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Abstract: This work demonstrated a growth of well-aligned NiSi/SiC core-shell nanowires by a
one-step process of hot-wire chemical vapor deposition on Ni-coated crystal silicon substrates at
different thicknesses. The NiSi nanoparticles (60 to 207 nm) acted as nano-templates to initially
inducing the growth of these core-shell nanowires. These core-shell nanowires were structured by
single crystalline NiSi and amorphous SiC as the cores and shells of the nanowires, respectively. It is
proposed that the precipitation of the NiSi/SiC are followed according to the nucleation limited
silicide reaction and the surface-migration respectively for these core-shell nanowires. The electrical
performance of the grown NiSi/SiC core-shell nanowires was characterized by the conducting AFM
and it is found that the measured conductivities of the nanowires were higher than the reported works
that might be enhanced by SiC shell layer on NiSi nanowires. The high conductivity of NiSi/SiC
core-shell nanowires could potentially improve the electrical performance of the nanowires-based
devices for harsh environment applications such as field effect transistors, field emitters, space
sensors, and electrochemical devices.

Keywords: core-shell nanowires; NiSi; SiC; nucleation limited silicide reaction; surface-migration;
hot-wire chemical vapor deposition (HWCVD)

1. Introduction

One-dimensional (1D) semiconductor nanostructures such as nanorods, nanotubes and
nanowires have recently showed exciting scientific challenges and technological applications
especially in nanoscale sensors, optoelectronic devices, energy generators, and storage devices [1–3].
Highly metallic 1D NiSi nanowires possess excellent electrical, field emission and magnetic properties
which make them a potential candidate for interconnectors, field emitters, functional micro-tips,
biosensors, and micro-supercapacitors [4–7]. The superior ferromagnetic property with high coercivity
of NiSi nanowires was reported to be attributed to its nanoscale and high Ni/Si ratio [8]. Moreover,
their tiny nanoscale geometric feature and high aspect ratio, allow the nanowires to enhance the
light-active region and provide a large surface area at a fixed volume for photovoltaic architecture [9,10].
The unique physical properties of cone-shape well-aligned NiSi nanowires has demonstrated an
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excellent field emission property with their low turn-on field as recently reported by Lin et. al. [11].
However, it has been reported that the silicide nanowires suffer from oxidation on their surfaces,
which generally degrades their electrical properties such as charge collection and results in charge
recombination [12,13]. Fabrication of core-shell nanowires is one of the most effective solution
to overcome this intrinsic limitation of the intrinsic single nanowires [14]. SiC possesses high
chemical stability, significant mechanical strength, high electron mobility and adjustable electrical
conductivity [15–17], having capability to fulfill the requirements as a shell material. Therefore,
the incorporation of SiC into the core-shell nanowires is motivated by its superior properties and
furthermore, the NiSi/SiC core-shell nanowires could potentially open a new direction of research into
energy generation and storage applications [7].

Hot-wire chemical vapor deposition (HWCVD) provides a one-step process for growth of
NiSi/SiC core-shell nanowires by decomposing the source gases (SiH4 and CH4) simultaneously
using hot-filament at a temperature above 1800 ◦C [18,19]. The formation of hybrid Si core-shell in 1D
structure is unprecedented and rarely found in the literature to the best of our knowledge. Therefore,
the Ni induced growth of NiSi/SiC core-shell structure could possess a synergetic effect, which may
be inhibiting their intrinsic limitations [20]. Normally, the 1D nanowires growth is followed by the
conventional vapor–liquid–solid (VLS) mechanism [21]. The nanowire growth in VLS process is driven
by a metal catalyst droplet in liquid state at a temperature above the eutectic point of the two elements.
However, the formation of NiSi nanowires works differently as compared to the VLS mechanism,
which mainly involving the reaction of Ni and Si through solid state diffusion [22]. The growth of NiSi
nanowires depends on the reaction of Ni and Si in a solid condition at a temperature much lower than
the eutectic point of Ni and Si (approximately 962 ◦C) [23]. However, the dependence of core-shell
nanowires growth on the NiSi particle size and Ni induction have not been studied in detail.

In this work, the NiSi/SiC core-shell nanowires were grown by a one-step process of HWCVD at
different Ni thicknesses. The effects of the Ni thickness on the morphology, growth rate, solid catalyst
particle size, and nanowire’s growth mechanism are well investigated. Moreover, the nanoscale
electrical properties of the nanowires are demonstrated, which may have potential for nano-electronic
and nano-optoelectronic applications.

2. Experimental Methods

NiSi/SiC core-shell nanowires were grown on Ni-coated p-type crystal silicon (c-Si) with (100)
plane substrates by a home-built HWCVD system [24]. The c-Si substrates were conventionally coated
with 100 nm-thick SiO2 layer. The layer is used to prevent any diffusion of Ni into the substrates.
The Ni films were deposited on the substrates using a coiled tungsten filament (99.95% purity) as
a heating element. In order to form metal nanoparticles, the Ni films were subsequently treated by
energetic atomic hydrogen in plasma ambient for 10 min. During the plasma treatment, the substrate
temperature, deposition pressure, hydrogen gas flow-rate and radio-frequency power were fixed at
450 ◦C, 0.75 mbar, 100 sccm and 5 W, respectively. For the deposition purpose, the filament temperature
and deposition pressure were maintained at 1850 ◦C and 3 mbar, respectively. The flow of SiH4, CH4,
and H2 gases into the reaction chamber were controlled by mass-flow controllers at the flow-rates of
1, 2, and 100 sccm, respectively. The filament temperature was measured using a pyrometer model
Reytek, Raynger 3i. The filament-to-substrate distance was kept at 2 cm with the deposition time was
fixed at 5 min. The growth process was studied by varying Ni thickness (110, 190, and 270 ± 30 nm).

Field emission scanning electron microscopy (FESEM) secondary electron (SE) and backscattered
electron (BSE) images of the nanowires were obtained using a Hitachi SU 8000 SEM (Tokyo, Japan) at
electron accelerating voltages of 2 and 10 kV respectively. The elemental analysis on the samples were
conducted by energy-dispersive X-ray (EDX) detector (Bruker XFlash6|100, Tokyo, Japan) attached
to the SEM, at an electron accelerating voltage of 15 kV. The working distances for imaging and EDX
were fixed at 8 and 15 mm, respectively. The chemical compositions and bonding configuration of the
nanowires were investigated by X-ray photoelectron spectroscopy (XPS, PHI Quantera II, ULVAC-PHI,
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Inc., Kanagawa, Japan). The XRD pattern was recorded over the 2θ range of 20 to 80◦ at a fixed grazing
incidence angle of 0.5◦ using a PANalytical Empyrean X-ray diffractometer (Malvern Panalytical
Ltd., Royston, UK) with X-ray wavelength of 1.5406 Å. The step time and step size of the scanning
were fixed at 3.52 s and 0.026◦, respectively. The cross-section BSE images of the nanowires were
collected using a Bruker photodiode-backscattered electron (PDBSE) detector (Bruker, Tokyo, Japan).
The chemical states of the samples were examined by scanning photoelectron microscopy (SPEM,
NSRRC, Hsinchu, Taiwan) at the 09A1 beamline of the National Synchrotron Radiation Research
Center (NSRRC), Hsinchu, Taiwan. Themonochromatic soft X-ray (h = 380 eV) was focused by a
combination of Fresnel zone plate and order sorting aperture. The nanowires coated on the c-Si
substrate was in-situ cleaved under UHV conditions in the SPEM chamber to keep a clean cross-section
surfaces for the chemical imaging and micro-area photoelectron spectroscopy (PES, NSRRC, Hsinchu,
Taiwan). The sample position relative to the focused photon beam was controlled by a piezo driven
flexure stage (range: 10 × 10 µm2) for a raster scanning in SPEM imaging and fine positioning in
the micro-area PES. The obtained binding energies (BE) were calibrated using the C 1s energy of
284.6 eV attributed to adventitious carbon that exhibits in all air-exposed materials. The TEM and
high-resolution TEM images of the nanowires were collected using a TEM (JOEL JEM-2100F, JEOL Ltd.,
Tokyo, Japan) with an accelerating voltage of 200 kV. The dispersing nanowires for TEM measurement
were prepared on carbon-coated copper grids (Lacey 300 mesh Cu). The EDX elemental mappings of
a single nanowire were performed using STEM/High-angle annular dark-field (HAADF, JEOL Ltd.,
Tokyo, Japan) and Oxford EDX detectors (Oxford Instruments NanoAnalysis, High Wycombe, UK).
The surface roughness and grain sizes of samples were characterized using Atomic Force Microscopy
(AFM, SII NanoTechnology Inc., SI-DF-3R(100), Tokyo, Japan), with a silicon nitride cantilever (SI-DF3,
Applied NanoStructures, Inc., Mountain View, CA, USA). The scanning was done by contact mode in
a range of 10 µm × 10 µm. The current–voltage (I–V) curves of the nanowires were obtained by the
AFM in conducting mode.

3. Results and Discussion

Figure 1 shows the FESEM images of the NiSi/SiC core-shell nanowires grown on c-Si substrates
at different Ni thicknesses. These surface images were scanned in SE mode at low electron accelerating
voltage of 2 kV. The nanowires are in high density and uniformly distributed on the substrate surfaces
and it could be observed that the density of nanowires is directly proportional with the thickness of
Ni as shown in Figure 1a–c. The surface morphology of the nanowires changes significantly with
increase in Ni thickness as shown in Figure 1d–f. This can be clearly shown on the formation of bumps
along their lengths and the number of bump increases with increase in Ni thickness. The formation of
these bumps is generally deduced by the out-diffusion of NiSi core [25]. These bumps were reported
to potentially grow nanowire branches for electrochemical electrode and sensing applications [26].
The nanowires grown at Ni thicknesses of 190 and 270 nm exhibit irregular and branched morphologies
as shown in Figure 1d,e, respectively. The high surface diffusion of Ni in Si increases the degree of
supersaturation for the nanowire growth and, thus, enhances the growth rate of the nanowires by
increasing the axial growth of the nanowires [27]. The noticeable growth of branch nanowires at
the high Ni thicknesses is obviously attributed to the out-diffusion of the NiSi core which leading to
the secondary growth of the core-shell nanowires at the bump areas. The out-diffusion of the metal
catalysts in the growth of the nanowires was also observed by Hannon et al. and occurred during
the mediation of the axial growth of the core nanowire [28]. The lateral expansion of the NiSi core is
happened to release the stress applied by the axial growth of the shell nanowire [25]. This leads to the
out-diffusion and thus results in the secondary growth of the nanowire branches at the out-diffusion
points. The estimated diameters of the trunk nanowires are approximately 144, 89, and 76 ± 15 nm for
the nanowires grown at the Ni film thicknesses of 110, 190, and 270 nm, respectively. The morphology
result clearly indicated that the thicker Ni film produces higher density and smaller diameter of
NiSi/SiC core-shell nanowires grown by HWCVD at substrate temperature of 450 ◦C.
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(a,d) 110, (b,e) 190, and (c,f) 270 nm. The top and bottom images represent low and high 
magnifications of the micrograph images, respectively. 

Figure 1. Field emission scanning electron microscopy (FESEM) images of the NiSi/SiC core-shell
nanowires grown by hot-wire chemical vapor deposition (HWCVD) at different Ni thicknesses of (a,d)
110, (b,e) 190, and (c,f) 270 nm. The top and bottom images represent low and high magnifications of
the micrograph images, respectively.

Figure 2 shows the FESEM cross-section images of the core-shell nanowires grown by HWCVD at
different Ni film thicknesses. These images were obtained by collecting the BSE signals at electron
accelerating voltage of 10 kV. The low magnification images in Figure 2a,c,e show that the nanowires
are mostly straight with randomly aligned morphologies. The increase in the Ni thickness is likely
improves the alignment of the nanowires towards vertically morphologies. However, the thicker
Ni films reduce the height of the nanowires indicating that the Ni thickness significantly affect the
growth rate of the nanowires. The estimated heights of the nanowires were approximately 3769 ± 549,
2532 ± 276, and 3351 ± 234 nm for the Ni film thicknesses of 110, 190, and 270 nm, respectively.
Furthermore, some noticeable NiSi nanoparticles were clearly visible on the stems of the nanowires.
The formation of these NiSi nanoparticles is probably attributed to the out-diffusion of NiSi core
nanowires and the out-diffusion phenomena can be evidently depicted by the BSE images as shown in
Figure 2b,d. In addition, the deposited layers under the nanowires were clearly observed for all the
samples at different Ni thicknesses. These deposited layers were formed by the NiSi alloy solid particles
as illustrated in the high magnification images (Figure 2b,d,f)). The spontaneous diffusion of Ni into
the deposited Si layers forms the high density of NiSi solid particles [20]. Apparently, the increase
in the thickness of the Ni film leads to the formation of larger NiSi solid particles. The estimated
grain size from the images for the nanowires grown at the Ni film thicknesses of 110, 190, and 270 nm
were about 60 ± 13, 107 ± 29, and 207 ± 35 nm respectively. The highest Ni film thickness shows an
appearance of faceted crystals on the deposited layer as clearly depicted in Figure 2f.
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Figure 2. FESEM cross-section images of NiSi/SiC core-shell nanowires grown by HWCVD on
c-Si substrate at different Ni thicknesses of 110, 190, and 270 nm. The FESEM images scanned at
low magnification (a,c,e) and the respective images scanned at high-magnification (b,d,f) by using
photodiode-backscattered electron (PDBSE) detector.

Figure 3a depicts the FESEM cross-section image for the elemental analysis of EDX point scan
on the stem of nanowires (A) and the NiSi solid particles under the deposited layer (B). The EDX
spectra for the scans at A and B are shown in Figure 3b,c, respectively. Obviously, the point A shows
relatively higher contents of C, O, and Si than point B except the Ni content which is in contrast and
higher in point B. The elemental contents of the points A and B are tabulated in Table 1. Quantitatively,
the stem of the nanowires consists of C (25.45%), O (13.72%), Ni (11.70%), and Si (48.03%) indicating
typical elemental content of NiSi/SiC core-shell nanowire compositions. The presence of O content
is likely inferred to the formation of thin amorphous SiOx on the nanowires due to the oxidation
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when the nanowires were exposed to the atmospheric ambient [29]. It is worth noting that the NiSi
solid particle compositions were dominated by Ni (29.19%) and Si (45.14%) comparatively with C
(17.02%) and O (7.46%). The presence of C and O are likely because of the deposition of SiC layer
and oxide residuals or oxidation, respectively. The EDX results reveal that the NiSi alloy particles
act as solid seeds for the spontaneous growth of NiSi core nanowires followed by the nucleation
limited silicide reaction as modelled by Kim et. al. [30]. The successive spontaneous diffusion of
Ni into the NiSi particles leads to the growth of NiSi nanowires once it reached to the degree of
supersaturation. Further, the out-diffusion of Ni into the deposited Si layer increased the size of the
NiSi particles. However, the radial deposition of SiC on the particles limited the further growth of the
NiSi particles [31]. This significantly increases the volume free energy and consequently reduces the
surface free energy leading to the growth of axial NiSi core nanowires. The radial deposition of SiC on
the NiSi particles mediates as SiC shells is followed by the axial growth of NiSi core nanowires.
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energy-dispersive X-ray (EDX) spectra obtained at the stem of nanowires (marked as A) and at the
solid particle between the deposition layer and c-Si substrate (marked as B) respectively as labelled in (a).
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Figure 4. XRD patterns of the NiSi/SiC core-shell nanowires grown by HWCVD at different Ni
thicknesses of 110, 190, and 270 nm. The legend indicates the phases of the NiSi chemical formula.

Table 1. Elemental contents (%) of the NiSi/SiC core-shell nanowires grown by HWCVD at Ni thickness
of 270 nm. The labels of the spots as below are indicated in Figure 4b.

Spot C O Ni Si

A 25.45 13.72 11.70 48.03
B 17.02 7.46 29.19 45.14

Figure 4 depicts the XRD pattern of the core–shell nanowires grown at different Ni thicknesses.
At Ni thickness of 110 nm, only small crystalline peaks are appeared at 2θ = 42.729◦, 43.535◦,
44.575◦, and 45.589◦, which are corresponded to crystallographic planes of (310), (021), (220), and
(121) orientations for Ni2Si phase according to the JCPDS card number of 048-1339. The relatively
low intensities of the of Ni2Si peaks in the XRD pattern for the nanowires grown at Ni thickness of
110 nm is likely due to insufficient diffusion of Ni into the Si during the deposition. The nanowires
grown at Ni thickness of 190 nm demonstrates two main phases of crystalline NiSi such as Ni2Si and
Ni3Si phases. A single crystalline peak located at 2θ = 52.193◦ belongs to crystallographic plane of
(200) orientation for Ni3Si phase based on JCPDS number of 065-3243. Whereas, the various crystalline
peaks located at 2θ = 32.563◦, 39.661◦, 42.495◦, 43.613◦, 44.627◦, 45.641◦, 48.995◦, 51.465◦, 53.571◦,
66.675◦, 68.209◦, and 75.463◦ are associated to crystallographic planes of (111), (211), (310), (021), (220),
(121), (002), (221), (320), (312), (222), and (322) orientations for Ni2Si phase respectively, followed the
JCPDS number of 048-1339. As the Ni thickness increases to 270 nm, the crystalline of Ni2Si phase is
dominant accompanied with crystalline NiSi phase. A single crystalline peak of NiSi phase appeared
at 2θ = 47.331◦ corresponds to crystallographic plane of (121) orientation according to the JCPDS
number of 01-085-0901. The increase in Ni thickness leads to the formation of homogeneous crystalline
Ni-rich Ni2Si core nanowires attributed to effectively diffusion of Ni into the NiSi particles which act
as a nucleation site for the growth of these core-shell nanowires.

The chemical compositions and bonding configuration of the samples were analyzed by XPS
and the results are shown in Figure 5. Figure 5a depicts the XPS survey scan spectra of the NiSi/SiC
core-shell nanowires grown at different Ni thicknesses. The Si 2s, Si 2p, C 1s, and O 1s peaks are
clearly presented in the spectra. The Si 2p and C 1s core-level photoelectron spectra of the nanowires
grown at different Ni thicknesses are shown in Figure 5b,d, respectively. It can be seen that for the
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nanowires grown at Ni thickness of 270 nm, the Si 2p and C 1s core-level photoelectron spectra are
shifted toward higher photon energies. This reveals a variation in the compositions of the nanowires
grown at highest Ni thickness. To further elaborate this variation, the Si 2p and C 1s band spectra
were deconvoluted into several Si and C-related components as depicted in Figure 5c,e, respectively.
The deconvolution of the Si 2p peak shows that its consists of four major components at 102.8, 101.3,
100.2, and 99.4 eV, which are attributed Si–Ox, Si–C, Si–Ni, and Si–Si bonds, respectively. The C 1s
peak also was deconvoluted into four components at 287.0, 285.9, 284.8, and 283.5 eV corresponding
to O–C=O, C–C, C=C, and C–Si bonds, respectively. The presence of the C-Si bond further confirms
the chemical composition of the SiC shell. Also, the appearance of C=C and C–C bonds reflects the
facts that C diffused into the NiSi catalyst alloys during nucleation. The dependence of the integrated
intensity of the observed chemical bonds on Ni thickness is displayed in Figure 5f. It can be found that
Si–Si content in the nanowires is insignificant and at the Ni thickness of 270 nm it is totally disappeared.
By increasing the Ni thickness from 110 to 270 nm, Ni–Si incorporation is decreased while that of Si–Ox

increased reflecting the fact that high Ni thickness could induce oxide phase rather than NiSi one.
This is probably due to slow diffusion of Ni particles to Si and, hence, oxidation of free or unsaturated
bonds on the core of the nanowires. Consequently, SiC incorporation as the shell of nanowires is
decreased and SiO2 is formed instead at Ni thickness of 270 nm.

Figure 6a,d shows the SPEM images of Si 2p and C ls core level binding energies, respectively
acquired by the higher photoelectron energy channels. These binding energy images were collected on
the cross-section of the sample including the c-Si substrate (green, blue and red cycles are representing
for the substrate, nickel layer and the nanowires, respectively), the deposited layer and the core-shell
nanowires were in good spatial agreement with the SEM image shown in Figure 2e. The SEPM
images of Si 2p and C 1s indicate high densities of Si and C on the core-shell nanowires. The XPS
narrow-scan spectra of Si 2p and Ni 3s with their deconvoluted components are depicted in Figure 6b–f.
The presence of Si and Si oxidation layers on the cross-section of c-Si substrate is verified by the Si 2p
peak as shown in Figure 6b. Figure 6c depicts that the deposited layer contained high percentage of
SiOx (64.7%) accompanying with small amounts of NiSi (8.7%) and SiC (16.1%). The large amount
of SiOx in the deposited layers reveals the oxidation of the deposited layers during the nucleation of
NiSi particles. The diffusion of Ni into the deposited layer and high affinity of the metallic particles to
the residual oxygen could easily result in the oxidation of the deposited layer. The formation of the
SiOx prevents the coalescence of the NiSi particles and it could be essentially important for the growth
of NiSi/SiC core-shell nanowires via the NiSi particles [32]. The appearance of Si–C bond indicates
the formation of SiC during the nucleation of the NiSi particles. This finding strongly agrees with the
radial formation of SiC on the NiSi particles and subsequently mediates as a shell of the NiSi core
consistently along the length of the nanowires without any significant taper morphology. Figure 6e
shows a typical Si 2p peak of the core-shell nanowires containing of SiC (25.7%) and SiOx (41.4%). This
oxidation states are possibly ascribed to the formation of amorphous SiOx layer on the nanowires due
to the oxidation after the nanowires were exposed to the atmospheric ambient [33]. On the other hand,
a little amount of Ni was observed in Ni 3s as shown in Figure 6f owing to the less sensitivity of the
photoelectron energy channels to Ni element.
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The microstructure of a typical single NiSi/SiC core-shell nanowire was investigated by TEM
and HRTEM images as shown in Figure 7. The typical pile of nanowires in TEM image is illustrated
in Figure 7a. The inner structure of the nanowires is clearly revealed in the image. Overall, no
noticeable catalyst droplets could be seen on the tip of the nanowires in the image suggesting that
the conventional VLS growth mechanism for 1D nanostructures can be simply neglected for these
core-shell nanowires [34]. A branched nanowire in TEM image clearly depicts a core-shell structure of
a single nanowire as shown in Figure 7b. The core and shell were consistently along the length of the
nanowire. The average core diameter and shell thickness were measured about 11 ± 2 and 59 ± 10 nm,
respectively. Furthermore, this branched nanowire is apparently grown at the stem of the nanowire
resulting from the out-diffusion of the NiSi core and the beginning of the out-diffusion is clearly
shown in Figure 7b. Figure 7c depicts a HRTEM image scanned near to the sidewall of the nanowire
showing a single crystalline core and an amorphous shell of the nanowire. The estimated lattice
spacing is approximately 0.194 nm, corresponding to Ni2Si (121) crystallographic plane (JCPDS card
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no. 065-1507). This suggests that the core nanowires were deposited along the [121] growth direction.
The single crystalline of the Ni2Si core nanowire was further revealed by a fast Fourier transform (FFT)
image as shown in the inset of Figure 7b. The amorphous structure of the shell nanowire is depicted
by the HRTEM image collected at the sidewall as shown in Figure 7d. The shell nanowire clearly
presents that the amorphous structure consisting of nano-crystallites embedded with its amorphous
matrix. These nano-crystallites form as elongated crystallites contributing to the columnar structures
as observed in the previous reports [25,35]. The estimated lattice spacing is approximately 0.25 nm
corresponding to 3C-SiC (111) crystallographic plane (JCPDS card no. 002-1050). The measured
crystallite size is approximately 6.1 ± 0.2 nm. These 3C-SiC nano-crystallites were grown radially
toward the nanowire sidewall in [111] growth direction. The crystalline plane of the 3C-SiC (111) was
further revealed by a FFT image as shown in the inset of Figure 7d.
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Figure 8 illustrates the schematic diagram of the proposed growth mechanisms of the NiSi
nanoparticle and NiSi/SiC core-shell nanowires prepared by HWCVD. In the initial stage of
the process, the Ni nanoparticles were formed as a result of the hydrogen plasma treatment at
high substrate temperature conditions that similar to the works reported by Alet et al. [36] and
Colli et al. [37]. The hydrogen plasma treatment plays an essential role in activating the catalyst
metallic nanoparticles [24,38]. In the process, as shown in Figure 8a, SiH4 molecules arrive on the
Ni nanoparticle surfaces and are catalytically decomposed by the catalyst particles which results in
forming of a Si layer on the Ni nanoparticles [39]. Owing to the fast diffusivity of Ni in Si, the formation
of NiSi alloys is induced following a solid-state silicide reaction at a substrate temperature above
350 ◦C [40]. The spontaneous diffusion of Ni into the deposited Si layer could lead to the elongation
of NiSi crystals as well as nanowires as reported in the literature [41]. The growth of the nanowires
occurred after an increase in the size of the NiSi particles that was larger than a certain critical alloy
radius to reduce the surface-free energy of the particles. The subsequent diffusion of the Ni into
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the NiSi alloys for sustaining the growth of NiSi nanowires eventually turns the Ni nanoparticles
completely to large NiSi particles as shown in Figure 3a. In process as shown in Figure 8b, the
hot-filament temperature above 1800 ◦C is capable to decompose the SiH4, CH4, and H2 molecules
effectively into the growth precursors of Si and CH3. According to Tabata et al. [42], the SiH4 molecules
were decomposed on the surface of the heating filament following the reaction as SiH4 Si + 4H,
while the CH4 decomposes more effectively by the gas phase reactions of CH4 + H CH3 + H2 [43].
These decompositions generate high densities of the reactive growth precursors of Si arriving on the
NiSi particle surfaces thus enhance the growth of NiSi nanowires. Meanwhile, the arrival of CH3 on
NiSi particle surfaces leads to a surface diffusion of C into the deposited Si layer forming a SiC layer
surrounding the NiSi particles and resulting in the core-shell structure. The radial deposition of SiC on
the NiSi particles acts as a shell of the particles. The formation of SiC shell layer could form a diffusion
barrier that hindering the further diffusion of Ni into the deposited layer [31]. This stimulates the
axial growth of nanowires towards vertical. The successive decompositions of SiH4 and CH4 produce
high density of reactive atomic H and, thus, enhance the hydrogen etching effect [44,45]. The reactive
hydrogen etching increases the local nucleation sites for the formation of SiC nanograins as observed
on the deposited layer shown in Figure 2. The SiC nanograins that formed the deposited layer become
thicker with increase in Ni film thicknesses, as well as the size of the NiSi particles as evidenced in
Figure 2b,d,f. Apparently, the formation of the SiC crystals is also attributed to the hydrogen etching
effect which enhances the nucleation sites and results in the growth of the larger faceted crystals.

The growth of NiSi/SiC core-shell nanowires begins from the nucleation of NiSi solid catalyst
particles which is the prerequisite nucleation sites for the initial precipitation of the core nanowires.
The nucleation of NiSi was reported to be occurred at a narrow temperature region that strongly
depends on the change of NiSi particle sizes in the maximum free energy [46]. Figure 8c illustrates
the free energies change as function of drop radius for NiSi reactions in the growth of NiSi core
nanowires. The unique growth mechanism for NiSi nucleation is related to the nucleation limited
silicide reaction which was described by J. Kim [30]. For the given thermodynamic free energy relations:
∆G = br2∆GS − ar3∆GV , where rc = −2γ/∆GV , ∆GV = −(kBT/v) ln(Psaat/Po), and ∆G, ∆GS, ∆GV ,
b, a, r, rc, γ, kB, v, and Psaat/Po are the total free energy, surface free energy, volume free energy,
geometrical terms, drop radius, critical drop radius, unit surface free energy, Boltzmann constant,
molar volume of the drop, and degree of supersaturation, respectively [47]. According to the free
energies change, the change of the NiSi particle size, rc, is directly proportional to the degree of
supersaturation in the particles at a constant reaction temperature [11]. The reaction of Ni and Si were
initially formed NiSi solid particles, and the successive diffusion of Ni into the particles increases the
particle size as a result of the tendency to reduce the surface free energy. The particles larger than rc

will grow nanowires spontaneously with decreasing in free energy. While for the particle smaller than
rc, no nanowires will form owing to the insufficient of Ni or the lower temperatures for the Ni and Si
reaction. In this case, the supersaturation reaction, Psaat/Po, is referred to the diffusion rate of Ni into
the nucleation sites of the NiSi particles at a fixed reaction temperature. It can be seen that the NiSi
particles get larger in size with increase in Ni film thickness as shown in Figure 2b,d,f. These solid
catalyst particle sizes are in between 60 to 210 nm which is in the range of the drop radius size for the
nucleation limited silicide reactions as reported [29,30,39]. The thicker Ni film increases the diffusion
of Ni into the deposited layer resulting to a thicker deposition layer thus decreasing the degree of
supersaturation in the particles. Consequently, rc decreases as verified by the Psaat at a fixed initial
pressure. The expansion of the NiSi particles at the beginning of its nucleation is to reduce the surface
free energy for maintaining the total free energy in the maximum free energy region.
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Figure 9a,b shows the AFM images of the NiSi/SiC core-shell nanowires at different scan sizes.
The cluster of the nanowires is clearly observed and their vertical bundle is attributed to their nucleation
limited silicide grown reaction. The details of the nanowire growth are obviously shown in Figure 9b.
The clustering of nanowires can be observed in the image with the estimated average cluster size of
approximately 29 ± 8 nm. The obtained average cluster size is closely consistent with the average
diameter of the bundle nanowires measured by the FESEM image as shown in Figure 1c. Figure 9c
demonstrates the current–voltage (I–V) curves of the clustered nanowires by a conducting AFM
measurement. The selected clusters were identified by the open circle and square box as shown in the
inset of Figure 9c. These I–V curves demonstrate a linear behavior at low voltage region. However, the
curves turn to rectifying current voltage behavior for the applied voltages above 0.005 mV. The linear
I–V characteristic is due to the metallic electrical property of NiSi and the Schottky curve could be
attributed to the heterostructure of core-shell nanowire. By fitting the linear region of the I–V curves,
the estimated conductivity of the bundle nanowires for the spots 8 and 9 are approximately 1.57 × 103

and 1.44 × 103 Ω−1 cm−1, respectively, with the scanned area of 0.403 m2. Figure 9d demonstrates
the I–V curves of the NiSi/SiC core-shell nanowires grown at different Ni film thicknesses of 110,
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190, and 270 nm, by the conducting AFM measurements. The linear regions of the I–V curves were
fitted in a log scale for obtaining the ohmic contact characteristic of the nanowires and the bottom
layer. The estimated conductivities of the single nanowire prepared at Ni film thicknesses of 110,
190, and 270 nm were approximately 4.11 × 102, 1.57 × 102, and 1.36 × 102 Ω−1 cm−1, respectively
which is an order lower compared to that of bundle nanowires owing to the smaller surface area of
single nanowire. However, these conductivities of the NiSi/SiC core-shell nanowires are relatively
higher than the literature data (102 Ω−1 cm−1) and suggests that the formation of SiC shell layer on
the nanowires could probably improve the electrical performance of the nanowires-based devices
for harsh environment applications such as field effect transistors, field emitters, space sensors, and
electrochemical devices [10,22].
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Figure 8. (a,b) Growth mechanisms of the NiSi nanoparticle and NiSi/SiC core-shell nanowires
grown by HWCVD, respectively. (c) Free energy changes as function of drop radius for NiSi reactions.
The shadowed region is proposed as a region for the growth of NiSi core nanowires. (d) The nucleation
limited silicide reaction relation for the growth of the core nanowires.
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Figure 9. (a,b) Atomic Force Microscopy (AFM) images of the NiSi/SiC core-shell nanowires grown by
HWCVD. (c) Current–voltage curves of the nanowires obtained at different spots with the positions as
shown in inset of the conducting AFM image. (d) Current–voltage curves of the nanowires at different
spots in the Ohmic regions.

4. Conclusions

The well-aligned NiSi/SiC core-shell nanowires by one-step process of HWCVD were presented
and their properties were discussed. The nanowires were grown at various Ni thicknesses by heat
transfer from a hot filament at 1850 ◦C. The NiSi solid catalyst particles act as nano-templates for
the growth of the nanowires vertically and in well-alignment. The increase in the Ni thickness
improve the alignment of the nanowires towards vertically morphologies but reduce the height of the
nanowires. The grown nanowires have an average diameter, length, and growth rate of 75.6 nm, 3.1 m,
and 10.3 nm/s, respectively and the nanowires were structured by a single-crystalline NiSi and an
amorphous SiC as the core and the shell. The shell of the nanowires showed the presence of 3C-SiC
nano-crystallites embedded within an amorphous matrix. The precipitation of the NiSi core nanowires
was followed by the solid-diffusion control process. Whereas, the formation of SiC shell was attributed
to the surface migration of SiC on the NiSi solid catalyst particle surfaces. The roles of SiOx in the
deposited layer and NiSi particle size in the growth of these core-shell nanowires were extensively
elucidated. The estimated conductivities of the single nanowire prepared at Ni film thickness of 110,
190, and 270 nm were measured as 4.11 × 102, 1.57 × 102, and 1.36 × 102 Ω−1 cm−1, respectively
and relatively higher than the reported literature. The single crystalline NiSi and amorphous SiC
heterostructure core-shell nanowires show promising potential applications as a 1D electrode for
various electrical and electrochemical applications.
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