

Supporting Materials

Synthesis and Catalytic Properties of Modified Electrodes by Pulsed Electrodeposition of Pt/PANI Nanocomposite

Figure S1. Cyclic voltammetry of aniline polymerisation on a glassy carbon electrode in 0.1 M aniline + 0.5M H₂SO₄ solution at 50 mV/s from -200 to 1100 mV for the first activation cycles.

Figure S2. Cyclic voltammetry of aniline polymerization on a glassy carbon electrode in 0.1 M aniline + 0.5 M H₂SO₄ solution at 50 mV/s from –200 to 900 mV for 10 subsequent cycles.

Figure S3. Cyclic voltammetry recorded on glassy carbon electrode at 10 mV/s for 5 mM K₂PtCl₆ + 0.5 M H₂SO₄ plating solution.

Figure S4. Chronoamperometric curve for potentiostatically electrodeposited platinum on GC/ PANI electrodes at a pulse deposition potential $E_{on} = -700$ mV. Deposition conditions (0.005 M K₂PtCl₆ in 0.5 M H₂SO₄): ton = 5 ms, E_{off} = +1V, tdep = 5 s, and DC = 50%.

Figure S5. SEM micrographs of GC/PANI(CV)/PtNPs obtained with the following deposition conditions: $E_{on} = -500 \text{ Mv}$ (left) $E_{on} = -750 \text{ mV}$ (right), $E_{off} = +750 \text{ mV}$, $t_{on} = 5 \text{ ms}$, and DC = 50%. 5 mM K₂PtCl₆ in 0.5 M H₂SO₄.