition.
Based on the above comparison and analysis, the proposed modeling approach using the inertial
system combining any shape function would be helpful for modeling asymmetric hysteresis of smart
material-based actuators.

Figure 13. Cont.
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Figure 13. Displacement difference between the experimental results and the fitted, predicted results
of the established ISSF-Duhem model and the PD-Model when the magnetostrictive actuator under
1 Hz harmonic input with different currents: (a) MSE versus current and (b) Emax and Erelative versus
current. Emax: bars, Erelative: lines. G-Model: the ISSF-Duhem model with Grompertz function-based
shape function; M-Model: the ISSF-Duhem model with modified hyperbolic tangent function-based
shape function; D-Model: the ISSF-Duhem model with a one-sided dead-zone operator-based shape
function; PD-Model: the modified Prandtl–Ishlinskii model with a one-sided dead-zone operator.

4. Discussion

The established ISSF-Duhem model focuses only on the asymmetric hysteresis of magnetostrictive
actuators and the effect of stress and temperature on their hysteresis characteristics are not considered
in this study. In fact, modeling the hysteresis with consideration of the effect of stress and temperature
on hysteresis itself is an interesting and challenging task. It will be investigated in the future on the
basis of this work.

As regarding the inverse problems of the nonlinear hysteresis models, it is actually to establish
the mathematical relationship between the target output ydesire and the required input u (= f3(ydesire)).
In order to inverse the ISSF-Duhem, firstly, the explicit functional relationship between w and u
should be established according to the general expression of the first-order inertial system, w = f4(u).
Secondly, substituting the explicit functional relationship between w and u into the shape function to
get the function relationship between zi(i = 1, 2) and u, zi(i = 1, 2) = f5(u). Lastly, the mathematical
relationship between the target output ydesire and the required input u, i.e., the inverse model of the
ISSF-Duhem model is established. The general expression of the first-order inertial system shown
as Equation (7) is a differential equation, which requires a discrete relationship in order to establish
the functional relationship between w and u [40]. However, due to the coupling term between w and
u in the ISSF-Duhem model, the explicit function relationship between w and u cannot be obtained,
so the inverse model of the ISSF-Duhem model cannot be obtained. Big data and artificial intelligence
methods might be used to describe nonlinear phenomena and to obtain the inverse model of the
ISSF-Duhem model [41–43].

5. Conclusions

Based on the analyses of the Duhem model and the causes of hysteresis of magnetostrictive
materials, introducing the concept of inertial system and shape function, the ISSF-Duhem model for
describing the hysteresis of magnetostrictive actuators featured with saturation and asymmetry is
proposed and investigated in this paper. Specifically, the hysteresis caused by the inertia in the motion
of magnetic domains is described by a differential equation of the inertial system. The hysteresis



Materials 2020, 13, 2585 22 of 24

curve represented by the inertial system is corrected by incorporation of a shape function for the
hysteresis caused by the pinning of domain walls, the interactions between the magnetic domains and
the saturation characteristics of the hysteresis.

The feasibility of the ISSF-Duhem model for describing the hysteresis is analyzed by solving
the model. A multi-islands GA is applied for parameter identification for the ISSF-Duhem model.
According to the identified parameters, the hysteresis of the magnetostrictive actuator is simulated and
predicted by the ISSF-Duhem model. The comparison between the model simulated and predicted
results and the experimental results show that the ISSF-Duhem model can effectively characterize the
hysteresis of magnetostrictive actuators.

The shape function affects the performance of the ISSF-Duhem model. The comparative analysis
shows that compared with the Grompertz function-based and the modified hyperbolic tangent
function-based shape function, the one-sided dead-zone operator-based shape function could enhance
the performance of the ISSF-Duhem model. In addition, the ISSF-Duhem model with the one-sided
dead-zone operator-based and the modified hyperbolic tangent function-based shape function provide
superior performance over the modified Prandtl–Ishlinskii model with a one-sided dead-zone operator.

Precise and simple hysteresis models of actuators are the foundation to realize the accurate, rapid,
and effective control systems. The concept of the developed approach of the ISSF-Duhem model is
of help and significance for hysteresis modeling of the magnetostrictive material-based actuators.
Compared to the conventional Duhem model, the ISSF-Duhem model and the modeling approach
with incorporation of the inertial system and shape function reduce the number of unknown functions.
Only a suitable shape function is necessary to be selected according to the shape characteristics of the
hysteresis curve to completely determine the model. As compared with the continuous-time dynamic
model of a class of backlash-like hysteresis, the proposed ISSF-Duhem model has better flexibility
in describing different hysteresis phenomena, and is more suitable for describing the hysteresis of
magnetostrictive actuators featured with saturation and asymmetry, since it incorporates a shape
function. Therefore, the modeling approach using an inertial system combining any shape function
would be helpful for modeling asymmetric hysteresis of smart material-based actuators.
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