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Abstract: In the present trend of constructing taller and longer structures, the application of
lightweight aggregate concrete is becoming an increasingly important advanced solution in the
modern construction industry. In engineering practice, the analysis of lightweight concrete elements
is performed using the same algorithms that are applied for normal concrete elements. As an
alternative to traditional engineering methods, nonlinear numerical algorithms based on constitutive
material models may be used. The paper presents a comparative analysis of curvature calculations
for flexural lightweight concrete elements, incorporating analytical code methods EN 1992-1 and ACI
318-19, as well as a numerical analysis using the constitutive model of cracked tensile lightweight
concrete recently proposed by the authors. To evaluate the adequacy of the theoretical predictions,
experimental data of 51 lightweight concrete beams of five different programs reported in the literature
were collected. A comparison of theoretical and experimental results showed that the most accurate
predictions are obtained using numerical analysis and the constitutive model proposed by the authors.
In the future, the latter algorithm can be used as a reliable tool for improving the design standard
methods or numerical modeling of lightweight concrete elements subjected to short-term loading.

Keywords: lightweight aggregate concrete; reinforced concrete; flexural elements; curvature;
short-term loading; tension stiffening; constitutive model; numerical modeling

1. Introduction

Concrete has become the most widely used construction material worldwide. Moreover, concrete
is the most widely used synthetic material. Compared with other materials, only water is used in
greater quantities. Over the past 30 years, concrete production has increased by a factor of >3 times to
approximately 3.8 billion m3 per year [1]. This represents >1 m3 per person per year worldwide [2].
Compared with other traditional construction materials (e.g., steel, timber, polymers, and aluminum),
the amount of concrete production is twice that of other traditional materials combined. By 2050, world
concrete production is projected to be a factor of four higher than the 1990 level [3].

The increasing amount of concrete production leads to a rising demand for innovative solutions
for concrete structures and their implementation in real construction projects [4]. In the present
trend of constructing taller and longer structures, the application of lightweight aggregate concrete
is becoming an increasingly important advanced solution in the modern construction industry.
Numerous studies around the world have been dedicated to research in the field of lightweight
aggregate concrete. Consequently, various concrete mixtures with different mechanical properties have
been proposed [5–10]. However, in most cases, traditional studies usually address the optimization of
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concrete properties with respect to one or more aspects, such as microstructure, mechanical resistance,
and durability [6–9]. Consequently, the obtained findings do not lead to the final expected effect [5].
The improvement of selected material properties is accompanied by changes in other important
parameters [9]. Moreover, experimental results are usually achieved by testing on small-scale
specimens. Despite the fact that standardized techniques for material testing are usually applied,
the obtained results and material models sometimes do not reflect the real mechanical behavior of
large-scale load-bearing structures [11,12]. The application of advanced concrete mixes for structural
members must be analyzed in an integral way—starting from the optimal composition test and ending
with the evaluation of structural behavior of large-scale prototype members subjected to real operating
conditions and external mechanical loading [5].

In current engineering practice, for the limit state analysis of reinforced lightweight concrete
and normal concrete elements, the same algorithms are applied [13,14]. The influence of lightweight
aggregate concrete on the structural behavior is taken into account by introducing additional empirical
coefficients that depend on the concrete density. However, the obtained predictions of lightweight
concrete members in most cases do not correspond to their real mechanical behavior—both crack width
and deformation of lightweight concrete elements are underestimated [15], and the errors can reach
100%, particularly for the lightly reinforced concrete members [5]. These tendencies can be explained
by the fact that lightweight concrete significantly differs from normal concrete. In particular, the
properties of lightweight concrete are highly dependent on the type, amount, and mechanical properties
of the selected lightweight aggregates [10,16] as well as the technological aspects of concrete mix
preparation [17,18]. Traditional engineering methods, which during many years have been developed
to improve normal-weight concrete mixes, are usually insufficient for evaluating these factors.

Another important, though often neglected, aspect of the serviceability analysis can be attributed
to the assessment of the restrained shrinkage-induced stress–strain state at the pre-loading stage [19–22].
Some researchers [14,21,23,24] note that early-age cracking of reinforced lightweight concrete elements
occurs, in particular, because of shrinkage of concrete in combination with lower tensile strength.
These effects are not taken into account in traditional engineering techniques.

The application of performance-based design concepts in advanced structural engineering
has increased the integration of alternative numerical methods in the design process of complex
modern structures [22,25]. Adequate constitutive models representing the behavior of concrete
and reinforcement, as well as their interaction, must be used in the following algorithms [26,27].
Numerous physical models have been proposed for the analysis of conventional reinforced concrete
elements [19,28–30]. However, studies in the field of constitutive modeling of lightweight aggregate
concrete are insufficient and still require a solution because advanced lightweight concrete is a relatively
new material [31].

This paper presents a comparative analysis of curvature calculations for flexural lightweight
aggregate concrete elements, incorporating analytical code methods (EN 1992-1 (EC2) [32] and ACI
318-19 (ACI) [33]), as well as a numerical analysis using the constitutive model of cracked tensile
lightweight concrete recently proposed by the authors [5,23]. To evaluate the adequacy of the theoretical
predictions, experimental data of 51 lightweight concrete beams tested during five different programs
were collected. The reinforcement ratio of the experimental beams ranged from 0.33% to 2.82%, the
density ranged from 1651 to 2000 kg/m3, and the compressive strength of concrete ranged from 20
to 70 MPa. A comparison of theoretical and experimental results showed that the most accurate
predictions are obtained using numerical analysis and the constitutive model proposed by the authors.
In the future, the latter algorithm can be used as a reliable tool for improving the design standard
methods or numerical modeling of lightweight concrete elements subjected to short-term loading.
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2. Calculation Methods Employed for Comparative Analysis

2.1. Eurocode 2 (EC2)

According to EC2 [32] methodology, curvatures of reinforced lightweight concrete beams are
calculated using the same relationships as for traditional reinforced concrete elements. The algorithm
distinguishes two stages of deformation of reinforced concrete elements. In the first stage (before
cracking), the element behavior is fully elastic, and the curvature is calculated by applying the
fundamental relationships of material mechanics. In the second stage (during which the element
is fully cracked), tensile stresses are entirely carried by the tensile reinforcement. At this stage, the
curvature is calculated using the geometric characteristics of the fully cracked cross section.

The mean curvature at any intermediate stress–strain stage can be assessed by interpolation
between values calculated for stages I and II. Using this concept, the tension-stiffening effect is taken
into account. The mean curve is calculated by the following formula:

κ = (1− ζ)
M

ElcmIu
+ ζ

M
ElcmIc

, (1)

where κ is the mean curvature of the cross section, M is the bending moment at the considered load
level, Iu is the moment of inertia of the non-cracked cross section, and Ic is the moment of inertia of the
fully cracked cross section. Elcm is the average modulus of elasticity of lightweight aggregate concrete
calculated by using

Elcm = 22( flcm/10)0.3(ρ/2200)2, (2)

where flcm is the average compressive strength of lightweight aggregate concrete, and ρ is the density
of concrete. Here, ζ is the interpolation coefficient; if the cross section is not cracked, ζ = 0; otherwise,
it is calculated by using

ζ = 1− β
(Mcr

M

)2
, (3)

where Mcr is the cracking moment, and β is the coefficient that takes into account the influence of
the loading duration (short or long-term) as well as type of loading (static or cyclic) on the average
deformations. The coefficient β is 1 and 0.5 for short-term static loads and long-term or cyclical loads,
respectively.

EC2 also provides an expression for the calculation of curvature κcs caused by concrete shrinkage
deformations:

κcs = εcsαe
S
I

, (4)

where εcs is the free shrinkage deformation, αe is the ratio of reinforcement and concrete modulus
of elasticity (effective modular ratio), S is the first moment of area of the reinforcement about the
centroid of the section, and I is the second moment of the area of the section. The above relationship
is commonly used to calculate long-term curvatures with curvature increases caused by shrinkage
taken into account. However, EC2 does not provide any direct recommendations for short-term
deformational analysis to evaluate the shrinkage effect in the pre-loading stage. As mentioned above,
concrete free shrinkage is restrained by reinforcement, causing tension stresses in concrete even before
loading. Depending on the shrinkage value and reinforcement ratio, this can significantly decrease the
cracking limit and can result in considerable prediction errors [20,21].

2.2. ACI 318-19 (ACI)

According to the ACI standard [33], the curvature of non-cracked cross-sectional elements is
calculated using the following fundamental formula, considering elastic geometric and physical
characteristics:

κ =
M

ElcIg
, (5)
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where M is the maximum bending moment, Ig is the moment of inertia of the non-cracked gross section,
and Elc is the modulus of elasticity of lightweight aggregate concrete calculated by the following
formula:

Elc = 0.043ρ1.5
√

fc, (6)

where fc is the compressive strength (in MPa).
The effective moment of inertia of the cracked cross section is calculated by interpolation between

the moments of inertia of the non-cracked (Ig) and the fully cracked (Icr) cross sections:

Ie =
(Mcr

M

)3
Ig +

[
1−

(Mcr

M

)3]
Icr ≤ Ig, (7)

where Mcr is the cracking moment calculated as follows:

Mcr =
frIg

yt
, (8)

where fr is the modulus of rupture, and yt is the distance from the centroid of the gross concrete section
to the bottom tensile layer.

The curvature of the cracked element is calculated with Formula (5) using the effective moment of
inertia:

κ =
M

ElcIe
. (9)

2.3. Numerical Method for Deformation Analysis Using a Tension-Stiffening Model of Lightweight Aggregate
Concrete

As an alternative to design codes, numerical methods with incorporated constitutive models of
materials can be used to assess nonlinear stress–strain behavior of reinforced concrete members. The
current study applies the modified tension-stiffening relationship originally proposed by Sokolov [29]
for traditional reinforced concrete. The modified and original models are presented in Figure 1a.Materials 2019, 12, x FOR PEER REVIEW 5 of 13 
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Figure 1. Tension–stiffening model of structural lightweight concrete: (a) theoretical diagrams and (b)
normalized stress–strain diagrams obtained for the selected experimental beams [5].

Constitutive modeling techniques for deriving the modified model including applied experimental
results of flexural reinforced lightweight concrete beams are discussed in more detail in references [5,23].
The basic aspects of the physical modeling are presented below. The methodology is based on the
layered section model, implying the successive application of the direct (curvature prediction) and
inverse (constitutive modeling) approaches. The method proposed by Kaklauskas and Ghaboussi [34]
was applied for constitutive modeling to obtain average stress and average strain diagrams for cracked
tensile concrete. The mathematical algorithm of the applied inverse procedure is discussed in more
detail in [20,29,35]. Experimental stress–strain diagrams representing the tension-stiffening effect for
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flexural members have been obtained by performing a three-step computation. The latter includes the
elimination of the concrete shrinkage effect on the stress–strain behavior of reinforced concrete members
before loading [20]. In the first step, using an inverse procedure [34], average tensile stress–strain
diagrams are obtained from experimental moment–curvature relationships. In the second step, the
obtained curves are used in the direct approach with shrinkage deformations taken into account. By
using the above technique, the modified moment-curvature diagrams for experimental specimens
are obtained by eliminating the influence of shrinkage deformations. In the final step, the modified
moment–curvature diagrams are used again in the inverse algorithm. Consequently, tension–stiffening
diagrams with shrinkage eliminated are derived. Examples of the normalized tension–stiffening
diagrams obtained using the above procedure together with the proposed model are presented in
Figure 1b. This figure represents stress–strain relations of nine experimental concrete beams reported
in [5]. The beams were made of lightweight aggregate concrete with density ρ = 1897–1959 kg/m3 and
were having reinforcement ratio ρR = 0.31% and 0.45%. Stress–strain relations were derived from the
test moment-curvature diagrams.

The proposed modified constitutive model (Figure 1a) is approximated by a three-curve diagram.
The ascending branch of the curve represents the elastic behavior of the reinforced concrete before
cracking. Meanwhile, the horizontal line and descending branch describe the stages of crack formation
and further development, respectively. According to [5], the ultimate tensile strength is σct = 0.55flct,
where flct is the average tensile strength of lightweight aggregate concrete calculated according to the
EC2 standard:

flctm = fctmη1, (10)

η1 = 0.40 + 0.60ρ/2200, (11)

where ρ is the density of lightweight aggregate concrete.

fctm = 0.30 f 2/3
lck for concrete grade ≤ LC50/55. (12)

fctm = 2.12ln
[
1 +

(
flck + 8

10

)]
for concrete grade > LC50/55. (13)

The strain ε1 corresponding to the ultimate tensile stress is determined by the following
relationship:

ε1 = 0.55εcr, (14)

where εcr = flct/Elcm is the theoretical cracking strain corresponding to the tensile strength, and Elcm
is the modulus of elasticity of concrete calculated according to EC2 depending on the compressive
strength of concrete.

The shape of the descending part of the diagram is described by the following formula [5,29]:

σct = flct

(
1− 0.27 ln

(
εct

εcr

)
− 0.21ρR

)
, (15)

where ρR is the reinforcement ratio [%].
The strain ε2 is calculated by using the relationship derived in Equation (15), and the ultimate

tensile stress of concrete, σct = 0.55flct:

ε2 = εcre1.667−0.78ρR . (16)

The length of the descending branch is defined by the maximal strain ε3 corresponding to zero
stress. This strain is calculated by the following formula:

ε3 = εcre3.7−0.78ρR . (17)
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The stress–strain relations of the above constitutive law are shown in Figure 1b along with the
stress–strain diagrams obtained from the experimental moment–curvature response. The comparison
shows close agreement of the proposed model and the curves obtained from the tests.

A nonlinear numerical analysis was performed using the finite element software ATENA (Cervenka
Consulting Ltd., Prague, Czech Republic). Two-dimensional finite element models of experimental
reinforced concrete elements were created employing constitutive models for compressive and tensile
concrete and reinforcement. The behavior of the reinforcement is represented by an elastic–plastic
model corresponding to the yield strength of steel and modulus of elasticity. A linear elastic diagram
was used to model the compressive concrete. The proposed constitutive model (Figure 1a) was used to
describe the behavior of lightweight aggregate concrete in tension. The 3D Non Linear Cementitious
2 User material model (based on SBETA material model offered by ATENA) was utilized. Concrete
without cracks is considered as isotropic and concrete with cracks as orthotropic body. Smeared
crack and fracture mechanics approaches are combined in ATENA to assess the nonlinear behavior of
reinforced concrete elements after cracking. In this study, the fixed crack model was used. A fracture
mechanics approach employed in ATENA for softening behavior is based on the crack band model.
Such a model substantially reduces mesh sensitivity [36]. A typical finite element model including the
loading and support conditions of the test beams is presented in Figure 2.
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Figure 2. A typical finite element model and loading and support conditions of the test beams.

The results of the nonlinear analysis strongly depend on the size of the finite mesh. Previous
studies [36,37] have shown that the accuracy of numerical analysis results obtained by ATENA is
sufficient using six finite elements per model height. According to the recommendations [36], the mesh
size was normalized by assuming a 20 mm characteristic finite element length. Such normalization
enables to eliminate the influence of the obtained results on the finite element mesh size. Isoparametric
quadrilateral finite elements of eight degrees of freedom with four integration points were used to
model the concrete beams. Reinforcement bars were modeled with truss finite elements. It should also
be emphasized that shrinkage deformations prior to short-term loading have been taken into account
in the numerical analysis. Shrinkage was modeled as a prescribed deformation affecting concrete
macroelements [37]. The modeling aspects are described in more detail in reference [23].

3. Database of Experimental Results and Accuracy Analysis of Predictions

The database consists of data from 51 lightweight aggregate concrete flexural elements obtained
from five different test programs reported by Carmo et al. [15], Sin et al. [14], Bernardo et al. [38],
Wu et al. [39], and Vakhshouri [30]. The main characteristics of the flexural elements are given in
Tables 1 and 2. The reinforcement percentage of the experimental beams ranged from 0.33% to 2.82%,
the density ranged from 1651 to 2000 kg/m3, and the compressive strength of concrete ranged from
20 to 70.1 MPa. Table 2 includes the characteristics of tensile strength of concrete and shrinkage
deformations required for the numerical analysis. These characteristics were calculated according to
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the EC2 standard [32]. All the beams were tested under the four-point bending configuration (Figure 2)
with the span and shear span parameters given in Table 1.

Table 1. Main geometrical characteristics of experimental beams.

No. Reference Number
of Beams

Span L0,
m

Shear
Span a, m

Depth h,
mm

Width b,
mm

Reinforcement
Percentage ρR, %

1 Carmo et al. [15] 13 2.80 1.0 270 120 0.53–2.82
2 Sin et al. [14] 18 2.80 1.0 300 150 0.69–2.27
3 Bernardo et al. [38] 14 2.40 0.8 300 150 0.38–2.69
4 Wu et al. [39] 3 4.00 1.4 400 250 0.33–1.310
5 Vakhshouri [30] 3 3.50 1.167 161 400 0.83

Total: 51 2.40–4.00 0.8–1.4 161–400 120–400 0.33–2.82

Table 2. Main material characteristics of experimental beams.

No. Reference Concrete Density ρ,
kg/m3

Compressive
Strength flcm, MPa

Tensile Strength
flctm, MPa

Shrinkage Strain
εshr, × −10−6

1 Carmo et al. [15] 1870–1900 37.0–70.0 2.84–4.37 313–395
2 Sin et al. [14] 1700–2000 25.1–70.1 1.72–4.17 141–175
3 Bernardo et al. [38] 1651–1953 20.0–55.0 1.36–3.78 249–388
4 Wu et al. [39] 1900 34.2 2.43 134
5 Vakhshouri [30] 2000 31.0 2.29 180

Total: 1651–2000 20.0–70.1 1.36–4.37 134–395

Comparison of the theoretical and experimental results of the selected eight beams is given in
Figure 3. The theoretical analysis of the experimental beams was terminated at the load corresponding
to the ultimate bending moment MRm calculated according to EC2 [32]. In the figure, ρR corresponds
to the reinforcement percentage, ρ is the concrete density, and flcm is the compressive strength of
lightweight concrete. Results are compared at the service loading level taken as Mser = 0.6MRm (shown
in Figure 3 by red dashed line).

The comparison of the experimental curvatures against the theoretical results predicted by EC2
and ACI codes as well as the numerical approach is shown in Figure 4. The predictions were made
for all the beams at three different loading levels: 0.4MRm, 0.6MRm (Mser), and 0.8MRm. The mean
value (xm), standard deviation (σstd), and coefficient of variation (Vk) of the relative curvature (κth/κexp)
are shown at the bottom of each graph in this figure. The mean errors of 12.8%, 14.3%, and 14.4%
are obtained for the EC2 standard at load levels of 0.4MRm, 0.6MRm, and 0.8MRm, respectively. The
computational errors are rather modest and do not depend on the load level. Slightly smaller mean
errors of 11.7%, 12.9%, and 12.4% assessed at the same load levels are obtained by using the ACI
method. The predictions of the numerical model resulted in 1.8%, 2.7%, and 1.6% mean curvature
errors obtained at load levels of 0.4MRm, 0.6MRm, and 0.8MRm, respectively. It is important to note that
EC2 and ACI code methods produced predictions that were too stiff.
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Figure 4. Comparison of experimental and theoretical curvatures at different load levels.

Figure 5 shows the scatter of the normalized curvature predictions for ranges of material and
geometrical parameters such as reinforcement percentage ρR, concrete density ρ, compressive strength
of concrete, flcm, and shrinkage deformation εshr. The latter results were obtained for all the beams
at a service load Mser = 0.6MRm. Figure 5 shows that none of the listed parameters, except concrete
density and shrinkage strain, significantly affects the prediction accuracy in any of the methods. There
is a general tendency that accuracy decreases with a rise in density and an increase in free shrinkage
strain. Comparison of the results demonstrates that in all cases the proposed approach gives the most
accurate predictions of mean normalized curvature as the respective trend-line approaches the unity
line (shown as a black solid line).
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4. Conclusions

A comparison analysis of theoretical and experimental results of deformations of reinforced
lightweight concrete beams yields the following conclusions:

1. In engineering practice, the analysis of lightweight concrete elements is usually performed using
the same algorithms used for normal concrete elements. The influence of lightweight concrete on
the structural behavior is evaluated by additional density-dependent empirical coefficients. This
prediction of the behavior of lightweight concrete often does not correspond to the real behavior
of the structure. In many cases, the deformation of reinforced lightweight aggregate concrete
elements is underestimated, and the resulting errors can reach 100%.

2. As an alternative to traditional engineering methods, nonlinear numerical algorithms based on
physical material models that reflect the behavior of elements at various stages of operation may
be used. Although many physical models of concrete have been proposed for the prediction
of load carrying capacity and deformations in conventional reinforced concrete elements, there
are no reliable physical models for the numerical analysis of reinforced lightweight aggregate
concrete elements.

3. The constitutive model of cracked tensile lightweight concrete earlier proposed by the authors
wasused in a comparative deformation analysis of reinforced lightweight concrete beams. Stresses
characterizing the cracking limit were reduced in the modified model by considering the
characteristics of formation of lightweight concrete cracks. The proposed model is approximated
by a three-curve diagram. The rising part of the curve describes the elastic behavior of concrete
before cracking. The horizontal and descending parts of the curve describe the stages of formation
and development of cracks, respectively.

4. The adequacy of results obtained by design code techniques and numerical modeling method was
verified by employing experimental data of reinforced lightweight aggregate concrete elements
published in the literature. The data sample consisted of 51 flexural elements obtained from five
different test programs. Numerical analysis of experimental beams was performed using the
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nonlinear finite element software ATENA and the constitutive model proposed by the authors to
model the behavior of the cracked tensile concrete.

5. A comparison of theoretical and experimental results revealed that the most accurate calculation
results were obtained by using the numerical model. At the service load level (Mser = 0.6MRm,
where MRm is the theoretical average bearing bending moment calculated by EC2), the mean
value of the relative curvature (κth/κexp) obtained by using the numerical model was 0.973, and the
standard deviation was 0.093. By using the EC2 standard, the mean value of the relative curvature
κth/κexp was 0.857, and the standard deviation was 0.092. The mean and standard deviation
values of 0.871 and 0.118, respectively, were obtained by using the ACI standard method. The
comparative analysis shows that EC2 and ACI code methods produced predictions that were
too stiff.

6. The influence of the reinforcement percentage ρR, concrete density ρ, compressive strength of
concrete, flcm, and shrinkage deformation εshr has little effect on the mean curvatures predicted by
the code and numerical methods. There is a general tendency that the accuracy of the methods
decreases with the rise in density and the increase in free shrinkage strain. Comparison of results
demonstrates that in all cases the proposed approach gives the most accurate predictions of mean
normalized curvature.

7. In the future, the proposed constitutive model of lightweight aggregate concrete together with
numerical finite element algorithms can be used as a reliable tool for improving the design code
techniques or for adequate numerical modeling of reinforced lightweight aggregate concrete
elements under short-term loading.
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