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Abstract: It is a conventional practice to adopt Weibull statistics with a modulus of 4 for characterizing
the statistical distribution of cleavage fracture toughness of ferritic steels, albeit based on a rather
weak physical justification. In this study, a statistical model for cleavage fracture toughness of ferritic
steels is proposed according to a new local approach model. The model suggests that there exists
a unique correlation of the cumulative failure probability, fracture toughness and yield strength.
This correlation is validated by the Euro fracture toughness dataset for 1CT specimens at four different
temperatures, which deviates from the Weibull statistical model with a modulus of four.
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1. Introduction

Recently there have been a lot of studies on fatigue mechanism and modeling of fracture behavior
of engineering materials using multiscale and probabilistic approaches [1–9]. During the long-term
service of structures, the structural integrity should be performed using different methods, e.g.,
deterministic and probabilistic methods [1–7]. The different ageing mechanism, e.g., fracture [1,4,6],
fatigue [2,3,5,7], and failure modes should also be studied and advanced crack detection setups
developed [8]. In this paper, fracture is considered as the ageing mechanism.

Ferritic steels are commonly used for fabricating nuclear reactor pressure vessels of extremely
stringent structural integrity requirement. However, owing to their body center cubic crystalline
structures, ferritic steels are susceptible to cleavage fracture. The random distribution of carbides and
other cleavage nuclei in steels causes large dispersion and significant size effect of cleavage fracture
toughness, which calls for a statistical approach to cleavage fracture toughness assessment Lei [9]
presented a comprehensive critical review on the statistical models of cleavage fracture toughness. In
brief, among numerous studies, the following four major approaches are noteworthy:

• The empirical description of cleavage fracture toughness using Weibull statistics pioneered by
Landes and colleagues [10–12].

• The Beremin model [13,14].
• The “Master Curve” method [15–17].
• The Prometey Unified Curve model [16,18,19].
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As a common feature of these four approaches, Weibull statistics is commonly adopted
for cleavage fracture toughness distribution. Initially, Weibull statistics was used for empirical
description [8–12]. Later on, the other three approaches concluded that Weibull distribution of cleavage
fracture toughness is a derivative of the local approach to cleavage fracture [13–19].

Landes and co-workers [10–12] adopted the Weibull statistics to fit cleavage fracture toughness
data in terms of Jc, the critical J-integral at cleavage fracture, or KJc, the critical stress intensity factor at
cleavage fracture, as follows

P = 1− exp
[
−
(

JC − Jmin
J0

)mJ
]

(1)

P = 1− exp
[
−
(

KJc − Kmin

K0

)mK
]

(2)

where P is failure probability, Jmin and Kmin are the threshold values, J0 and K0 are scale parameters,
mJ and mK are Weibull modulus. Note that he probabilities in Equations (1) and (2) are the same but
only in terms of different parameters. When the two-parameter Weibull model (Jmin = Kmin = 0) was
adopted, mJ ≈ 5 or mK ≈ 10 was obtained in [10]; while with the three-parameter Weibull model,
mK = 0.9–4.7 and Kmin = 0–109 MPa

√
m were obtained for different data sets [11,12]. Equations (1)

and (2) are purely empirical and in fact conflict to each other. As analyzed in detail in Reference [20],
due to the following relationship between KJc and Jc,

KJc =
√

EJc/(1− ν2) (3)

where the Weibull failure probabilities take the form of

P = 1− exp
[
−
(

JC − Jmin
J0

)mJ
]
⇒ P = 1− exp

[
−
(

K2
Jc − K2

min

K2
0

)mJ
]

(4)

P = 1− exp
[
−
(

KJc − Kmin

K0

)mK
]
⇒ P = 1− exp

[
−
(√

Jc −
√

Jmin√
J0

)mK
]

(5)

Equations (4) and (5) indicate that if Jc is described by a three-parameter Weibull distribution,
the quantity K2

Jc, instead of KJc, will follow the same distribution; while if KJc is described by a
three-parameter Weibull distribution, the quantity

√
Jc, instead of Jc, will follow the same distribution.

Only when both KJc and Jc are described by two-parameter Weibull statistics, there is mK = 2mJ via
the following relationship:

P = 1− exp
[
−
(

JC
J0

)mJ
]
⇒ P = 1− exp

[
−
(

K2
Jc

K2
0

)mJ
]
= 1− exp

[
−
(

KJc

K0

)mK
]

(6)

In view of the shortcomings in using the empirical Weibull distributions in Equations (1) and (2)
for cleavage fracture toughness characterization, there is a necessity to rationalize a cleavage fracture
toughness model by pursuing a statistical approach to the inherently random occurrence of cleavage
fracture and considering the fundamental role of cleavage mechanisms. The Beremin model was
proposed as below [13,14]:

P = 1− exp

[
−
(∫

Vpl

σm
1 dV/V0

)
/σm

0

]
= 1− exp

[
−(σW/σ0)

m] (7)

σW =

(∫
Vpl

σm
1 dV/V0

)1/m

(8)
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where m is Weibull modulus, σ0 is scale parameter, σW is the Weibull stress, Vpl is the volume of plastic
deformation zone, V0 is the mean volume occupied by each micro-crack, σ1 is the maximum tensile
principal stress. Specific to small scale yielding for a mode I crack problem, Equation (7) led to the
two-parameter Weibull distribution of KIc with a modulus of 4 [13,14]:

P = 1− exp

(
−

B·K4
Jc·σm−4

ys ·Cm,n

V0·σm
0

)
= 1− exp

[
−
(

KJc

K0

)4
]

(9)

K0 =

(
V0σm

0

Cm,nBσm−4
ys

)1/4

(10)

Here Cm,n is a numerical coefficient, σys is yield stress, B is specimen thickness.
For large scale yielding, the situation becomes more complex. Equation (2) is needed to calculate

the Weibull stress σW at each KJc so as to establish the σW − P and KJc − P correlations numerically.
As highlighted in Figure 1 [21–24], the Beremin model suffers from some fundamental defects,

leading to the invalidity of Equations (7) and (9). The necessary corrections to the Beremin model
are also provided to ensure the mathematical rigorousness and the physical compliance with the
five assumptions below: (1) The uniform spatial distribution of microcracks, (2) the weakest-link
postulate of brittle fracture, (3) plastic yielding as a prerequisite for cleavage fracture, (4) the maximum
tensile principal stress criterion for cleavage fracture, (5) the power-law distribution of microcrack size.
In Figure 1, the weakest link concept is not strictly followed as the above five assumptions are not met.
Derivation 1 and 2 are not valid because that Assumption 2 and 3 are not met. Derivation 3 is not valid
because assumption 3 is not met.

Using a methodology same as the Beremin model but with a more detailed analysis, Wallin and
co-workers [15–17] obtained the two-parameter Weibull model of fracture toughness that is essentially
the same as Equation (9). Considering that cleavage fracture should not occur at infinitesimal loading,
in the lack of any rigorous mathematical deduction, a threshold Kmin was arbitrarily introduced to
rewrite Equation (9) as below with a given thickness at a given temperature [15–17]:

P = 1− exp

[
−
(

KJc − Kmin

K0 − Kmin

)4
]

(11)

Equation (11) is usually called the Master Curve model for cleavage fracture toughness statistics.
The ASTM E 1921-11 testing standard sets Kmin = 20 MPa

√
m for all ferritic steels.

Since Equation (11) is based on the two-parameter Weibull model Equation (9), it lacks a
strict physical justification. A more detailed dissection of the model proposed by Wallin and
co-workers [15–17] is reported in [9]. The Prometey approach [16,18,19] includes two statistical
models for cleavage fracture. The simplified model assumes that only the microcrack nucleation
resistance σd is taken as a stochastic parameter while the microcrack propagation resistance S(εp) as
a function of local plastic strain εp is a deterministic one. The comprehensive model assumes both
the microcrack nucleation resistance σd and the microcrack propagation resistance S(εp) as stochastic
parameters. This approach led to a theoretical model of fracture toughness essentially identical to the
Beremin model Equation (9), although their experimental results fit better to the general two-parameter
Weibull model in Equation (2) with mK = 4–30 [18].

It is interesting to note that all the three models fall into the local approach methodology which
is based on the weakest link postulate and the understanding of the dominant microscopic cleavage
fracture mechanisms. But they all land on a two- or three- parameter Weibull statistics with a modulus
(mK) of 4 and fixed-value threshold (Kmin) to describe the statistical distribution of cleavage fracture
toughness (KIc). The minor difference is that Kmin = 0 for the Beremin model, while Kmin = 20 MPa

√
m

in the Master Curve approach and Kmin = 26 MPa
√

m in the Prometey Unified Curve model.
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In a series of previous work [9,21–23], it was revealed that the prevailing adoption of two-
or three-parameter Weibull distribution of cleavage fracture toughness with a modulus of 4 and
a fixed-value threshold independent of temperature and plastic constraint lacks a solid theoretical
foundation. Consequently, a new local approach model of cleavage fracture was proposed. This work
will characterize the statistics of cleavage fracture toughness based on a new local approach model of
cleavage fracture [9,21–25].
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This paper aims to statistically characterize cleavage fracture toughness of DIN 22NiMoCr37
according to a new local approach and develop a new “Master Curve” to describe the cleavage fracture
behavior using the local approach and probabilistic concepts.

2. A Statistical Model of Cleavage Fracture Toughness

According to the new local approach model for brittle fracture in References [9,21–25],
the cumulative failure probability is formulated as follows for a uniform spatial distribution of
microcracks:

P = 1− exp

{∫
Vpl

ln[1− p(V0)] · dV/V0

}
(12)

where p(V0) is the fracture probability of an elementary volume (V0) induced by an embedded
microcrack under an arbitrary stress state. Under the maximum tensile stress fracture criterion, when
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g(S), the probability density function of the microscopic cleavage fracture strength (S), takes the
three-parameter Weibull distribution,

g(S) =
m
σ0
·
(

S− σth
σ0

)m−1
· exp

[
−
(

S− σth
σ0

)m]
(13)

we get,

p(V0) =
∫ σ1

σ1,0

g(S)dS = 1− exp
[
−
(

σ1 − σ1,0

σ0

)m]
(14)

P = 1− exp

{
−
∫

Vpl

[
(σ1 − σ1,0)

m/σm
0
]
· dV/V0

}
= 1− exp

[
−(σW/σ0)

m] (15)

where σ1,0 is the maximum principal stress at initial yielding of a differential volume element dV,
σth is threshold stress and σth is σ1,0 to observe the precedence of plastic yielding over cleavage
fracture [9,21–25]. Note that in Equation (15), the following new definition of Weibull stress σW is
introduced

σW =

(∫
Vpl

(σ1 − σ1,0)
mdV/V0

)1/m

(16)

Equation (16) suggests that the new Weibull stress σW is affected by material constitutive
properties, specimen constraint effect, Weibull modulus m, and external load. The new local approach
has been validated for the statistical assessment of cleavage fracture in notched specimens [24–26].
For a notched specimen at a fixed temperature (T), the new Weibull stress σW only vary with m and
the nominal stress σN as that is,

σW(T = T1) = f (m, σN) (17)

Since Weibull modulus m is assumed as a temperature-independent material property, while the
yield stress σys strongly depends on temperature, Equation (17) is rewritten as [24–26] to consider
temperature effect:

σW
σys

=
σW(T)
σys(T)

= f
(

σN(T)
σys(T)

)
(18)

Equation (18) suggests that there exists a unique correlation (sometimes also called a “master
curve”) between the two normalized variables σW

σys
and σN

σys
at different temperatures. While it can be

difficult to obtain the analytical expression of function y = f (x), it is expected that f (x) is a non-linear
function and depends on specific notch geometry and loading mode. Substitution of Equation (18) in
Equation (15) leads to

P = 1− exp
[
−
(

σys

σ0

)m
f m
(

σN
σys

)]
(19)

Or

Y =
1

σys
·
{

ln
[

1
(1− P)

]} 1
m
=

1
σ0
· f
(

σN
σys

)
(20)

The studies [23–26] for both side edge notched prismatic specimens in bending and
circumferentially notched round specimens in tension have validated the expected correlation between

the compound parameters Y = 1
σys
·
{

ln
[

1
(1−P)

]} 1
m and X = σN

σys
at different temperatures and the

temperature indepdence of Weibull modulus m.
Now in this study, we further extend the new local approach model in Equation (15) to the case of

a pre-cracked specimen for evaluating cleavage fracture toughness. Equation (15) is rewritten as

P = 1− exp

[
−
(

σys

σ0

)m
·
(Vpl

V0

)
·
∫

Vpl

(
σ1 − σ1,0

σys

)m
· dV
Vpl

]
= 1− exp

[
−
(

σys

σ0

)m
·
(Vpl

V0

)
·φ(m)

]
(21)
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φ(m) =
∫

Vpl

(
σ1 − σ1,0

σys

)m
· dV

Vpl
(22)

Note that the compound parameter B
(
KJc/σys

)4 has the same dimension as the volume Vpl .
According to fracture mechanics, under small scale yielding, the following direct proportion exists,

Vpl ∝ B
(
KJc/σys

)4 (23)

However, under large scale yielding, Equation (23) is no longer valid. However, dimensional
consistency permits to express Vpl as a function of B

(
KJc/σys

)4,

Vpl

V0
= f

(
B
(
KJc/σys

)4/V0

)
(24)

According to Equation (24), so long as there is a non-linear correlation between
Vpl and B

(
KJc/σys

)4, the Weibull statistics of fracture toughness KJc with a fixed modulus of 4 does
not exist.

Substitution of Equation (24) in Equation (21) yields

P = 1− exp
[
−
(

σys

σ0

)m
· f
(

B
(
KJc/σys

)4/V0

)
·φ(m)

]
(25)

Or

m

√
Ln
[

1
(1− P)

]
/σys =

[
m
√

φ(m)/σ0

]
· m

√
f
(

B
(
KJc/σys

)4/V0

)
(26)

Equation (26) suggests that there is an inherent correlation between m

√
Ln
[

1
(1−P)

]
/σys and

B
(
KJc/σys

)4.
By now, the work derives a physical correlation between the two compound parameters

m

√
Ln
[

1
(1−P)

]
/σys and B

(
KJc/σys

)4 prior to the calibration of Weibull parameters (m, σ0) and φ(m)

in Equation (22). The method to calibrate Equation (15) has been developed in [23–25] for notched
specimens for determination of m and σ0, and is under evaluation for fracture mechanics specimens
based on Equation (21) to obtain the values of m, σ0 and φ(m). Once Equation (21) is calibrated,
the expression of f

(
B
(
KJc/σys

)4/V0

)
will become explicit. Detailed numerical analysis is ongoing to

determine the value of φ(m) and the expression of Equation (24) for fracture toughness specimens of
different crack size and at different temperatures. However, it is of immediate interest to first justify
and validate Equation (24) under large scale yielding. In the following, Equation (26) is used to analyze
a group of published fracture toughness data.

3. Model Validation

The Euro fracture toughness dataset summarizes the fracture behavior of the quenched and
tempered pressure vessel steel DIN 22NiMoCr37 with about 800 fracture toughness tests on 1/2T to 4T
CT-specimens. The dataset is available at the address ftp://ftp.gkss.de/pub/eurodataset. Heerens and
Hellmann [27] provided its essential background information. Figure 2a shows the rank probability
vs. fracture toughness data of 1CT specimens (B = 25 mm) at four different temperatures with yield
strength (YS) also provided as follows: YS = 717.8 MPa at 119 K, 580.2 MPa at 182 K, 542.7 MPa at 213 K,
and 524.9 MPa at 233 K. The toughness data of a total number of N at each temperature were ranked in
an ascending order and the i-th datum was assigned with a rank probability Pi = (i− 0.3)/(N + 0.4),

i = 1, 2 . . . , N. Figure 2b,c shows the correlation between m

√
Ln
[

1
(1−P)

]
/σys and B

(
KJc/σys

)4 at four

temperatures for m = 34 with axis in linear scale and logarithmic scale, respectively. Obviously, all the

ftp://ftp.gkss.de/pub/eurodataset
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data fall onto a master curve described by certain nonlinear relationship between m

√
Ln
[

1
(1−P)

]
/σys

and B
(
KJc/σys

)4. By now, the analysis is purely based on Equation (26). In order to validate the

non-linear dependence of Vpl on the compound parameter B
(
KJc/σys

)4 in Equation (24), finite element
analysis of 1CT specimen with thickness B = 25 mm, width W = 50 mm, and the crack depth a to
specimen width W ratio a/W = 0.5, was conducted at 182 K using ABAQUS 6.14 (Figure 3) with E
= 206 GPa, ν = 0.3, and the plastic behavior of the material as reported in [27]. Due to symmetry
considerations, only one half of the specimen was modeled. The mesh and model are shown in Figure 3.
The displacement was applied on a rigid pin in frictionless contact with specimen and the applied load
was obtained from the reaction force acting on the rigid body. A finite strain (large deformation theory)
method is used. A total of 5046120-node brick elements was used. The J-integral was computed using
the domain integral implemented in ABAQUS 6.14, which calculates the J-integral over a predefined
number of contours around the crack tip. Then the J-integral was converted to the stress intensity
factor KJ =

√
JE/(1− ν2) under plane strain condition. The Weibull stress σw for a certain stress is

determined from a post processing program, which reads the ABAQUS output file. The volume of
the cleavage fracture process zone V, KJ and the principal stress σ1 of each node were obtained at
each time step. The volume of plastic zone Vpl at a certain stress (KJ or J) was determined from a
post processing program, which reads the ABAQUS output file. Vpl was calculated at each time step
according to the stresses on Gauss points of the elements, which takes the weight of the Gauss points
in the integration. Figure 4 shows an example of stress distribution inside the specimen. Figure 5
summarizes the calculated volume of plastic deformation zone Vpl under different loading level

represented by the compound parameter B
(
KJc/σys

)4. It clearly reveals the non-linear relationship

between Vpl and B
(
KJc/σys

)4.
The purpose of this work is to present a theoretical justification summarized as Equation (26)

to guide statistical characterization of cleavage fracture toughness. For all fracture toughness data
measured from different sized specimens (with thickness of 12.5 mm, 25 mm, 50 mm, 100 mm),
according to Equation (26), finite element calculations will be arranged to precisely determine the
value of φ(m) defined by Equation (22) and the function f

(
B
(
KJc/σys

)4/V0

)
defined by Equation (24)

at each thickness. It is noted that this paper focuses on the discussion of ferritic steels for nuclear
reactor pressure vessel. Although the specific steel types used in different countries are different,
the structure and mechanical properties are basically similar. The steel used in this paper are the
most important (dominant) in the nuclear industry. Thus, they are selected as the research steel for
European Union Round Robin project by ESIS. For other ferritic structural steels such as railway
bridges, specific loading and service conditions such as dynamic loading and cyclic loading should be
considered for specific research. These large-scale fracture toughness tests for nuclear power steels
at low temperatures are very expensive. Thanks to the European Union project, the authority of the
data is proved. These data are obtained by ESIS for the round robin project of nuclear power, which
is participated by 15 research institutes of European countries. They include more than 800 fracture
toughness data measured by CT samples of different sizes. These data are highly recommended by the
industry. Different authors have analyzed them from different perspectives. We study them from a
new perspective. A lot of finite element analysis for the specimens with different sizes is under way.
This paper introduces the results of 1CT specimen at different temperatures. Further results will be
reported soon.

Further work on finite element analysis of the volume of plastic deformation zone in other
different sized fracture toughness specimens including 1/2CT, 2CT, and 4CT is ongoing and will be
reported separately.
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4. Conclusions

1. A model for the statistical distribution of cleavage fracture toughness is proposed based on a
new local approach model to collectively reflect the effect of temperature and specimen size.
The model suggests that under large scale yielding, the distribution of cleavage fracture toughness
may deviate from the Weibull statistics with a modulus (mK) of four.

2. According to the proposed model, cleavage fracture toughness data of 1CT specimens at
four different temperatures are synchronized onto a single master curve governed by the two

compound parameters m

√
Ln
[

1
(1−P)

]
/σys and B

(
KJc/σys

)4.

3. Finite element analysis of stress distribution in a 1CT fracture toughness specimen reveals the

non-linear relationship between Vpl and B
(
KJc/σys

)4 under large scale yielding.

It should be noted that the probabilistic method developed in this paper will be used in developing
a framework of fatigue lifetime prediction and fatigue study of engineering structures [28–30]. Biaxial
effect should also be considered in developing the probabilistic framework [4,31].
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Nomenclature

a crack depth
B, W, L geometrical dimensions of a specimen
Cm,n numerical coefficient
CT compact tension
E Young’s modulus, MPa
f (a) probability density function of microcrack size (a) distribution
g(S) probability density function of microscopic cleavage strength (S)
J J-integral
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Jc critical J-integral at cleavage fracture
j rank number
Jmin, Kmin threshold values
J0, K0 scale parameters
K stress intensity factor
KJc critical stress intensity factor at cleavage fracture
m, mJ, mK Weibull modulus
P fracture probability
p(V0) fracture probability of an elementary volume (V0)
S fracture strength
S microscopic cleavage fracture strength
S(εp) microcrack propagation resistance
Vpl volume of plastic deformation zone
V0 mean volume occupied by each micro-crack
dV differential volume
∆V volume of a finite element
ν Poisson’s ratio
σys yield stress
σ0 scale parameter
σw Weibull stress
σ1 maximum tensile principal stress
σ1,0 maximum principal stress at initial yielding of a volume dV
σth threshold stress
σd resistance to microcrack nucleation
εp plastic strain
φ(m) numerical coefficient
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