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Abstract: The meshless local Petrov–Galerkin (MLPG) method was developed to analyze 2D
problems for flexoelectricity and higher-grade thermoelectricity. Both problems were multiphysical
and scale-dependent. The size effect was considered by the strain and electric field gradients in the
flexoelectricity, and higher-grade heat flux in the thermoelectricity. The variational principle was
applied to derive the governing equations within the higher-grade theory of considered continuous
media. The order of derivatives in the governing equations was higher than in their counterparts
in classical theory. In the numerical treatment, the coupled governing partial differential equations
(PDE) were satisfied in a local weak-form on small fictitious subdomains with a simple test function.
Physical fields were approximated by the moving least-squares (MLS) scheme. Applying the spatial
approximations in local integral equations and to boundary conditions, a system of algebraic equations
was obtained for the nodal unknowns.

Keywords: MLS approximation; gradients of strains; gradients of electric intensity vector;
higher-grade heat flux

1. Introduction

In nanocomposites, nanosized particles are incorporated into a matrix. In these materials, the of
surface-to-volume ratio is significantly larger than in their bulk-sized equivalents. Their properties can
be improved many times with respect to those known for individual constituents. Mechanical strength,
toughness and electrical or thermal conductivity can be dramatically improved in nanocomposites.
Therefore, they are starting to be intensively utilized in many engineering fields. However, size-effect
phenomena are observed in nanosized structures if the characteristic length of material structure is
comparable with the size of the analyzed body [1–5]. Even some new phenomena are observed in
nanosized structures, e.g., the electric polarization in centro-symmetric crystals. This is explained by
the direct flexoelectricity effect [6–8]. In contrast to piezoelectricity, this can be viewed as a higher order
effect [9]. If stresses are proportional to the gradients of the electric intensity vector, we are talking
about converse flexoelectricity [10–12]. Strain and electric intensity vector gradients are very large in
nanosized dielectrics, and they should be considered in constitutive equations.

Nanotechnology is also being successfully utilized to improve thermoelectric properties [13].
Thermoelectric materials have the potential to convert waste heat directly into electricity if the thermal
conductivity is reduced without affecting the high electrical conductivity [14]. Thermal conductivity is
reduced significantly in nanostructures only, as scattering of phonons is observed only on interfaces of
nanostructures. Due to this phonon-scattering, thermal conductivity is reduced. Since the electrons are
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smaller, they are not scattered and the electric conductivity is not reduced. This requires developing a
theory for heat conduction where size effects are considered.

Microstructural material characteristics are not considered in the classical continuum theory;
results are size-independent. Atomistic models should be able to consider the size-effect in structural
elements. However, extremely high requirements are put on computer memory in such approach.
Moreover, if we are interested in global response of macro-structural elements, it is more convenient to
work with advanced continuum models, in which intrinsic length-scale parameters (characteristic of
material microstructure) are considered [15–17]. Earlier gradient theory is very complicated, due to
many additional material parameters that are unavailable. Aifantis [18] simplified the former theory
by introducing only one length-scale parameter. The nonlocality should be considered in the heat
conduction problems if the temperature gradients are large [19]. For a special weight function in
nonlocal integral expression of the heat flux vector, it is possible to transform the integral form of
constitutive law into a differential relationship with a characteristic length-scale parameter representing
the nonlocality. In both flexoelectric and higher-grade thermoelectric problems, we have constitutive
equations with the intrinsic material parameter representing microstructure and higher derivatives
of physical fields than in corresponding problems described by classical theory. Because of coupling
among various physical fields, both these problems are multiphysical.

Many discontinuities and damage problems are described by nonlocal models based on the
peridynamic theory [20]. Constitutive equations are written in integral form rather than partial
differential equations. Various meshless methods have been successfully applied for these problems.
Silling and Askari [21] applied the finite point method (FPM) to peridynamics. Moreover, there are
also trends of active studies to design meshless methods that take the advantages of the classical and
nonlocal theories simultaneously in a meshless framework [22–24].

It is necessary to have a reliable and accurate computational tool for solving the multiphysical
problems described by gradient theories. Because of higher-order derivatives in governing equations,
the C1-continuous elements are required in numerical domain discretization methods in order to
guarantee the continuity of field variables and their derivatives on interfaces of elements. It is a
difficult task to obey such a requirement, though certain special elements were developed [25,26]. It is
more convenient to develop the mixed formulation in the finite element method (FEM) [20,21,25,26].
Both the primary field and its derivatives are approximated as independent field variables in the mixed
FEM with using C0 continuous elements. However, numerous degrees of freedom (DOFs) are used
in each element, which make it prohibitively expensive for practical use. The order of continuity of
the moving least-square (MLS) approximation in the meshless local Petrov–Galerkin method (MLPG)
can be tuned to a desired value very easily [22–24,27–29]. Therefore, it is a natural ambition to apply
the MLPG with MLS approximation to problems described by gradient theories with higher-order
derivatives in governing equations.

In the present study, the authors have developed a meshless method based on the MLPG
weak-formulation for numerical solution of multiphysical problems in dielectric and thermoelectric
solids. Both the direct and converse flexoelectricity is considered in dielectric solids. Nodal points
are spread on the analyzed domain and each node is surrounded by a small circular subdomain
for simplicity, but without loss of generality, for consideration of governing equations in local weak
sense within the MLPG method for solution. The spatial variations of primary physical fields were
approximated by the moving least-squares (MLS) scheme. After performing the spatial integrations,
a system of algebraic or ordinary differential equations for unknown nodal values was obtained.
The essential boundary conditions on the global boundary were satisfied in strong sense by the
collocation of approximated fields at nodes where essential boundary conditions were prescribed.
Illustrative numerical examples are presented and discussed with focusing on comparison of results
obtained by the gradient theory with those obtained by classical theory.
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2. The MLPG for Flexoelectricity

2.1. The Direct and Converse Flexoelectricity

The electric enthalpy density for piezoelectric solids with strain and electric intensity vector
gradients can be written as [25–31]

H =
1
2

ci jklεi jεkl −
1
2

ai jEiE j − ekjiεi jEk +
1
2

g jklmniη jklηmni − fi jklEiη jkl+

+ bkli jεi jEk,l −
1
2

hi jklEi, jEk,l (1)

where a and c denote the second-order permittivity and the fourth-order elastic constant tensors,
respectively. Symbols e and f are used for the piezoelectric and flexoelectric coefficients, respectively.
Symbol g denotes the higher order elastic coefficients. Finally, the symbols b and h are used for the
converse flexoelectric coefficients and higher-order electric parameters, respectively.

The strain tensor εi j and the electric field vector E j are related to the displacements ui and the
electric potential φ by

εi j =
1
2

(
ui, j + u j,i

)
, E j = −φ, j (2)

The strain-gradients are denoted by symbol η

ηi jk = εi j,k =
1
2

(
ui, jk + u j,ik

)
. (3)

The constitutive equations are obtained from the electric enthalpy density expression (1) as

σi j =
∂H
∂εi j

= ci jklεkl − eki jEk − bkli jEk,l

τ jkl =
∂H
∂η jkl

= − fi jklEi + g jklmniηnmi

Di = −
∂H
∂Ei

= ai jE j + ei jkε jk + fi jklη jkl, (4)

Qi j = −
∂H
∂Ei, j

= bi jklεkl + hi jklEk,l

where σi j, Di, τ jkl and Qi j are the stress tensor, electric displacements, higher order stress and electric
quadrupole, respectively.

In the simplified gradient theory [18,32,33] only one internal length-scale parameter l is present.
Then, the higher-order elastic parameters g jklmni are proportional to the conventional elastic stiffness
coefficients cklmn and the length material parameter l [34,35] as

g jklmni = l2c jkmnδli, (5)

with δli being the Kronecker delta.
A similar idea of simplification has been applied to the higher-order electric parameters

hi jkl = q2aikδ jl, (6)

where q is another length-scale parameter.
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In the simplified direct flexoelectricity there are considered two independent parameters f1 and f2
for the direct flexoelectric coefficient fi jkl, fi jkl = f1δ jkδil + f2

(
δi jδkl + δikδ jl

)
[25]. Taking into account

the above simplifications, the electric enthalpy density can be written as

H =
1
2

ci jklεi jεkl −
1
2

ai jEiE j − ekjiεi jEk +
l2

2
c jkmnη jklηmnl − f1Eiηkki − f2Ei

(
ηikk + η ji j

)
+

+ bkli jεi jEk,l −
q2

2
aikEi, jEk, j. (7)

Finally, we reduce the number of independent converse flexoelectric coefficients bi jkl. The stresses
induced by electric intensity vector in the orthotropic piezoelectric material with poling direction along
the transversal isotropy x3-axis can be written as

σ11 = e31E3, σ33 = e33E3, σ13 = e15E1,

with
eki j =

(
e31δi1δ j1 + e33δi3δ j3

)
δk3 + e15

(
δi1δ j3 + δi3δ j1

)
δk1 (8)

where standard Voight notation is applied [36].
A similar form is considered for induced stresses induced by the converse flexoelectricity

σi j = δi jb1(E1,1 + E3,3), σ13 = σ31 = b2E1,3 + b3E3,1 (9)

with three independent converse flexoelectric coefficients b1, b2 and b3 by bkli j = b1δi jδkl +(
δi1δ j3 + δi3δ j1

)
(b2δk1δl3 + b3δk3δl1). Note that b1, b2 and b3 are three independent material coefficients,

but are not components of a vector, similar as f1, f2 in case of direct flexoelectricity.
Then, the final form of the electric enthalpy is given by

H = 1
2 ci jklεi jεkl −

1
2 ai jEiE j − e31ε11E3 − e33ε33E3 − e15(ε13 + ε31)E1 +

l2
2 c jkmnη jklηmnl−

− f1Eiηkki − f2Ei
(
ηikk + η ji j

)
+ b1εkkEi,i + (b2E1,3 + b3E3,1)(ε13 + ε31) −

q2

2 aikEi, jEk, j
(10)

The constitutive Equations (4) for orthotropic materials in 2D problem (considered in (x1x3)-plane)
can be rewritten into a matrix form as


σ11

σ33

σ13

 =


c11 c13 0
c13 c33 0
0 0 c44



ε11

ε33

2ε13

−


0 e31

0 e33

e15 0


[

E1

E3

]
−


b1 0
b1 0
0 b3


[

E1,1

E3,1

]
−


0 b1

0 b1

b2 0


[

E1,3

E3,3

]
=

= C


ε11

ε33

2ε13

−Λ

[
E1

E3

]
−Φ1

[
E1,1

E3,1

]
−Φ3

[
E1,3

E3,3

]
, (11)

[
D1

D3

]
=

[
0

e31

0
e33

e15

0

]
ε11

ε33

2ε13

+
[

a1 0
0 a2

][
E1

E3

]
+

+

[
f1 + 2 f2 f1 0

0 0 f2

]
ε11,1

ε33,1

2ε13,1

+
[

0 0 f2
f1 f1 + 2 f2 0

]
ε11,3

ε33,3

2ε13,3

 =
= ΛT


ε11

ε33

2ε13

+ A
[

E1

E3

]
+ F1


ε11,1

ε33,1

2ε13,1

+ F3


ε11,3

ε33,3

2ε13,3


(12)
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τ11k
τ33k
τ13k

 = −FT
k

[
E1

E3

]
+ l2C


ε11,k
ε33,k

2ε13,k

, (13)

[
Q1k
Q3k

]
= ΦT

k


ε11

ε33

2ε13

+ q2A
[

E1,k
E3,k

]
. (14)

The Voigt notation is applied for piezoelectric and dielectric coefficients, similarly to elastic
coefficients as commonly used in literature [36].

Using the variational principle of least action, it is possible to derive the governing equations for
the considered constitutive equations [37]

σi j, j(x) − τi jk, jk(x) = 0,

Di,i(x) −Qi j, ji(x) = 0. (15)

Essential and natural boundary conditions (b.c.) follow from the variational formulation of
boundary value problems:

(1) Essential b.c.:
ui(x) = ui(x) on Γu, Γs ⊂ Γ

si(x) = si on Γs, Γs ⊂ Γ

φ(x) = φ(x) on Γφ, Γφ ⊂ Γ (16)

p(x) =
∂φ

∂n
= p(x) on Γp, Γp ⊂ Γ

(2) Natural b.c.:
ti(x) = ti(x) on Γt, Γt ∪ Γu = Γ, Γt ∩ Γu = ∅

Ri(x) = Ri(x) on ΓR, ΓR ∪ Γs = Γ, ΓR ∩ Γs = ∅

S(x) = S(x) on ΓS, ΓS ∪ Γφ = Γ, ΓS ∩ Γφ = ∅ (17)

Z(x) = Z(x) on ΓZ, ΓZ ∪ Γp = Γ, ΓZ ∩ Γp = ∅,

where

si :=
∂ui
∂n

, p :=
∂φ

∂n
, Ri := nkn jτi jk, Z := nin jQi j, (18)

and the traction vector and the electric charge are defined as

ti := n j
(
σi j − τi jk,k

)
−
∂ρi

∂π
+

∑
c

∥∥∥ρi(xc)
∥∥∥δ(x− xc), (19)

S := nk
(
Dk −Qkj, j

)
−
∂α
∂π

+
∑

c

∥∥∥α(xc)
∥∥∥δ(x− xc), (20)

with ρi := nkπ jτi jk, α := niπ jQi j, δ(x) being the Dirac delta function and πi is the Cartesian
component of the unit tangent vector on Γ.

The jump at a corner (xc) on the oriented boundary contour Γ is defined as∥∥∥ρi(xc)
∥∥∥ := ρi(xc

−) − ρi(xc+), (21)∥∥∥α(xc)
∥∥∥ := α(xc

−) − α(xc+). (22)
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2.2. The MLPG Formulation

The presence of gradients of strains and electric intensity vector in the electric enthalpy requires
C1 continuous interpolations of primary fields, i.e., displacements and electric potential. Recently,
the mixed FEM was developed for considered electro-elasticity problem [38]. The meshless local
Petrov–Galerkin method (MLPG) with the moving least-square (MLS) approximation is convenient
approach for problems with higher-order derivatives, since the order of continuity can be tuned to a
desired value [27–29].

The MLPG method is based on the local weak-form with local fictitious subdomains Ωq constructed
for the node xq which is either interior node xi

∈ Ω or boundary node xb
∈ ∂Ω = Γ at which natural

boundary conditions are prescribed (see Figure 1). The geometry of this subdomain can be arbitrary.
However, it is appropriate to select a circular shape for simple numerical evaluation of integrals.
One can write the local weak-form of the first governing Equation (15) as∫

Ωq

[
σi j, j(x) − τi jk, jk(x)

]
u∗im(x) dΩ = 0 (23)

where u∗im(x) is a test function.

Figure 1. Local subdomains Ωi and Ωb with their boundaries for moving least-squares (MLS)
approximation of the trial function; support domain of weight function around node xs.

Applying the Gauss divergence theorem to domain integrals in (23) one can write∫
∂Ωq

[
σi j(x) − τi jk,k(x)

]
n j(x)u∗im(x)dΓ −

∫
Ωq

[
σi j(x) − τi jk,k(x)

]
u∗im, j(x)dΩ = 0, (24)

where ∂Ωq is the boundary of the local subdomain which consists of three parts ∂Ωq = Lq
∪ Γq

t ∪ Γq
u,

in general, since ∂Ωq = (∂Ωq
∩Ω) ∪ (∂Ωq

∩ Γ) and Lq := ∂Ωq
∩Ω, Γq := ∂Ωq

∩ Γ = (∂Ωq
∩ Γt) ∪

(∂Ωq
∩ Γu) = Γq

t ∪ Γq
u.

If a Heaviside step function is chosen for the test function u∗ik(x) in each subdomain as

u∗ik(x) =
{
δik at x ∈ Ωq

∪ ∂Ωq

0 at x < Ωq
∪ ∂Ωq , (25)
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the local weak-form (24) is transformed into the local integral equation∫
Lq+Γq

u

n j
(
σi j − τi jk,k

)
dΓ + ρi(x

f
t ) − ρi(xs

t) = −

∫
Γq

t

tidΓ, (26)

where we have utilized the fact n j
(
σi j − τi jk,k

)∣∣∣∣
Γq

t

= ti
∣∣∣
Γq

t
+

(
∂ρi
∂π −

∑
c

∥∥∥ρi(xc)
∥∥∥δ(x− xc)

)∣∣∣∣∣∣
Γq

t

and

∫
Γq

t

∂ρi

∂π
−

∑
c

∥∥∥ρi(xc)
∥∥∥δ(x− xc)

dΓ = ρi(x
f
t ) − ρi(xs

t)

with x f
t , xs

t standing for the final and starting points on Γq
t .

Similarly, we get local integral equation for the second governing Equation (15)∫
Lq+Γq

φ

n j
(
D j −Qi j,i

)
dΓ + α(x f

S) − α(x
s
S) = −

∫
Γq

S

SdΓ. (27)

For numerical solution of the above integral Equations (26) and (27), the MLS approximation of
trial functions is applied. The primary fields (mechanical displacements and electric potential) are
given by [28]

uh(x) = NT(x) ·
^
u =

n∑
a=1

Na(x)
^
u

a
, φh(x) =

n∑
a=1

Na(x)φ̂a, (28)

where
^
u

a
=

(
ûa

1, ûa
3

)T
and φ̂a are fictitious nodal parameters for displacements and electric potential,

respectively and Na(x) is the shape function related to the node a. Recall that the shape functions do

not satisfy the Kronecker δ-property. Therefore the nodal unknowns
^
u

a
, φ̂a are not nodal values of

displacements and electric potential, but these nodal unknowns can be used for approximation of
real nodal values at an arbitrary nodal point xq by utilizing (28) at x = xq. The number of nodes, n,
used for the approximation is determined by the size of support domain of the weight function wa(x)
of each node xa. The node xa is involved into the approximation at the sample point x, only if x lies
within the support domain of the node xa, i.e., if wa(x) , 0. A necessary condition for a regular MLS
approximation is that at least m weight functions are non-zero (i.e., n ≥ m) for each sample point x ∈ Ω,
where m is the order of the complete basis functions used in MLS approximation. A sufficient number
of nodes must be involved in order to ensure the regularity of evaluation of shape functions [27].
A small size of the support domains may induce larger oscillations in the nodal shape functions.
In standard discretization methods like the FEM, there are observed discontinuities on interfaces of
elements if continuity of approximation is not sufficient. In meshless methods there are no element
interfaces and we can use the forth-order spline-type weight function with C1

− continuity even for our
problem with derivatives of the third order. For the MLS approximation, we have used the complete
set of monomials of the 3rd order (m = 10) [27–29] and the weight function has the following form

wa(x) =

 1− 6
(

da

ra

)2
+ 8

(
da

ra

)3
− 3

(
da

ra

)4
, 0 ≤ da

≤ ra

0, da
≥ ra

, (29)

where da = ‖x− xa
‖ and ra is the size of the support domain. In numerical examples, we have used the

numerical model verified in plenty of numerical experiments (e.g., [27,28,39,40]): the radius of local
subdomain ρq = 0.5δ, radius of support domain ra = 3.001δ, where δ is the minimal distance of any
two nodes. If the number of nodes supporting the approximation at a sample point x is smaller than
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15 (n < 15), additional closest nodes are supplemented as supporting nodes in the adopted numerical
model. In problems with simple geometry, it is proposed to employ regular distribution of nodes.
The circular shape of subdomain enables us to utilize polar coordinates and facilitate the integrations.
Since the radius of local subdomain is rather small, the subdomain Ωb around a boundary node can be
considered as a section of complete circular domain and Lb is a circular arc (Figure 1). The Gaussian
quadrature is used for integrations with using polar coordinate system.

The strains and electric intensity vector are approximated by

εh(x) =


εh

11
εh

33
2εh

13

 =
n∑

a=1

Ba(x)
^
u

a
, Eh(x) =

[
Eh

1
Eh

3

]
= −

n∑
a=1

Pa(x)φ̂a,

εh
,k(x) =


εh

11,k
εh

33,k
2εh

13,k

 =
n∑

a=1

Ba
,k(x)

^
u

a
, Eh

,k(x) =

 Eh
1,k

Eh
3,k

 = − n∑
a=1

Pa
,k(x)φ̂

a (30)

where

Ba(x) =


Na

,1
0

Na
,3

0
Na

,3
Na

,1

, Pa(x) =

 Na
,1

Na
,3

, Ba
,k(x) =


Na

,1k
0

Na
,3k

0
Na

,3k
Na

,1k

, Pa
,k(x) =

 Na
,1k

Na
,3k

. (31)

The first part of the traction vector (19), t̃i(x) = n j(σi j − τi jk,k), can be approximated at a boundary
point x ∈ ∂Ωb in terms of primary fields as

~
t

h
(x) = N(x)C

n∑
a=1

(
Ba(x) − l2Ba

,kk(x)
)^
u

a
+ N(x)

n∑
a=1

(
ΛPa(x) + ΦkPa

,k(x) − FT
k Pa

,k(x)
)
φ̂a, (32)

where the matrices C, Λ, Φk, FT
k are defined in Equations (11) and (13) and the matrix N(x) is related to

the normal vector n(x) on ∂Ωb by

N(x) =
[

n1 0 n3

0 n3 n1

]
(33)

Again, the first part of the electric charge (27), S̃(x) = n j(D j −Qi j,i), has to be approximated. In the
first step the expression of Qi j,i is given by

n jQi j,i = n j
[
∂1 ∂3

][ Q1 j
Q3 j

]
= n j

[
∂1 ∂3

]ΦT
j

n∑
a=1

Ba(x)
^
u

a
− q2A

n∑
a=1

Pa
, j(x)φ̂

a

 =

= n j(x)

 n∑
a=1

Ψa
j(x)

^
u

a
− q2

n∑
a=1

Πa
j(x)φ̂

a

, (34)

where,

ΨaT
1 (x) =

 b1Na
,11 + b3Na

,33
(b1 + b3)Na

,13

, ΨaT
3 (x) =

 (b1 + b2)Na
,13

b2Na
,11 + b1Na

,33

, Πa
j(x) =

 a1Na
,11 j

a2Na
,33 j

.
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Now, S̃(x) can be approximated by

S̃h(x) = N(x)
{

n∑
a=1

(
ΛTBa(x) + FkBa

,k(x)
)^
u

a
−A

n∑
a=1

Pa(x)φ̂a
}
−

n j(x)
{

n∑
a=1

Ψa
j(x)

^
u

a
− q2

n∑
a=1

Πa
j(x)φ̂

a
} (35)

with N(x) =
[

n1(x) n3(x)
]
.

The essential boundary conditions are satisfied in the strong-form at nodal points ζb
∈(

Γb
u ∪ Γb

s ∪ Γb
φ ∪ Γb

p

)
⊂ ∂Ω. If the approximation formulas (28) and (30) are used one can write

n∑
a=1

Na
(
ζb

)
ûa = u

(
ζb

)
for ζb

∈ Γb
u, N

(
ζb

) n∑
a=1

Pa
(
ζb

)
ûa = s

(
ζb

)
for ζb

∈ Γb
s

n∑
a=1

Na
(
ζb

)
φ̂a = φ

(
ζb

)
for ζb

∈ Γb
φ, N

(
ζb

) n∑
a=1

Pa
(
ζb

)
φ̂a = p

(
ζb

)
for ζb

∈ Γb
p

(36)

Substituting the MLS-approximation (32) and (35) into the local boundary-domain integral
Equations (26) and (27), we obtain the system of algebraic equations for unknown nodal quantities∫

Lq+Γq
u

N(x)C
∑

a

(
Ba(x) − l2Ba

,kk(x)
)
ûadΓ(x)+

+

∫
Lq+Γq

u

N(x)
n∑

a=1

(
ΛPa(x) + ΦkPa

,k(x) − FT
k Pa

,k(x)
)
φ̂adΓ(x)+

+nk
(
x f

t

)
Π

(
x f

t

)l2C
∑

a
Ba

,k

(
x f

t

)
ûa + FT

k

∑
a

Pa
(
x f

t

)
φ̂a

−
−nk

(
xs

t

)
Π

(
xs

t

)l2C
∑

a
Ba

,k

(
xs

t

)
ûa + FT

k

∑
a

Pa
(
xs

t

)
φ̂a

 = −∫
Γq

t

t(x)dΓ

(37)

∫
Lq+Γq

φ

N(x)

 n∑
a=1

(
ΛTBa(x) + FkBa

,k(x)
)
ûa
−A

n∑
a=1

Pa(x)φ̂a

dΓ(x)−

−

∫
Lq+Γq

φ

n j(x)

 n∑
a=1

Ψa
j(x)û

a
− q2

n∑
a=1

Πa
j(x)φ̂

a

dΓ(x)+

+N
(
x f

S

)
πk

(
x f

S

)ΦT
k

∑
a

Ba
(
x f

S

)
ûa
− q2A

∑
a

Pa
,k

(
x f

S

)
φ̂a


−N

(
xs

S

)
πk

(
xs

S

)ΦT
k

∑
a

Ba
(
xs

S

)
ûa
− q2A

∑
a

Pa
,k

(
xs

S

)
φ̂a

 = −∫
Γq

S

S(x)dΓ

(38)

which are considered on the sub-domains adjacent to the interior nodes xq
∈ Ω as well as to the

boundary nodes on xq
∈ Γq

t ⊂ ∂Ω and/or xq
∈ Γq

S ⊂ ∂Ω with

Π(x) =
[
π1(x) 0 π3(x)
0 π3(x) π1(x)

]
. (39)



Materials 2020, 13, 2527 10 of 20

2.3. Numerical Examples

A square panel under bending in Figure 2 is analyzed by the FEM [37] and the MLPG.
The piezoelectric material PZT-5H is chosen for the study.

Figure 2. A square piezoelectric panel under bending.

Polarization of material is considered along x3 coordinate. Following geometry and load are
considered in numerical analysis: w = 1.0× 10−7 m, t1 = 1.0× 106 MPa. The size effect is control by
parameter α, defined by l2 = αl20 with micro-length scale parameter l0 = 5× 10−9 m. The parameter α
is used just in parametric study for investigation of influence of the micro-length scale parameter l on
the physical response. The flexo-electric coefficients are vanishing here.

The variation of the panel deflection along x1 is presented in Figure 3. Results are obtained
by classical and gradient theories. Recall that the classical and higher-grade problems are to be
solved individually, since the governing equations in the higher-grade model are given by the partial
differential equations (PDE) of higher order than in classical theory and moreover, some additional
boundary conditions are required. In gradient theory only strain gradients are considered in constitutive
equations, while gradients of electric intensity vector are vanishing in this example. The deflections
resulting from the gradient theory are reduced with respect to those obtained by the classical approach.
The FEM and MLPG results are in a good agreement. In the FEM calculations, the special Argyris
element [41] was employed in order to achieve higher continuity of approximated field variables.

Figure 3. Variation of the mechanical displacement u3 at x3 = w/2.



Materials 2020, 13, 2527 11 of 20

A square plate with a central crack with the geometric parameters w =5a, a = 1.0 × 10−7 m is
analyzed (see Figure 4) in the next example. On the top and the bottom boundaries of the plate
a combined electro-mechanical loading with t3 = 1.17 MPa and D3 = −5 × 10−4 C/m2 is applied.
The crack-faces are free of mechanical tractions and electrical displacements.

Figure 4. Crack in a square plate under an electro-mechanical loading.

The flexoelectric coefficients are considered to be f1 = f2 = f0 = 1 × 10−8 C/m. The converse
flexoelectric coefficients and length scale parameter for the higher-order electric parameters are selected
as b1 = b2 = b3 = b0 = 5 × 10−8 C/m and q2 = q2

0 = 5× 10−10 m2, respectively. To assess the effects
of the strain- and electric field-gradients, the size-factors l2, bi, q2 and f in constitutive equations are
defined by

l2 = αl20, fi = α f0, bi = βb0, q2 = βq2
0.

To investigate influence of the strain gradient and electric intensity gradient parameters various
integer numbers α and β are selected in numerical analyses.

Crack opening displacement and induced electric potential are presented in Figure 5. One can
observe that both displacement and electric potential are reduced if the converse flexoelectricity is
growing (larger β).

Figure 5. Crack opening-displacements u+3 and electrical potentials ϕ+ of the upper crack-face for
different factors β.
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3. Gradient Theory in Thermoelectric Materials

The thermoelectric conversion efficiency is high if the thermal conductivity is low. It can be
reduced significantly in nanosized structures. It is due to comparable sizes of phonon mean free path
and the structure. Phonons are scattered on interfaces and thermal conductivity is reduced. For this
purpose it is needed to develop a theory of heat conduction, where size effect is considered. It is well
known that there is no size effect considered in the classical local theory of Fourier heat conduction.
Similar to the elasticity problems in nanostructures it is possible to consider the size effect here through
the nonlocal heat transport [19]. The heat flux vector in nonlocal theory is given by

λi(x) = −
∫
V

α(x− y)κi j(y)θ, j(y)dV(y), (40)

where the temperature differences are denoted by θ = T − T0 with the reference temperature T0, κi j is
the thermal conductivity and α(x− y) is a nonlocal kernel function.

The nonlocal weight function can be selected as

α =
1

4πl2ρ
exp(−ρ/l), (41)

where ρ =
∣∣∣x− y

∣∣∣ distance and l is a characteristic length material parameter.
It is easy to show that weight function (41) satisfies the Helmholtz equation(

1− l2∇2
)
α(

∣∣∣x− y
∣∣∣ = δ(x− y), (42)

where δ(x− y) is the Dirac function.
Then, the integral expression (40) is reduced to the Helmholtz equation(

1− l2∇2
)
λi = −κi jθ, j or

(
1− l2∇2

)
λi,i = w (43)

where w is the volume density of heat source.
By this way it is possible to replace the integro-differential form of the constitutive law in (40) by

a more convenient differential form given in (43). Then, higher-order derivatives in the governing
equation appear in this non-local theory of heat conduction than in the classical local Fourier theory.

Formally, the same governing equation as given in Equation (43), can be obtained also in the
higher-grade theory with including the higher-grade heat flux mik (i.e., canonically conjugated fields
with θ, jk) into constitutive equations in addition to the classical heat flux λi as

λi = −κi jθ, j, (44)

mik = −l2κi jθ, jk. (45)

The constitutive equations for thermoelectric materials with higher order heat conduction theory
can be written as

λi = −κi jθ, j + ζi jE j

Ji = si jE j − ζi jθ, j, (46)

mik = −l2κi jθ, jk

where the electric current density is denoted by Ji and si j, ζi j, ζi j are the electrical conductivity measured
with keeping uniform temperature, Seebeck and Peltier coefficients, respectively. Note that the latter
two coefficients are correlated via the absolute temperature T as ζi j = ζi jT, with T = T0 + θ, where T0

is the reference temperature. Furthermore, κi j = (κi j + κe
i j) is composed of the heat conduction
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κi j measured when Ji = 0 and contribution to heat conduction κe
i j because of electric current [42].

The Seebeck coefficient is proportional to the electric current conductivity ζi j = αsi j, ζi j = αsi jT and
κi j = (κi j + α2si jT).

The electric intensity vector E j is related to the electric potential φ by

E j = −φ, j. (47)

Next, orthotropic material properties are considered and the matrix form of constitutive
Equations (46) for 2D problems are given by(

J1

J2

)
=

(
s11 0
0 s22

)(
E1

E2

)
−

(
ζ11 0
0 ζ22

)(
θ,1

θ,2

)
= [S]{E} − [Z]

(
θ,1

θ,2

)
, (48)

(
λ1

λ2

)
=

(
ζ11 0
0 ζ22

)(
E1

E2

)
−

(
κ11 0
0 κ22

)(
θ,1

θ,2

)
=

[
¯
Z
]
{E} −

[
¯
κ

](
θ,1

θ,2

)
, (49)

(
m1k
m2k

)
= −l2

(
κ11 0
0 κ22

)(
θ,1k
θ,2k

)
= −l2[κ]

(
θ,1k
θ,2k

)
. (50)

Then, the governing equations for stationary thermoelectric problem are given by conservation of
energy and electric charge as

λi,i −mik,ik = w

Ji,i = 0. (51)

The weak form of these equations can be written as∫
V

(
Jiδφ,i + λiδθ,i + mikδθ,ik

)
dV +

∫
V

wδθdV =

= −

∫
V

[
Ji,iδφ+ (λi,i −w)δθ+ mik,kδθ,i

]
dV+

+

∫
∂V

(ni Jiδφ+ niλiδθ+ nkmikδθ,i)dΓ =

−

∫
V

[
Ji,iδφ+

(
λi,i −mik,ik −w

)
δθ

]
dV+

+

∫
∂V

[
ni Jiδφ+ ni

(
λi −mik,k

)
δθ+ nkmikδθ,i

]
dΓ =

= −

∫
V

[
Ji,iδφ+

(
λi,i −mik,ik −w

)
δθ

]
dV−

−

∫
∂V

(Λδθ+ Pδp + Qδφ)dΓ

(52)

where P, Q and Λ are independent boundary densities conjugated with p = ∂θ/∂n, φ and θ,
respectively and given as P = nknimik, Q = nk Jk

Λ = n j
(
λi −mik,k

)
−
∂µ

∂π
+

∑
c
~µ(xc)�δ(x− xc) (53)

µ = nkπimik (54)
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with Λ being the heat flux, ni and πi are the Cartesian component of the unit tangent vector on Γ and
the jump at a corner on the oriented boundary contour Γ is defined as ~µ(xc)� := µ(xc

−) − µ(xc+).
The rate of work of the external “forces”

(
Λ, P, Q

)
and body source is given by

δW =

∫
ΓΛ

ΛδθdΓ +

∫
ΓP

PδpdΓ +

∫
ΓQ

QδφdΓ +

∫
V

wδθdV. (55)

If only the Joule heating plays the role of heat sources,

δW =

∫
ΓΛ

ΛδθdΓ +

∫
ΓP

PδpdΓ +

∫
ΓQ

QδφdΓ +

∫
V

Ei JiδθdV, (56)

and the governing equations become

λi,i(x) −mik,ik(x) − Ei(x)Ji(x) = 0, Ji,i(x) = 0 (57)

Furthermore, from the weak formulation, one can deduce the following boundary conditions for
coupled thermoelectric problem considered within higher-grade theory

essential b.c.:
θ(x) = θ(x) on Γθ, Γθ ⊂ Γ

p(x) = p(x) on Γp, Γp ⊂ Γ

φ(x) = φ(x) on Γφ, Γφ ⊂ Γ

natural b.c.:
Λ(x) = Λ(x) on ΓΛ, ΓΛ ∪ Γθ = Γ, ΓΛ ∩ Γθ = ∅

P(x) = P(x) on ΓP, ΓP ∪ Γp = Γ, ΓP ∩ Γp = ∅

Q(x) = Q(x) on ΓQ, ΓQ ∪ Γφ = Γ, ΓQ ∩ Γφ = ∅

Substituting the constitutive relationships into the governing equations, we obtain the nonlinear
system of the PDEs for primary field variables θ and φ

κi j
(
1− l2∇2

)
θ,i j + ζi jT

(
φ,i j + αθ,i j

)
+ ζi jθ,i

(
φ, j + αθ, j

)
+ φ,i

(
si jφ, j + ζi jθ, j

)
= 0,

si jφ,i j + ζi jθ,i j = 0.

Recall that owing to the Joule heat, the problem is nonlinear even if the temperature dependence
of material coefficients were neglected. Finally, making use the proportionality relationship ζi j = αsi j,
the system of governing equations become

κi j
(
1− l2∇2

)
θ,i j + si j(φ,i + αθ,i)

(
φ, j + αθ, j

)
= 0,

si j
(
φ,i j + αθ,i j

)
= 0.

3.1. The MLPG Formulation in Thermoelectricity

One can see in the previous chapter that MLPG method is based on the local weak-form with
local fictitious subdomains Ωq. The local weak-form of the first governing Equation (57) is given as∫

Ωq

[
λi,i(x) −mik,ik(x) − Ei Jii

]
u∗(x) dΩ = 0, (58)



Materials 2020, 13, 2527 15 of 20

where u∗(x) is a test function.
Applying the Gauss divergence theorem to two domain integrals in (58), one can write∫

∂Ωq

[
λi(x) −mik,k(x)

]
ni(x)u∗(x)dΓ −

∫
Ωq

[
λi(x) −mik,k(x)

]
u∗,i(x)dΩ−

−

∫
Ωq

Ei(x)Ji(x)u∗(x)dΩ = 0, (59)

where ∂Ωq is the boundary of the local subdomain Ωq.
The test function can be arbitrary and we have selected a Heaviside step function

u∗(x) =
{

1 at x ∈ Ωq
∪ ∂Ωq

0 at x < Ωq
∪ ∂Ωq . (60)

Then, the local weak-form (59) is transformed into the local integral equation∫
Lq+Γq

θ

ni
(
λi −mik,k

)
dΓ + µ(x f

Λ) − µ(x
s
Λ) −

∫
Ωq

Ei JidΩ = −

∫
Γq

Λ

ΛdΓ, (61)

where x f
Λ, xs

Λ stand for the final and starting points on Γq
Λ with prescribed heat flux.

The local integral equation for the second governing Equation (57) is given as∫
Lq+Γq

φ

ni JidΓ = −

∫
Γq

Q

QdΓ. (62)

The MLS approximation of trial functions is applied for numerical solution of the above local
integral Equations (61) and (62). The temperature and electric potential are approximated by [28]

θh(x) =
n∑

a=1

Na(x)θ̂a, φh(x) =
n∑

a=1

Na(x)φ̂a, (63)

where θ̂a and φ̂a are fictitious nodal parameters for temperature and electric potential, respectively and
Na(x) is the shape function related to the node a. The number of nodes n is explained in Section 2.2.

From the definition of heat fluxλi and the higher-grade heat flux mik in (44), (45) and approximation
of temperature (63) we get

λh(x) =
(
λ1

λ2

)h

= −
¯
κ

n∑
a=1

Pa(x)θ̂a
−

¯
Z

n∑
a=1

Pa(x)φ̂a, mh
k(x) = −l2κ

n∑
a=1

Pa
,k(x)θ̂

a, (64)

where

Pa(x) =

 Na
,1

Na
,2

, Pa
,k(x) =

 Na
,1k

Na
,2k

. (65)

The electric current density and intensity of electric field are approximated by

Jh(x) = −S
n∑

a=1

Pa(x)φ̂a
−Z

n∑
a=1

Pa(x)θ̂a, ET = −
n∑

c=1

PcT(x)θ̂c. (66)
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The incomplete heat flux ni(λi −mik,k) and µ = nkπimik are approximated as

ni(λi −mik,k) ≈

l2Fθ(x)
n∑

a=1

Pa
,kk(x) −

¯
Fθ(x)

n∑
a=1

Pa(x)

θ̂a
−

¯
Fφ(x)

n∑
a=1

Pa(x)φ̂a,

µ ≈ −l2nk(x)Fµ(x)
n∑

a=1

Pa
,k(x)θ̂

a, (67)

where
Fθ(x) =

[
n1(x) n2(x)

]
[κ] =

[
n1(x)κ11 n2(x)κ22

]
,

¯
Fθ(x) =

[
n1(x) n2(x)

][ ¯
κ(x)

]
=

[
n1(x)κ11(x) n2(x)κ22(x)

]
,

¯
Fφ(x) =

[
n1(x) n2(x)

][ ¯
Z(x)

]
=

[
n1(x)ζ11(x) n2(x)ζ22(x)

]
,

Fµ(x) =
[
π1(x) π2(x)

]
[κ] =

[
π1(x)κ11 π2(x)κ22

]
,

with κi j(x) =
(
κi j + α2si j(T0 + θ(x))

)
, ζi j(x) = ζi j(T0 + θ(x)).

The essential boundary conditions are satisfied in the strong-form at nodal points ζb
∈(

Γb
θ ∪ Γb

p ∪ Γb
φ

)
⊂ ∂Ω. These conditions follows directly from Equations (63)

n∑
a=1

Na(ζb)θ̂a =

θ(ζb) for ζb
∈ Γθ, N(ζb)

n∑
a=1

Pa(ζb)θ̂a = p(ζb) for ζb
∈ Γp,

n∑
a=1

Na(ζb)φ̂a = φ(ζb) for ζb
∈ Γφ, (68)

where N(x) =
[

n1(x) n2(x)
]
.

Substituting the MLS-approximation (64)–(67) into the local boundary-domain integral
Equations (61) and (62), we obtain the nonlinear system of algebraic equations∫

L q+Γq
θ


l2Fθ(x)

n∑
a=1

Pa
,kk(x) − Fθ(x)

n∑
a=1

Pa(x)

θ̂a
− Fφ(x)

n∑
a=1

Pa(x)φ̂a

dΓ+

+l2
nk

(
xs

Λ

)
Fµ

(
xs

Λ

) n∑
a=1

Pa
,k

(
xs

Λ

)
− nk

(
x f

Λ

)
Fµ

(
x f

Λ

) n∑
a=1

Pa
,k

(
x f

Λ

)θ̂a
−

−

∫
Ωq

n∑
c=1

θ̂ cP cT(x)

S
n∑

a=1

Pa(x)φ̂a + Z
n∑

a=1

Pa(x)θ̂a

dΩ = −

∫
Γq

Λ

ΛdΓ

(69)

∫
Lq+Γq

φ

N(x)

S
n∑

a=1

Pa(x)φ̂a + Z
n∑

a=1

Pa(x)θ̂a

dΓ =

∫
Γq

Q

QdΓ. (70)
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This system can be solved iteratively as∫
L q+Γq

θ


l2Fθ(x)

n∑
a=1

Pa
,kk(x) − F

(k−1)
θ (x)

n∑
a=1

Pa(x)

θ̂a (k)
− F

(k−1)
φ (x)

n∑
a=1

Pa(x)φ̂a (k)

dΓ+

+l2
nk

(
xs

Λ

)
Fµ

(
xs

Λ

) n∑
a=1

Pa
,k

(
xs

Λ

)
− nk

(
x f

Λ

)
Fµ

(
x f

Λ

) n∑
a=1

Pa
,k

(
x f

Λ

)θ̂a (k)
−

−

∫
Ωq

n∑
c=1

θ̂c (k−1)P cT(x)

S
n∑

a=1

Pa(x)φ̂a (k) + Z
n∑

a=1

Pa(x)θ̂a (k)

dΩ = −

∫
Γq

Λ

ΛdΓ

(71)

∫
Lq+Γq

φ

N(x)

S
n∑

a=1

Pa(x)φ̂a(k) + Z
n∑

a=1

Pa(x)θ̂a(k)

dΓ =

∫
Γq

Q

QdΓ, (72)

with (k = 1, 2, . . .), θ̂a(0) = 0, φ̂a (0) = 0 and

¯
F
(k−1)

θ (x) =
[

n1(x)κ
(k−1)
11 (x) n2(x)κ

(k−1)
22 (x)

]
,

¯
F
(k−1)

φ (x) =
[

n1(x)ζ
(k−1)
11 (x) n2(x)ζ

(k−1)
22 (x)

]
,

where κ(k−1)
i j (x) =

(
κi j + α2si j(T0 + θ(k−1)(x))

)
, ζ

(k−1)
i j (x) = ζi j

(
T0 + θ(k−1)(x)

)
.

3.2. Numerical Examples

An axially symmetric thermoelectric problems, as shown in Figure 6, is analyzed in the example.
The thermoelectric material Bi2Te3, is considered. It has the following material constants [42] with
isotropic properties:

s = 1.1× 105Am/V, α = ζ/s = 2× 10−4 V2/KAm, κ = 1.6 W/Km. (73)

Figure 6. Geometry and boundary conditions.

Characteristic length for the selected material structure is l = 5× 10−9 m.
Following geometry of the hollow cylinder is considered: internal radius r1 = 1 × 10−7 m and

external radius r2 = 2.5 × 10−7 m. Vanishing values of electric potentials are prescribed on inner
and external surfaces. Furthermore, vanishing values of the temperature gradients on both surfaces
are considered.
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The coupled thermo-electric problem is analyzed numerically. The influence of the tube thickness
L = r2 − r1 on temperature and induced electric potential is investigated. Numerical results are
presented in Figures 7 and 8. The induced electric potential grows with increasing the value l/L.
In classical thermoelectricity, it is possible to find the analytical solution.

Figure 7. Temperature variation along non dimensional x/L coordinate in hollow cylinder.

Figure 8. Electric potential variation along non dimensional x/L coordinate in hollow cylinder.

4. Conclusions

The meshless Petrov–Galerkin (MLPG) method was successfully applied to multiphysical problems
described by advanced continuum models with microstructural effects. Strain- and electric intensity
vector-gradients are considered in constitutive equations for electric displacement and stresses in
flexoelectricity, respectively. Similarly, the constitutive equations for thermoelectric materials contain
higher-order derivatives of temperature in the higher-grade heat conduction theory. It allows to
describe the heat transfer in nanostructures more realistic. The governing equations are derived
for both multiphysical problems, where size effects are considered. These equations contain higher
order of derivatives of physical fields than in the classical continuum models. Application of classical
domain discretization methods to corresponding boundary value problems brings some difficulties
with continuity of approximated fields.

The proposed MLPG computational method with the MLS approximation of fields is very
convenient to solve governing equations of gradient theory with high-order derivatives. The order of
continuity of the MLS approximation can be tuned to a desired value very easily. Therefore, the present
computational method is promising to be applied to multiphysical problems described by gradient
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theories. The operation of the developed computational scheme is verified via comparison of partial
numerical results with analytical solutions and/or FEM results.
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