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Abstract: Understanding the mechanism of hydrogen embrittlement (HE) of austenitic steels and
developing an effective strategy to improve resistance to HE are of great concern but challenging.
In this work, first-principles studies were performed to investigate the HE mechanism and the
improved resistance of Al-containing austenite to HE. Our results demonstrate that interstitial
hydrogen atoms have different site preferences in Al-free and Al-containing austenites. The calculated
binding energies and diffusion barriers of interstitial hydrogen atoms in Al-containing austenite are
remarkably higher than those in Al-free austenite, indicating that the presence of Al is more favorable
for reducing hydrogen mobility. In Al-free austenite, interstitial hydrogen atoms caused a remarkable
increase in lattice compressive stress and a distinct decrease in bulk, shear, and Young’s moduli.
Whereas in Al-containing austenite, the lattice compressive stress and the mechanical deterioration
induced by interstitial hydrogen atoms were effectively suppressed.
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1. Introduction

Hydrogen embrittlement (HE) effect on the mechanical properties of metallic alloys has attracted
enormous research attention and has become a popular issue in industrial applications [1–5]. It has
been reported that a large variety of damages to the metallic materials are caused by HE, including
stress corrosion cracking and H-induced delayed cracking. These usually lead to a significant reduction
of the mechanical properties of alloy materials [6–8]. Twinning-induced plasticity (TWIP) steel, which
has typical compositions of austenite, is currently one of the most attractive materials for extensive
applications in the automotive industry. Due to the deformation twinning of face-centered cubic (FCC)
structure [3], TWIP steel has ultimate strength (>1000 MPa) and superior tensile elongation (elongation
to failure of >50%) [9]. However, significant deterioration in its elongation and ductility can be induced
by hydrogen-charging experiments. In situ electron channeling contrast imaging of Fe-Mn-C TWIP
steel has revealed that hydrogen-assisted cracking initiates at both grain boundaries and deformation
twins, the stress concentration at the tip of deformation twins plays an important role in HE [10].

Several attempts have been made to elucidate the mechanism of deterioration of mechanical
properties caused by HE. H-enhanced decohesion (HEDE) [11] and H-enhanced local plasticity
(HELP) [12–14] are two popular mechanisms concerning HE, but many contradictory observations
indicate the uncertainty of them [15,16]. Based on a large-scale molecular dynamics study, hydrogen
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accumulation at the crack tip is deemed to be the reason for the transition from ductile to brittle, and a
hydrogen-triggered ductile-to-brittle transition mechanism has been proposed by Curtin et al. [17].

To reduce the unfavorable effect caused by HE, many strategies such as adjusting grain size,
forming alloy protective coating and addition of some metallic elements have been developed [18–23].
Among them, Al addition was proved to be a promising strategy of improving the resistance of TWIP
steel to HE [24–26], and understanding of the mechanism underpinning it has attracted great research
interests. Song et al. have found that the resistance of TWIP steels to HE can be effectively improved
by Al addition at high strain amplitude via preventing intergranular cracking, whereas at low-strain
amplitude the initiation of fatigue cracks was promoted by Al addition [27]. In other work, the possible
reason for preventing intergranular cracking was described as the low hydrogen-absorption ability of
Al-containing TWIP steels [28,29], but thermal desorption spectroscopy analysis yielded contradictory
conclusions, which suggested that the amount of hydrogen absorbed in Al-containing steel was greater
than that in Al-free steel [30]. A first-principles calculation revealed that Al atoms could cause a
localized dilation in TWIP steel, this is favorable for hydrogen absorption and trapping, which limits
hydrogen diffusion in TWIP steel. [31].

In this work, first-principles studies have been performed to explore the HE mechanism and the
improved resistance of Al-containing austenite to HE. Firstly, the structures of interstitial compounds
between hydrogen atoms and austenite, with a special focus on interstitial site preference of hydrogen
atoms, have been investigated. Secondly, the effects of interstitial hydrogen on lattice compressive
stress and elastic constants of austenitic steel were investigated. Finally, the HE mechanism of austenitic
steel and the relationship between improved resistance to HE and Al addition were discussed.

2. Computational Methods

In this work, TWIP steel was simulated by using face-centered cubic (FCC) structure since it has
typical compositions of austenite [5,31], and Fe4 and Fe3Al1 unit cells were selected to study interstitial
site preference of hydrogen atoms in Al-free TWIP steel and Al-containing TWIP steel, respectively
(Figure 1a,b). First-principles calculations were implemented using the Cambridge serial total energy
package (CASTEP), density functional theory (DFT) [32] within generalized gradient approximation
(GGA) of the Perdew–Burke–Ernzerhof (PBE) functional [33] was used to consider electron exchange
and correlation. Interactions between the core region and valence electrons were described using the
ultrasoft pseudopotentials (USP) [34] with a plane wave basis set cutoff energy of 400 eV. The equilibrium
geometries were determined by performing optimization with cell parameters and atomic coordinates
fully relaxed using the Quasi-Newton method with a Broyden–Fletcher–Goldfarb–Shannon (BFGS)
update of the Hessian [35], a 14 × 14 × 14 k-point Γ-centered Monkhorst-Pack grid was selected to
sample the Brillouin zone. The complete linear synchronous transit/quadratic synchronous transit
(LST/QST) method [36] was employed to search the transition states (TS), which were confirmed
by the nudged elastic band method [37]. Furthermore, a 3 × 3 × 3 supercell of FCC structures for
Al-containing austenite (Fe106Al2, Figure 1c), in which the theoretical Al content (1.8 wt.%) approaches
the experimental value (less than 2 wt.%), was selected to simulate the Al-containing TWIP steel
materials in actual situation to calculate the elastic constants, and a 3 × 3 × 3 supercell of Al-free
austenite (Fe108) was also studied for comparison.
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Figure 1. The face-centered cubic (FCC) unit cell of Al-free austenite Fe4 (a), Al-containing austenite 
Fe3Al1 (b), 3 × 3 × 3 supercell of FCC structures for Al-containing austenite (c), the interstitial sites in 
Al-free austenite (d) and Al-containing austenite (e). 

Many magnetic states have been used to simulate austenite in previous works. Nonmagnetic 
(NM) state was applied to investigate the interaction between aluminum and hydrogen in TWIP steel 
and the effect of carbon on the stacking fault energy of Fe–C alloys [31,38]. The paramagnetic state 
was used to study the vacancy formation energy in iron, and excellent agreement was obtained 
between theory and experiment [39]. Antiferromagnetic double layer (AFMD) structure gives an 
agreeable result of thermal expansion with experimental findings, but increasing temperature 
deteriorates the agreement [40]. Generally, FCC Fe is experimentally found to be paramagnetic at 
ambient temperature, but the nonmagnetic (NM) phase such as ferrite magnetic low spin (FM–LS) 
phase often degenerates with the paramagnetic phase [41]. A comparative study showed only a small 
energy difference between ferromagnetic (FM) state and NM state [42]. Since the structures in 
different magnetic states are very close in energy, the maximum energy difference is only 0.062 
eV/atom [43], NM and FM states are both taken into account when we performed first-principles 
studies in this work.  

To investigate the site preference of interstitial hydrogen atoms in Al-free and Al-containing 
austenites, the binding energies (ΔHbind) were calculated as the energy difference between the sum of 
austenite and hydrogen atoms and the interstitial compound according to the following equation, 
ΔHbind = H(austenite) + n*H(H-atom) – H(interstitial), where H(austenite), H(H-atom), and 
H(interstitial) are the total energies of the primitive cell of austenite, H-atom, and interstitial 
compound, respectively. n is the number of interstitial hydrogen atoms included in the austenite unit 
cell. The mean compressive stress at the unit cell surface, which is derived from the potential 
components of the virial theorem, was calculated to explore the influence of interstitial hydrogen 
atom on the lattice compressive stress in Al-free and Al-containing austenites.  

The theoretical elastic constants were calculated from the energy variation by applying small 
strains to the equilibrium configurations of Al-free and Al-containing supercells in NM states 
according to the method described in published work [44]. The bulk modulus (B) and shear modulus 
(G) have been derived from the three independent elastic constants, C11, C12, and C44 according to the 
formulas [45],  

BV = BR = (C11 + 2C12)/3  

GV = (C11 − C12 + 3C44)/5, GR = 5(C11 − C12)C44/[4C44 + 3(C11 − C12)]  

B = (BV + BR)/2, G = (GV + GR)/2  

The Young’s modulus E was obtained by the following formulas [45,46]. 

E = 9BG/(3B + G)  

BV, BR, GV, and GR are the Voigt bulk modulus, Reuss bulk modulus, Voigt shear modulus and Reuss 
shear modulus, respectively.  

Figure 1. The face-centered cubic (FCC) unit cell of Al-free austenite Fe4 (a), Al-containing austenite
Fe3Al1 (b), 3 × 3 × 3 supercell of FCC structures for Al-containing austenite (c), the interstitial sites in
Al-free austenite (d) and Al-containing austenite (e).

Many magnetic states have been used to simulate austenite in previous works. Nonmagnetic
(NM) state was applied to investigate the interaction between aluminum and hydrogen in TWIP steel
and the effect of carbon on the stacking fault energy of Fe–C alloys [31,38]. The paramagnetic state was
used to study the vacancy formation energy in iron, and excellent agreement was obtained between
theory and experiment [39]. Antiferromagnetic double layer (AFMD) structure gives an agreeable
result of thermal expansion with experimental findings, but increasing temperature deteriorates the
agreement [40]. Generally, FCC Fe is experimentally found to be paramagnetic at ambient temperature,
but the nonmagnetic (NM) phase such as ferrite magnetic low spin (FM–LS) phase often degenerates
with the paramagnetic phase [41]. A comparative study showed only a small energy difference between
ferromagnetic (FM) state and NM state [42]. Since the structures in different magnetic states are very
close in energy, the maximum energy difference is only 0.062 eV/atom [43], NM and FM states are both
taken into account when we performed first-principles studies in this work.

To investigate the site preference of interstitial hydrogen atoms in Al-free and Al-containing
austenites, the binding energies (∆Hbind) were calculated as the energy difference between the
sum of austenite and hydrogen atoms and the interstitial compound according to the following
equation, ∆Hbind = H(austenite) + n*H(H-atom) – H(interstitial), where H(austenite), H(H-atom),
and H(interstitial) are the total energies of the primitive cell of austenite, H-atom, and interstitial
compound, respectively. n is the number of interstitial hydrogen atoms included in the austenite
unit cell. The mean compressive stress at the unit cell surface, which is derived from the potential
components of the virial theorem, was calculated to explore the influence of interstitial hydrogen atom
on the lattice compressive stress in Al-free and Al-containing austenites.

The theoretical elastic constants were calculated from the energy variation by applying small
strains to the equilibrium configurations of Al-free and Al-containing supercells in NM states according
to the method described in published work [44]. The bulk modulus (B) and shear modulus (G)
have been derived from the three independent elastic constants, C11, C12, and C44 according to the
formulas [45],

BV = BR = (C11 + 2C12)/3

GV = (C11 − C12 + 3C44)/5, GR = 5(C11 − C12)C44/[4C44 + 3(C11 − C12)]

B = (BV + BR)/2, G = (GV + GR)/2

The Young’s modulus E was obtained by the following formulas [45,46].

E = 9BG/(3B + G)

BV, BR, GV, and GR are the Voigt bulk modulus, Reuss bulk modulus, Voigt shear modulus and Reuss
shear modulus, respectively.
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3. Results and Discussion

3.1. Sites Preference of Interstitial Hydrogen Atoms in Austenite and Al-Containing Austenite

The lattice parameter for NM austenite was calculated to be 3.45 Å, which is consistent with the
reported value (3.44–3.45 Å) [31,40]. While for FM austenite, the calculated lattice parameter was 3.91 Å,
slightly more than the calculated 3.64 Å and the experimentally observed 3.65 Å. For Al-containing
austenite, the FCC lattice undergoes a somewhat orthorhombic distortion in both NM and FM states.

Two kinds of interstitial sites, i.e., octahedral sites (O site) and tetrahedral sites (T site) (displayed in
Figure 1d), were reported to be occupied by hydrogen atoms in austenite [47]. Here, the site preference
of interstitial hydrogen atoms in Al-free and Al-containing austenites has been investigated based on
the total energies of interstitial compounds (Table 1). In NM state, hydrogen atom prefers to occupy the
octahedral site (O site), and the interstitial compound with hydrogen atoms at the O interstitial site is
energetically lower than that with the hydrogen atoms at the T interstitial site by 0.38 eV. The situation
in FM state is opposite to that in NM state, the interstitial compound with hydrogen atom occupying
the T interstitial site is more stable, with the energy difference of only 0.06 eV. This shows that the
magnetic state distinctly affects the priority of the occupational site of the interstitial hydrogen atoms
in the Al-free austenite.

Table 1. The preferential occupying site of interstitial hydrogen atoms in Al-free and Al-containing
austenites and the binding energies (eV) between austenites and interstitial hydrogen atoms.

Magnetic State
Al-Free Austenite Al-Containing Austenite

NM State FM State NM State FM State

1 H interstitial complex O site
3.24 eV

T site
2.44 eV

O’ site
3.85 eV

O’ site
2.99 eV

2 H interstitial complex O and T site
5.48 eV

both at T site
5.36 eV

O and O’ site
6.81 eV

both at T site
5.50 eV

In Al-containing austenite, hydrogen atoms probably occupy the three interstitial sites, i.e.,
the tetrahedral site (T site) and two octahedral sites differentiated by ligand atoms (O and O’ site)
(Figure 1e). Our results demonstrate that the interstitial compound with the hydrogen atoms at the T
interstitial site is unstable in NM state, relaxation of this structure leads to hydrogen atoms ultimately
occupying the O’ interstitial site, thus forming a more stable interstitial compound as compared to that
with the hydrogen atoms at the O interstitial site. The energy difference between these two interstitial
compounds is approximately 0.83 eV. In FM state, hydrogen atoms can occupy T, O, and O’ sites.
By comparison, the configuration with hydrogen at the O’ interstitial site is the most stable; this is the
same as the case in NM state, indicating that the magnetic state shows negligible influence on the site
preference of interstitial hydrogen in Al-containing austenite.

The interstitial compounds including two hydrogen atoms were also investigated, and a wide
variety of configurations were displayed in Figures A1 and A2 (in Appendix A). In NM state,
the interstitial compound with the hydrogen atoms at O and T interstitial sites is the most stable for
austenite (Figure 2a). For the Al-containing austenite, the configuration with two hydrogen atoms
at the octahedral sites (O and O’ site) is the most stable (Figure 2b). In FM state, the most stable
configurations are that with two hydrogen atoms at tetrahedral sites (T site) for both Al-free and
Al-containing austenites (Figure 2c,d).
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Figure 2. The atomic structures of the most stable interstitial compounds of Al-free and Al-containing 
austenites including two hydrogen atoms in NM state (a,b) and FM state (c,d). 
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hydrogen atoms in Al-free austenite is calculated to be 5.48 eV, which is also significantly lower than 
that in Al-containing austenite (6.81 eV). In FM state, the binding energies between one hydrogen 
atom with Al-free and Al-containing austenites are 2.44 and 2.99 eV, respectively. When two 
hydrogen atoms are included, the corresponding binding energies are 5.36 and 5.50 eV, respectively. 
The higher binding energies indicate that hydrogen atoms can be fixed more stably by Al-containing 
austenite. 

Doping heteroatoms is a promising strategy to fabricate the hydrogen trap for controlling 
hydrogen diffusion in metallic material. Herein, the interstitial hydrogen diffusion barriers in Al-free 
and Al-containing austenites were calculated to investigate the effect of Al atoms on the interstitial 
hydrogen diffusion capability. Figure 3 displays the energetic profiles of the hydrogen diffusion 
process. In the NM state, the transfer of interstitial hydrogen from the most preferential octahedral 
site to the tetrahedral site has the barrier height of 0.64 eV for Al-free austenite. For Al-containing 
austenite, the barrier height of hydrogen atom transfer from the most preferential O’ interstitial site 
to the O interstitial site is 1.31 eV. In FM state, the barrier of hydrogen transfer in Al-free austenite 
from the most preferential T interstitial site to the O interstitial site is 0.27 eV. In Al-containing 
austenite, the hydrogen transfer from O’ interstitial site to O interstitial site has the barrier height of 
0.66 eV. The diffusion barrier in Al-containing austenite is distinctly higher than that in Al-free 
austenite indicating that Al atoms play a very important role in decreasing hydrogen mobility; Al-
containing austenite is a better trap for the interstitial hydrogen atoms. This result is consistent with 
that reported in previous works [31]. 
  

Figure 2. The atomic structures of the most stable interstitial compounds of Al-free and Al-containing
austenites including two hydrogen atoms in NM state (a,b) and FM state (c,d).

3.2. Binding Energies and Diffusion Barrier of Interstitial Hydrogen Atom in Al-Free and
Al-Containing Austenites

The binding energies between austenite and interstitial hydrogen atoms have been calculated to
understand the effect of Al addition on the mobility of interstitial hydrogen atoms (Table 1). In NM
states, the binding energy of 3.24 eV in Al-free austenite (preferential O site) is remarkably lower than
that of 3.85 eV in Al-containing austenite (preferential O’ site). The binding energy with two hydrogen
atoms in Al-free austenite is calculated to be 5.48 eV, which is also significantly lower than that in
Al-containing austenite (6.81 eV). In FM state, the binding energies between one hydrogen atom with
Al-free and Al-containing austenites are 2.44 and 2.99 eV, respectively. When two hydrogen atoms are
included, the corresponding binding energies are 5.36 and 5.50 eV, respectively. The higher binding
energies indicate that hydrogen atoms can be fixed more stably by Al-containing austenite.

Doping heteroatoms is a promising strategy to fabricate the hydrogen trap for controlling
hydrogen diffusion in metallic material. Herein, the interstitial hydrogen diffusion barriers in Al-free
and Al-containing austenites were calculated to investigate the effect of Al atoms on the interstitial
hydrogen diffusion capability. Figure 3 displays the energetic profiles of the hydrogen diffusion process.
In the NM state, the transfer of interstitial hydrogen from the most preferential octahedral site to the
tetrahedral site has the barrier height of 0.64 eV for Al-free austenite. For Al-containing austenite,
the barrier height of hydrogen atom transfer from the most preferential O’ interstitial site to the O
interstitial site is 1.31 eV. In FM state, the barrier of hydrogen transfer in Al-free austenite from the most
preferential T interstitial site to the O interstitial site is 0.27 eV. In Al-containing austenite, the hydrogen
transfer from O’ interstitial site to O interstitial site has the barrier height of 0.66 eV. The diffusion
barrier in Al-containing austenite is distinctly higher than that in Al-free austenite indicating that
Al atoms play a very important role in decreasing hydrogen mobility; Al-containing austenite is a
better trap for the interstitial hydrogen atoms. This result is consistent with that reported in previous
works [31].
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Figure 4 shows the lattice compressive stress induced by interstitial hydrogen atoms in Al-free 
and Al-containing austenites. In NM state, the compressive stress increases from approximately 0.0 
GPa in Al-free austenite to 15.8 GPa with one hydrogen atom occupying the octahedral interstitial 
site and then increases to 40.1 GPa with two interstitial hydrogen atoms respectively occupying 
octahedral and tetrahedral interstitial sites. For Al-containing austenite, the compressive stress 
increases from approximately 0.0 GPa to 10.4 GPa with one interstitial hydrogen atom being 
included. When two hydrogen atoms are included, the compressive stress increases to 21.6 GPa. A 
similar trend is also presented in FM state, with one hydrogen atom occupying interstitial site in Al-
free austenite, the compressive stress increases from 0.0 GPa to 11.1 GPa and then increases to 20.8 
GPa for the case of two hydrogen atoms occupying interstitial sites. For Al-containing austenite, the 
compressive stress increases from 0.0 GPa to 6.9 GPa and 18.0 GPa, corresponding to one and two 
interstitial hydrogen atoms contained in the unit cell, respectively. As can be concluded from Figure 
4, more interstitial hydrogen atoms resulted in a greater increase in compressive stress. Both in NM 
and in the FM state, Al atoms suppressed the increase in lattice compressive stress caused by 
interstitial hydrogen atoms, even though the effect of Al in FM state is not as much as that in NM 
state when more than one hydrogen atom exist at the interstitial site. 

Figure 3. The calculated energetic profiles for interstitial hydrogen diffusion process in Al-free and
Al-containing austenites in NM state (a) and FM state (b).

3.3. Lattice Compressive Stress of Austenite and Al-Containing Austenite Caused by Osmotic Hydrogen

Previous works concerning HE mainly emphasized the effect of hydrogen on crack, dislocation,
or other defects in steel, but little attention has been paid to the lattice stress induced by interstitial
hydrogen atoms, which might be the origin of the remarkable reduction of mechanical properties of
iron materials.

As shown in Table 2, the interstitial hydrogen atoms have caused a distinct increase in lattice
vectors and volumes of Fe4 and Fe3Al1 unit cells. However, the lattice vectors and volumes negligibly
increase with existence of interstitial hydrogen atom when the Fe4 and Fe3Al1 unit cells are placed at
the center of a 3 × 3 × 3 supercell (labeled as Fe4@Fe108 and Fe3Al1@Fe106Al2 in Table 2), indicating
that unit cell expansion induced by interstitial hydrogen atom has been remarkably confined by the
surrounding unit cells.

Table 2. The lattice parameters and volume of Fe4 and Fe3Al1 nit cells.

Fe4 Fe4H Fe3Al1 Fe3Al1H Fe4@Fe108 Fe4H@Fe108 Fe3Al1@Fe106Al2 Fe3Al1H@Fe106Al2

Lattice
Vectors

(Å)

a 3.446 3.502 3.506 3.585 3.437 3.458 3.435 3.553
b 3.446 3.502 3.504 3.587 3.434 3.458 3.549 3.554
c 3.446 3.502 3.604 3.590 3.454 3.458 3.550 3.523

Cell volume (Å3) 40.92 42.95 44.29 46.17 40.77 41.35 43.28 44.48

Figure 4 shows the lattice compressive stress induced by interstitial hydrogen atoms in Al-free and
Al-containing austenites. In NM state, the compressive stress increases from approximately 0.0 GPa in
Al-free austenite to 15.8 GPa with one hydrogen atom occupying the octahedral interstitial site and
then increases to 40.1 GPa with two interstitial hydrogen atoms respectively occupying octahedral
and tetrahedral interstitial sites. For Al-containing austenite, the compressive stress increases from
approximately 0.0 GPa to 10.4 GPa with one interstitial hydrogen atom being included. When two
hydrogen atoms are included, the compressive stress increases to 21.6 GPa. A similar trend is
also presented in FM state, with one hydrogen atom occupying interstitial site in Al-free austenite,
the compressive stress increases from 0.0 GPa to 11.1 GPa and then increases to 20.8 GPa for the case of
two hydrogen atoms occupying interstitial sites. For Al-containing austenite, the compressive stress
increases from 0.0 GPa to 6.9 GPa and 18.0 GPa, corresponding to one and two interstitial hydrogen
atoms contained in the unit cell, respectively. As can be concluded from Figure 4, more interstitial
hydrogen atoms resulted in a greater increase in compressive stress. Both in NM and in the FM state,
Al atoms suppressed the increase in lattice compressive stress caused by interstitial hydrogen atoms,
even though the effect of Al in FM state is not as much as that in NM state when more than one
hydrogen atom exist at the interstitial site.
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3.4. Elastic Constants and Mechanical Properties 

Resonant ultrasound spectroscopic techniques, nanoindentation experiment and ab initio 
calculations are the common pathways usually used to determine the elastic constants of solid such 
as TWIP steel [48–50]. Herein, a supercell (3 × 3 × 3) with Al-containing unit cell at the center [Fe106Al2, 
approximately 1.8 wt.% Al, Figure 5a,c] was selected to perform the first-principles calculations to 
investigate the elastic constants in NM state, and a supercell (3 × 3 × 3) of pure Fe austenite [Fe108, 
Figure 5b,d] was studied for comparison. 

 

Figure 5. The atomic structure of Fe106Al2 (a), Fe108 (b), Fe106Al2H (c), and Fe108H (d). 

The calculated elastic constants Cij, bulk modulus B, shear modulus G and Young’s modulus E 
of Al-free and Al-containing austenites were listed in Table 3. For a stable cubic structure, three 
independent elastic constants, i.e., C11, C12, and C44, should satisfy the Born stability criteria: C11 > C12, 
C44 > 0, and C11 + 2C12 > 0. Table 3 shows that the calculated elastic constants of Al-free austenite and 
Al-containing austenite both satisfy the Born stability criteria regardless of whether interstitial 
hydrogen is included or not, indicating that these investigated structures in NM state are all 
mechanically stable. The calculated C11, C12, and C44 of Fe108 are 473.9, 230.1 and 285.6 GPa, 
respectively. These values are in good agreement with the elastic constants (C11, C12, and C44 were 484, 
234 and 287 GPa, respectively) reported in theoretical work [51].  

Figure 4. Schematic representation of the change in compressive stress of Al-free and Al-containing
austenites in the NM state (a) and the FM state (b).

3.4. Elastic Constants and Mechanical Properties

Resonant ultrasound spectroscopic techniques, nanoindentation experiment and ab initio
calculations are the common pathways usually used to determine the elastic constants of solid
such as TWIP steel [48–50]. Herein, a supercell (3 × 3 × 3) with Al-containing unit cell at the
center [Fe106Al2, approximately 1.8 wt.% Al, Figure 5a,c] was selected to perform the first-principles
calculations to investigate the elastic constants in NM state, and a supercell (3 × 3 × 3) of pure Fe
austenite [Fe108, Figure 5b,d] was studied for comparison.
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The calculated elastic constants Cij, bulk modulus B, shear modulus G and Young’s modulus
E of Al-free and Al-containing austenites were listed in Table 3. For a stable cubic structure,
three independent elastic constants, i.e., C11, C12, and C44, should satisfy the Born stability criteria:
C11 > C12, C44 > 0, and C11 + 2C12 > 0. Table 3 shows that the calculated elastic constants of Al-free
austenite and Al-containing austenite both satisfy the Born stability criteria regardless of whether
interstitial hydrogen is included or not, indicating that these investigated structures in NM state
are all mechanically stable. The calculated C11, C12, and C44 of Fe108 are 473.9, 230.1 and 285.6 GPa,
respectively. These values are in good agreement with the elastic constants (C11, C12, and C44 were 484,
234 and 287 GPa, respectively) reported in theoretical work [51].
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Table 3. The calculated elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E
(in GPa) of Fe108, Fe108H, Fe106Al2, and Fe106Al2H in NM state.

Elastic Constants Cij (GPa) Bulk Modulus
B (GPa)

Shear Modulus G (GPa) Young’s Modulus
E (GPa)C11 C12 C44 GV GR G

Fe108 473.9 230.1 285.6 311.3 220.1 185.8 203.0 500.2
Fe108H 454.0 224.7 281.0 301.2 214.4 177.8 196.1 483.4

Fe106Al2 440.3 225.0 255.1 296.8 196.1 164.8 180.5 450.1
Fe106Al2H 433.7 222.8 261.6 293.1 199.1 164.3 181.7 451.8

Bulk modulus B, shear modulus G, and Young’s modulus E (in GPa) were also calculated to
study the influence of interstitial hydrogen atom (Table 3). The bulk, shear, and Young’s moduli
of Al-free austenite were 311.3, 203.0, and 500.2 GPa, respectively. The calculated shear modulus
GV and GR of Al-free austenite are 220.1 and 185.8 GPa, respectively. These are very close to the
reported values in Asker’s work [52]. When hydrogen atoms are included, the bulk, shear, and Young’s
moduli decrease to 301.2, 196.1 and 483.4 GPa, respectively. These results indicate that the interstitial
hydrogen atom induces a distinct decrease in stiffness. This distinct decrease caused by interstitial
hydrogen was also observed in nanoindentation experiments for TWIP steels [53,54]. For Al-containing
austenite, the calculated bulk, shear, and Young’s moduli are 296.8, 180.5, and 450.1 GPa, respectively.
When interstitial hydrogen atom occupies the octahedral interstitial site, the bulk, shear, and Young’s
moduli are 293.1, 181.7, and 451.8 GPa, respectively. Compared with that in Al-free austenite, the change
in elastic moduli of Al-containing austenite is negligible, indicative of effective suppression of stiffness
deterioration. This phenomenon was also confirmed by experimental observation in previous work [54].
These results about elastic constants demonstrated that Al addition effectively retarded the decrease in
the stiffness of austenite steel. The possible reason for this is that interstitial hydrogen atoms can be well
accommodated by Al-containing austenite which has a larger unit cell size and better hydrogen-trap
capability, thus causing relatively low compressive stress in austenite and a slight decrease in the
elastic moduli of steel material.

4. Conclusions

In summary, occupying site preference, binding energies and diffusion barrier of interstitial
hydrogen atoms in austenites, lattice compressive stress caused by interstitial hydrogen atoms,
and elastic constants of bulk austenite steel were theoretically studied at the GGA-PBE/USP level of
theory to understand the HE mechanism and the improved resistance of Al-containing austenite to HE.

Our results demonstrate that hydrogen atoms show interstitial site preference both in Al-free
austenite and in Al-containing austenite. In Al-containing austenite interstitial hydrogen atoms have
higher binding energies and a diffusion barrier, indicating that Al addition favors a decrease in
hydrogen mobility and limits hydrogen diffusion in austenite steel. In both Al-free austenite and
Al-containing austenite, interstitial hydrogen atoms have induced a remarkable increase in lattice
compressive stress, but the influence in Al-containing austenite is distinctly slighter than that in Al-free
austenite. The calculated elastic constants reveal that interstitial hydrogen atoms induce a distinct
decrease in bulk, shear, and Young’s moduli of Al-free austenite, whereas it does not show remarkable
influence on the Al-containing austenite, this demonstrates that the hydrogen embrittlement effect has
been remarkably alleviated by the presence of Al atom in austenitic steel.
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