
materials

Article

Effect of the Number of Anchoring and
Electron-Donating Groups on the Efficiency of
Free-Base- and Zn-Porphyrin-Sensitized Solar Cells

Raheleh Nasrollahi 1,2, Luis Martín-Gomis 1, Fernando Fernández-Lázaro 1, Saeed Zakavi 2 and
Ángela Sastre-Santos 1,*

1 Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la
Universidad s/n, 03203 Elche, Spain; rnasrolahi@iasbs.ac.ir (R.N.); luis.martin@umh.es (L.M.-G.);
fdofdez@umh.es (F.F.-L.)

2 Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan 45137-66731, Iran; zakavi@iasbs.ac.ir

* Correspondence: asastre@umh.es; Tel.: +34-96-6658-408

Received: 29 December 2018; Accepted: 15 February 2019; Published: 21 February 2019
����������
�������

Abstract: A series of porphyrin compounds, free base (H2P) and their Zn (II) metallated analogues
(ZnP), bearing one, two or three carboxylic acid groups, have been synthesized, characterized,
and used as sensitizers in dye sensitized solar cells (DSSCs). The performance of these devices has
been analyzed, showing higher efficiencies of those sensitized with ZnP compounds. These results
have been explained, on one hand, taking into account the electronic character of the metal ion,
which acts as mediator in the injection step, and, on the other, considering the number of anchoring
groups, which determines both the stereoelectronic character of the dye and the way it binds to
TiO2 surface.
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1. Introduction

Porphyrins [1] have been extensively used as key components in different organic optoelectronic
applications. Thanks to their aromatic nature, porphyrins present interesting light absorption/emission
and electroactive properties, easily tunable due to their chemical versatility [2,3]. With these elements,
it is possible to find in the literature a myriad of different porphyrin compounds, chemically designed
to fulfill technological requirements in a variety of fields [4,5]. Dye sensitized solar cells (DSSC) [6–8]
is one of these fields where porphyrin compounds have been widely employed, usually playing the
role of sensitizing dyes. After thorough investigations, there is a general agreement on the structural
requirements of porphyrins to be used in DSSCs: 1) at least one anchoring group must be present
for the covalent binding to the semiconductor surface [9], 2) metallic complexes (MP), especially the
zinc ones, are preferred to free-base (H2P), because of their longer-lived singlet excited states and
much lower oxidation potentials [10], and 3) bulky electron-donor meso-substituents favor electron
injection in the semiconductor, as they originate an intrinsic dipole moment [11]. High efficiencies have
been achieved for TiO2-based devices sensitized, for example, with free-base [12] and zinc porphyrin
derivatives [13], presenting one or more carboxylic acid appends as anchoring groups, either in β [9,14]
or meso [15,16] positions of the porphyrin central core, and also with multiple donor groups at the
meso positions [17–19]. The combination of the donor groups, and the electron-withdrawing carboxy
group, contributes to create the push–pull effect, channelling the photoexcited electrons toward TiO2

and improving charge separation.
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Till now few examples analyzing the photovoltaic performance of DSSC devices sensitized with
porphyrin dyes as a function of the number of anchoring groups have been reported [20–23]. Here we
present the synthesis and characterization of a series of free-base porphyrins with one, two, and three
carboxy groups, H2P-CO2H 1, cis-H2P-(CO2H)2 2-c, H2P-(CO2H)3 3, and their Zn metalated analogues
ZnP-CO2H 4, cis-ZnP-(CO2H)2 5-c and ZnP-(CO2H)3 6 (Figure 1). Also, the number of electron
donating –OCH3 groups, decreased in the series from nine (in 1 and 4) to three (in 3 and 6), and this is
expected to tune the energy of the porphyrin frontier orbitals, influencing the π resonance interactions
between porphyrin and aryl group π systems. All of them were then incorporated in efficient dye
sensitized solar devices, comparing the performance obtained in terms of the number of anchoring
carboxy and electron-donating -OCH3 groups, and the presence of zinc as metallic central ion.
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Figure 1. Molecular structures of porphyrin-based sensitizers used in this study.

2. Materials and Methods

2.1. Synthesis and Characterization of New Compounds

All chemicals were reagent grade, purchased from commercial sources, and were used as received
unless otherwise specified. Column chromatography was performed on SiO2 (40–63 µm). TLC plates
coated with SiO2 60F254 were visualized under UV light. NMR spectra were acquired on a Bruker AC
300 spectrometer (Bruker, Billerica, MA, USA). UV/Vis spectra were recorded on a Helios Gamma
spectrophotometer. Fluorescence spectra were recorded on a Perkin-Elmer LS 55 luminescence
spectrometer (PerkinElmer, Waltham, MA, USA). Matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectra were obtained on a Bruker Microflex spectrometer (Bruker,
Billerica, MA, USA). Differential pulse voltammetry measurements were performed at 298 K in a
conventional three-electrode cell using a m-AUTOLAB type III potentiostat/galvanostat (Metrohm,
Herisau, Switzerland). Sample solutions (ca. 0.5 mM) were prepared in deaerated PhCN, containing
0.10 M tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte. A glassy
carbon (GC) working electrode, an Ag/AgNO3 reference electrode, and a platinum wire counter
electrode were used. Ferrocene/ferrocenium was the internal standard for all measurements.
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2.1.1. Synthesis of Free-Base Porphyrins H2P-(CO2Me)n 7–9

In a 500 mL round bottom flask equipped with a magnetic stirrer, 3.53 g of 3,4,5-trimethoxy
benzaldehyde (18 mmol,) 0.99 g of methyl 4-formylbenzoate (6 mmol) and 1.65 mL of pyrrole (24 mmol)
were refluxed for 5 h in propionic acid (250 mL). After cooling at room temperature, the resulting
mixture was extracted with dichloromethane several times and, the combined extracts, washed with
water and aqueous 4% NaHCO3 solution, dried over MgSO4 and evaporated. The black colored crude
compound was purified by silica gel column using hexane/ethylacetate eluent mixtures to get 0.396 g
(7%) of 7 H2P-CO2Me, 0.437 g (8%) of a mixture of 8 H2P-(CO2H)2 cis and trans isomers and 0.422 g
(8%) of 9 H2P(CO2H)3.

5-(4-methoxycarbonylphenyl)-10,15,20-tris(3,4,5-trimethoxyphenyl)porphyrin (H2P-CO2Me 7).
1H NMR (CDCl3: 300 MHz), δ ppm: −2.78 (s, 2H, −NH), 3.97 (s, 18H, m−OCH3), 4.12 (s, 3H, −OCH3)
4.19 (s, 9H, p−OCH3), 7.47 (s, 6H, phenyl H), 8.32 (d, 2H, phenyl H), 8.44 (d, 2H, phenyl H), 8.81 (d,
2H, pyrrole H), 8.98 (d, 6H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 420 (5.64), 515 (4.36), 550 (3.98),
592 (3.74), 650 (3.00). HRMS (MALDI-TOF): m/z calcd, for C55H50N4O11 ([M+]): 942.35, found 942.43.

5,10-bis(4-methoxycarbonylphenyl)-15,20-bis(3,4,5 trimethoxyphenyl)porphyrin (H2P-(CO2Me)2 8,
cis/trans mixture). 1H NMR (CDCl3: 300 MHz), δ ppm: −2.79 (s, 2H, −NH), 3.97 (s, 12H, m−OCH3),
4.11 (s, 6H, −OCH3) 4.18 (s, 6H, p−OCH3), 7.46 (s, 4H, phenyl H), 8.31 (d, 4H, phenyl H), 8.44 (d, 4H,
phenyl H), 8.81 (d, 4H, pyrrole H), 8.97 (d, 4H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 421 (5.58),
515 (4.29), 549 (3.88), 591 (3.68), 649 (3.18). HRMS (MALDI-TOF): m/z calcd, for C54H46N4O10 ([M+]):
910.32, found 910.45.

5,10,15-tris(4-methoxycarbonylphenyl)-20-(3,4,5-trimethoxyphenyl)porphyrin (H2P-(CO2Me)3 9).
1H NMR (CDCl3: 300 MHz), δ ppm: −2.80 (s, 2H, −NH), 3.97 (s, 6H, m−OCH3), 4.12 (s, 9H, −OCH3)
4.18 (s, 3H, p−OCH3), 7.46 (s, 2H, phenyl H), 8.31 (d, 2H, phenyl H), 8.43 (d, 2H, phenyl H), 8.81 (d,
2H, pyrrole H), 8.98 (d, 2H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 419 (5.44), 514 (4.13), 550 (3.73),
590 (3.48), 649 (2.30). HRMS (MALDI-TOF): m/z calcd, for C53H42N4O9 ([M+]): 878.30, found 878.64.

2.1.2. Synthesis of Free-Base Porphyrins H2P-(CO2H)n 1–3:

50 mg of free-base porphyrin was dissolved in a mixture of THF/MeOH (20/14 mL) and 6 mL of
NaOH 20% aqueous solution were added. The crude was heated for 2 h. After cooling, the reaction
crude was then diluted with dichloromethane and washed, first with HCl (1M) and then with water.
The organic layer dried over MgSO4 and evaporated. The residue was recrystallized in hexane to get
the pure powder.

Column chromatography was conducted for H2P-(CO2H)2 2, to isolate cis and trans isomers
(SiO2, chloroform/acetone mixtures as eluents).

5-(4-carboxyphenyl)-10,15,20-tris(3,4,5-trimethoxyphenyl)porphyrin (H2P-CO2H 1). Yield: 95%.
1H NMR (DMSO: 300 MHz), δ ppm: −2.93 (s, 2H, −NH), 3.90 (s, 18H, m−OCH3), 4.00 (s, 9H,
p−OCH3), 7.53 (s, 2H, phenyl H), 8.33 (d, 2H, phenyl H), 8.39 (d, 2H, phenyl H), 8.81 (d, 2H, pyrrole
H), 8.96 (d, 6H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 420(5.38), 515(4.13), 550(3.70), 592(3.70), 650
(3.30). HRMS (MALDI-TOF) calcd for C54H48N4O11 ([M+]): 928.33, found 928.38.

5,10-bis(4-carboxyphenyl)-15,20-bis(3,4,5 trimethoxyphenyl)porphyrin, trans isomer (trans-H2P-
(CO2H)2 2-t). Yield: 23%. 1H NMR (DMSO: 300 MHz), δ ppm: −2.93 (s, 2H, −NH), 3.89 (s, 12H,
m−OCH3), 3.99 (s, 6H, p−OCH3), 7.54 (s, 4H, phenyl H), 8.33 (d, 4H, phenyl H), 8.38 (d, 4H, phenyl
H), 8.82 (d, 4H, pyrrole H), 8.98 (d, 4H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 420 (5.59), 515 (4.27),
550 (3.93), 592 (3.78), 651(3.65). HRMS (MALDI-TOF): m/z calcd, for C52H42N4O10 ([M+]): 882.29,
found 882.518.
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5,10-bis(4-carboxyphenyl)-15,20-bis(3,4,5 trimethoxyphenyl)porphyrin, cis isomer (cis-H2P-
(CO2H)2 2-c). Yield: 71%. 1H NMR (DMSO: 300 MHz), δ ppm: −2.93 (s, 2H, −NH), 3.90 (s, 12H,
m−OCH3), 3.99 (s, 6H, p−OCH3), 7.53 (s, 4H, phenyl H), 8.32 (d, 4H, phenyl H), 8.38 (d, 4H, phenyl
H), 8.83 (d, 4H, pyrrole H), 8.98 (d, 4H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 420 (5.59), 515 (4.27),
550 (3.93), 591 (3.78), 649 (3.65). HRMS (MALDI-TOF): m/z calcd, for C52H42N4O10 ([M+]): 882.29,
found 882.52.

5,10,15-tris(4-carboxyphenyl)-20-(3,4,5-trimethoxyphenyl)porphyrin (H2P-(CO2H)3 3). Yield: 94%.
1H NMR (DMSO: 300 MHz), δ ppm: −2.93 (s, 2H,−NH), 3.90 (s, 6H, m−OCH3), 3.99 (s, 3H, p−OCH3),
7.55 (s, 2H, phenyl H), 8.35 (d, 6H, phenyl H), 8.38 (d, 6H, phenyl H), 8.85 (d, 6H, pyrrole H), 8.98
(d, 2H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 419(5.52), 515(4.18), 549(3.78), 590(3.54), 649 (3.40).
HRMS (MALDI-TOF): m/z calcd, for C50H36N4O9 ([M+]): 836.25, found 836.50.

2.1.3. Synthesis of Zinc Porphyrins ZnP-(CO2H)n 4–6

Free-base porphyrin (7, 8 or 9, 50 mg) and zinc acetate (1:5 mol ratio) were refluxed in
dichloromethane and methanol (1:1 ratio, 40 mL each) until free-base porphyrin was completely
metalated, checked by TLC and UV-vis absorption spectroscopy. The reaction mixture was then
diluted with dichloromethane and washed, first with HCl (1 M) and then with water. The organic
layer was collected and, after evaporation of solvent, the crude compound was purified by silica gel
column using hexane/ethyl acetate eluent mixtures. Quantitative yields were obtained in all cases
and isolated compounds were hydrolized following the same procedure used for free-base porphyrins
hydrolisis (see Section 2.1.2).

Column chromatography was conducted for ZnP-(CO2H)2 5 to isolate cis and trans isomers (SiO2,
chloroform/acetone mixtures as eluents).

Zinc(II) 5-(4-carboxyphenyl)-10,15,20-tris(3,4,5-trimethoxyphenyl)porphyrinate (ZnP-CO2H 4).
Yield: 98%. 1H NMR (DMSO: 300 MHz), δ ppm: 3.90 (s, 18H, m−OCH3), 3.99 (s, 9H, p−OCH3), 7.45
(s, 2H, phenyl H), 8.29 (d, 2H, phenyl H), 8.37 (d, 2H, phenyl H), 8.75 (d, 2H, pyrrole H), 8.90 (d, 6H,
pyrrole H). UV-vis (THF) λmax/nm (log ε): 426 (5.63), 557 (4.20), 597 (3.65). HRMS (MALDI-TOF) calcd
for C54H46N4O11 ([M+]): 990.25, found 989.22.

Zinc(II) 5,10-bis(4-carboxyphenyl)-15,20-bis(3,4,5-trimethoxyphenyl)porphyrinate, trans isomer
(trans-ZnP-(CO2H)2 5-t). Yield: 20%. 1H NMR (DMSO: 300 MHz), δ ppm: 3.89 (s, 12H, m−OCH3),
3.98 (s, 6H, p−OCH3), 7.46 (s, 4H, phenyl H), 8.23 (d, 4H, phenyl H), 8.35 (d, 4H, phenyl H), 8.76 (d,
4H, pyrrole H), 8.91 (d, 4H, pyrrole H). HRMS (MALDI-TOF): m/z calcd, for C52H40N4O10Zn ([M+]):
944.20, found 943.45.

Zinc (II) 5,10-bis(4-methoxycarbonylphenyl)-15,20-bis(3,4,5-trimethoxyphenyl)porphyrinate,
cis isomer (cis-ZnP-(CO2H)2 5-c). Yield: 69%. 1H NMR (DMSO: 300 MHz), δ ppm: 3.89 (s, 12H,
m−OCH3), 3.98 (s, 6H, p−OCH3), 7.45 (s, 4H, phenyl H), 8.23 (d, 4H, phenyl H), 8.34 (d, 4H, phenyl
H), 8.76 (d, 4H, pyrrole H), 8.91 (d, 4H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 426 (5.56), 557 (4.29),
597 (3.80). HRMS (MALDI-TOF): m/z calcd, for C52H40N4O10Zn ([M+]): 944.20, found 943.48.

Zinc(II) 5,10,15-tris(4-carboxyphenyl)-20-(3,4,5-trimethoxyphenyl)porphyrinate (ZnP-(CO2H)3 6).
Yield: 98%. 1H NMR (DMSO: 300 MHz), δ ppm: 3.90 (s, 6H, m−OCH3), 3.99 (s, 3H, p−OCH3),
7.47 (s, 2H, phenyl H), 8.29 (d, 6H, phenyl H), 8.37 (d, 6H, phenyl H), 8.78 (d, 6H, pyrrole H), 8.94 (d,
2H, pyrrole H). UV-vis (THF) λmax/nm (log ε): 426 (5.70), 557 (4.33), 598 (3.89). HRMS (MALDI-TOF):
m/z calcd, for C50H34N4O9Zn ([M+]): 898.16, found 897.40.

2.2. Device Preparation

Double-layered nanoporous TiO2 photoanodes were prepared coating pastes of anatase TiO2

nanoparticles having two different diameters, 20 nm (Dyesol’s 90 T) and 400 nm (Dyesol’s WER2-O),
onto TiCl4 treated FTO glass plates (TEC 15 A, 2.2 mm, Xop Glass), by repetitive screen printing to obtain
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the required thickness. These electrodes were gradually heated under a programmed flow: at 370 ◦C for
10 min and 450 ◦C for 10 min. Their apparent surface area was 0.16 cm2 (0.4 cm × 0.4 cm), and revealed
a total thickness of 8–10 µm, containing a 3–4 µm scattering layer. The TiO2 electrodes were treated
again with TiCl4 under 70 ◦C for 30 min and sintered at 500 ◦C for 30 min, before they were dipped
into dye solution. The nanocrystalline TiO2 films were immersed into 5 mM dye solutions, without any
other additives, i.e. co-adsorbents, and kept at RT for 20 h. Finally, dye adsorbed TiO2 photoanodes and
thermally platinized and drilled FTO counter electrodes (TEC 8 A, 3 mm, Xop Glass), were assembled
into sandwich type cells, separated by a 30 µm thick hot-melt gasket (Surlyn, Dupont), and sealed by
heating. An electrolyte solution (0.1 M LiI, 0.03 M I2, 0.5 M 4-tert-butylpyridine, 0.1 M guanidinium
thiocyanate, 1 M 1-butyl-3-methylimidazolium iodide in acetonitrile/valeronitrile 85:15 v/v) was
introduced in the assembled devices. A series of three devices with each dye were prepared and their
photovoltaic performance measured. The values described are, in all cases, the best obtained, with no
significant differences between devices sensitized with the same dye, which ensures the reproducibility
and consistency of the results.

2.3. Photovoltaic Characterization

An ABET 150W xenon light source equipped with an AM 1.5 G correcting filter was employed.
The light intensity was adjusted to 100 mW/cm2 (the equivalent of 1 sun), prior to every measurement,
using a calibrated photovoltaic reference cell (15150, ABET Technologies). The applied potential
and cell current were registered with a Keithley 2401 low voltage digital sourcemeter. The incident
photon-to-current conversion efficiency (IPCE) was measured as a function of wavelength from 400 to
800 nm by using an IPCE-DC system (Lasing SA).

3. Results and Discussion

3.1. Synthesis of New Compounds

Free base porphyrin compounds H2P-CO2H 1, H2P-(CO2H)2 2 (cis and trans) and H2P-(CO2H)3 3
were prepared through a two-step synthetic sequence, as it is described in Scheme 1. First, methyl ester
derivatives (7–9) were obtained as pure compounds, following the traditional Adler-Longo method [24],
by reacting a 4:3:1 mixture of pyrrole, 3,4,5-trimethoxybenzaldehyde and methyl 4-formylbenzoate
in propionic acid. In a second step, methyl ester groups were hydrolyzed by heating in an aqueous
base solution affording, in almost quantitative yields, free-base porphyrins with one, two and three
carboxylic groups (1–3). It is worth to note that the hydrolysis of H2P-(CO2Me)2 8, mixture of cis and
trans stereoisomers, gave a new mixture which could be resolved into its components, cis-H2P-(CO2H)2

2-c and trans-H2P-(CO2H)2 2-t, through standard column chromatography.
Finally, in order to obtain Zn porphyrins ZnP-CO2H 4, ZnP-(CO2H)2 5 (cis and trans) and

ZnP-(CO2H)3 6, methyl ester precursors (7–9) were, first metallated in refluxing dichloromethane/
methanol mixture, in presence of a zinc acetate excess, and, without isolation, hydrolyzed, following the
procedure previously used in the synthesis of H2P-(CO2H)n 1–3. An example of the synthetic sequence
performed (synthesis of ZnP-CO2H 4) is shown in Scheme 2. As it occurred with H2P-(CO2H)2 2 cis
and trans isomers, the metalation of 8 (mixture of isomers), followed by basic hydrolysis, afforded a
new mixture of compounds which could be separated into its components, ZnP-(CO2H)2 5 cis and
trans, through standard column chromatography.

All synthesized compounds 1–9 (Figures S1, S4, S10, S13, S16, S19, S22, S25, S28 and S31 were
characterized through common techniques, such 1H NMR and UV-vis spectroscopies and HR-MS
(MALDI TOF) mass spectrometry. In this context, the 1H NMR signals obtained for H2P-(CO2H)n 1–3
(Figures S2, S5, S7, S8 and S11), ZnP-(CO2H)n 4–6 (Figures S14, S17, S20, and S23) and H2P-(CO2Me)n

7–9 (Figures S26, S29, and S32) showed similar chemical displacements, but displayed different integral
values for the signals corresponding to the phenyl and methoxy groups. On the other hand, HR MS
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gave, in all cases, a single peak with a m/z ratio that exactly matched the calculated one (Figures S3,
S6, S9, S12, S15; S18, S21, S24, S27, S30 and S33).
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3.2. Optical and Electrochemical Properties

Free porphyrins 1, 2 cis, and 3, and zinc derivatives, 4, 5 cis, and 6, were evaluated as sensitizers
for DSSC devices. It must be stated that trans isomers of compounds 2 and 5 could not be evaluated,
because of their reduced solubility which prevented their optical and electrochemical characterisation.

The UV-vis absorption spectra of all dyes show typical features of porphyrin compounds (Figure 2).
While H2P 1–3 present a strong absorption band at 420 nm (S0→S2, Soret band) and four weak
transitions to the first excited state between 500 and 680 nm (S0→S1, Q bands), ZnP 4–6 exhibit,
a 6–7 nm red-shifted Soret band and only two Q bands, which are located in the 550–650 nm area.
These spectral changes, upon metalation of the macrocycle, are probably due to the increased symmetry
of the porphyrin core, moving from D2h to D4h. It is also worth to note that the introduction of a
zinc atom in the porphyrin cavity, causes a π-π interaction between the metal pπ orbital and the
porphyrin π system. According to the four orbital model of porphyrins [25], the electronic density
on the meso positions and the pyrrolic nitrogen atoms is large, so the energy of a2u and eg orbitals
is, therefore, influenced by both the metal ion and the substituents introduced at the meso positions.
Regarding to the molar extinction coefficients, zinc derivatives show somehow higher values than
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the metal free ones. It is also remarkable that within a series (ZnP/H2P), variations in the coefficients
are minimal, and are attributed to differences in solubility, due to number of carboxy groups. Finally,
internal conversion between S2 and S1 is rapid, so fluorescence is only detected from S1. Taking into
account that intensity of Q bands is weak, transition energies cannot be accurately estimated from the
intersection of normalized absorption and emission spectra [26,27], so the optical band gap (Eg

opt) was
here calculated using the equation (1) where λedge is the onset value of the absorption spectrum in the
direction of longer wavelengths [28].

Eopt
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Figure 2. UV-Vis absorption spectra (350–700 nm) for (a) 1–3 and (b) 4–6 dyes, in THF solution.

Peak position (λabs), molar absorption coefficients (ε) of Soret and Q bands, onset values (λedge)
and estimated optical band gap (Eg

opt) of porphyrin dyes are listed in Table 1.

Table 1. Absorption wavelengths, molar absorption coefficients, onset values and estimated optical
band gaps of dyes 1–6.

Dye λabs/nm (log ε) λedge (nm) Eg
opt (eV)

H2P-CO2H 1 420 (5.38), 515 (4.13), 550 (3.70), 592 (3.70), 650 (3.30) 665.2 1.86
cis-H2P-(CO2H)2 2-c 420 (5.59), 515 (4.27), 550 (3.93), 591 (3.78), 649 (3.65) 665.2 1.86

H2P-(CO2H)3 3 419 (5.52), 515 (4.18), 549 (3.78), 590 (3.54), 649 (3.40) 665.2 1.86
ZnP-CO2H 4 426 (5.63), 557 (4.20), 597 (3.65) 615.0 2.02

cis-ZnP-(CO2H)2 5-c 426 (5.56), 557 (4.29), 597 (3.80) 615.0 2.02
ZnP-(CO2H)3 6 426 (5.70),557 (4.33), 598 (3.89) 615.0 2.02

Electrochemical measurements were performed for H2P 1–3 and ZnP 4–6, registering differential
pulse voltammograms in benzonitrile solution (Figure 3). All measured dyes exhibit simple, clear
and sharp waves in the anodic part, very different from those in the cathodic area. This can be
probably due to the genuine electron-donor character of porphyrin compounds and, particularly,
for these studied 3,4,5-trimethoxyphenyl–substituted porphyrins. Also, this observation provides
evidence for extensive changes in the electronic structure of the studied compounds, induced by one
electron reduction of the aromatic macrocycles. In this context, and taking into account only oxidation
processes, H2P 1–3 are more resistant to oxidation than ZnP 4–6. On the other hand, as a general
tendency, oxidation potentials increase with the number of carboxy groups. Due to the increase in
the number of carboxy groups, which is associated with a concomitant decrease in the number of
trimethoxyphenyl moieties, the resonance interactions between the a2u orbital and the porphyrin
π system become weaker, thus favoring the stabilization of that orbital. The decreased oxidation
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potential of the metalloporphyrins, compared to that of the free base analogues, seems to be due to
destabilization of a2u orbitals of the former, probably caused by π resonance interactions between the
metal pπ orbital, porphyrin a2u orbital and the aryl group π system [29].
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Figure 3. Differential pulse voltammograms of (a) 1–3 and (b) 4–6 dyes, registered in benzonitrile
solution and using, tetra-butyl ammonium hexafluorophosphate (Bu4NPF6) as supporting electrolyte,
platinum wire, glassy carbon and non-aqueous Ag/AgNO3 as counter, working and reference
electrodes, respectively, and ferrocene (Fc/Fc+) as internal standard.

Spectral and electrochemical properties allow to determine the electron injection and dye
regeneration possibility during DSSC performance. From Eox potential values, referenced to Fc/Fc+

pair, (Table 2) HOMO energy level for all dyes can be easily calculated, using the Equation (2).

EHOMO(eV)= −4.8−Eox(V vs Fc/Fc+
)

(2)

Table 2. Oxidation potentials of dyes 1–6.

Dye H2P-CO2H
1

cis-H2P-(CO2H)2
2-c

H2P-(CO2H)3
3

ZnP-CO2H
4

cis-ZnP-(CO2H)2
5-c

ZnP-(CO2H)3
6

Eox (V) 0.60 0.60 0.84 0.29 0.39 0.42

These values, combined with the previously estimated optical band gap (Eg
opt), and values of

conduction band of TiO2 (−4.2 eV) [30] and I−/I3
− redox potential (−4.89 eV) [31,32], allow to sketch

an energy diagram representing HOMO and LUMO levels for all studied dyes (Figure 4). At this point,
it is important to mention that the determination of the LUMO level, using the EHOMO obtained from
electrochemical measurements and estimated Eg

opt, is a very useful approximation in the case that
both Eox and Ered values cannot be accurately extracted from electrochemical measurements. As can be
seen, LUMO energy levels are, in all cases, higher than TiO2 conduction band (TiO2 CB), fundamental
requisite to make the electron injection thermodynamically feasible, while HOMO levels are, always,
lower than I−/I3

− redox potential, making possible the regeneration of the oxidized dye.
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3.3. Preparation of Devices and Photovoltaic Characterization

Dye sensitized solar cells were prepared following a standard procedure, using double layered
screen-printed TiO2 photoanodes, platinum casted counter-electrodes, and liquid electrolyte containing
0.05 M LiI, 0.03 M I2, 0.5 M 4-tertbutylpyridine (TBP), 0.1 M guanidinium thiocyanate (GNCS), 1 M
1-butyl-3-methylimidazolium iodide (BMII) in acetonitrile/valeronitrile (85:15 v/v). Once prepared,
efficiencies of all devices were evaluated under standard Air Mass 1.5 global (AM1.5G) solar irradiation,
constructing J/V curves, and analyzing incident photon to current conversion efficiencies (IPCE).

All employed dyes gave efficient photoanode sensitization without any other additive (20 h
dipping in 5 mM dye ethanol solution), qualitatively appreciated through a deep anode coloration.
At this point we considered the use of co-adsorbents to improve the performance, particularly
chenodeoxycolic acid (Cheno). In porphyrin and phthalocyanine sensitized solar cells, Cheno is
commonly used as co-adsorbent and, directly incorporated in sensitizing solutions, improves both Jsc

and Voc parameters, thus leading to better device efficiencies, so we prepared sensitizing solutions of
our dyes, incorporating Cheno as co-adsorbent. Unfortunately, only scarce sensitization occurred in
all cases, obtaining, after dipping, soft-colored photoanodes unable to be efficiently photoexcitated.
In this case, an unbalanced competency between dye and Cheno molecules seems to occur, hampering
the anchorage of sensitizing units onto TiO2 surface.

Figure 5 shows J/V curves for devices sensitized with H2P and ZnP derivatives, and Table 3
resumes the photovoltaic parameters, short-circuit current (Jsc), open circuit voltage (Voc) and fill factor
(FF), reflecting much better efficiencies for the zinc compounds. The reason for this difference must
be found in the Zn+2 porphyrin metallic core, a closed shell ion with empty coordination sites, which
allow an efficient and rapid injection of photoexcited porphyrin electrons to TiO2 conduction band,
acting as mediator for electron transfer from I−/I3

− to the a2u orbital of the porphyrinsensitizer. It is
worth to note that the obtained efficiency for device sensitized with ZnP-CO2H 4 is up to 1.62%, with Jsc

value of 4.34 mA/cm2, Voc of 0.57 V and FF of 0.65, better than that previously reported for the same
compound, (1.06%) [33], demonstrating the convenience of our device preparation protocol. On the
other hand, ZnP derivatives with two (cis-ZnP-(CO2H)2 5-c) and three (ZnP-(CO2H)3 6) carboxylic acid
anchoring groups showed lower results, due a combination of both electronic and structural features.
It is well known that efficient dyes usually present the so called push–pull effect, thus facilitating the
injection to the TiO2 conduction band [34]. ZnP-CO2H 4 shows strong push pull directionality, thanks
to the already mentioned electron-acceptor character of the anchoring group and the presence of three
electron-donor trimethoxyphenyl substituents in the meso positions. A lesser push pull effect can be
found in cis-ZnP-(CO2H)2 5-c and ZnP-(CO2H)3 6. On the other hand, more than one anchoring group
means a better anchorage to TiO2, but not necessarily means better performance. Anchored dyes in
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such way could adopt a flat binding position (“face-to-face”, Figure 6a) referred to the TiO2 surface,
offering a lower coverage degree than it does in a perpendicular/vertical fashion (“edge-to-face”,
Figure 6b) [35,36]. This is what probably happens, looking to the photovoltaic parameters extracted
from J/V curves. The Jsc value for ZnP-CO2H 4 sensitized devices, compared to those sensitized with
cis-ZnP-(CO2H)2 5-c and ZnP-(CO2H)3 6 (Table 3), indicates a higher photogenerated current, due to
a more compact coverage of the semiconductor surface by the dye. In this context, high values of
Voc in ZnP-CO2H 4 sensitized devices (Table 3), also confirm this hypothesis. High Voc values are
indicative of non-aggregated molecules and, in this case, also protection of the central metal core.
If ZnP-CO2H 4 molecules are covering the TiO2 surface in an “edge-to-face” manner, π-π stacking
phenomena seems unlikely to happen between adjacent molecules, due to the necessary non-coplanar
position (related to the porphyrin flat structure) of bulky meso-trimetoxyphenyl groups. This results
in an effective protection of the porphyrin central metal core, avoiding early recombination processes
with the electrolyte, thus affording better Voc values. Same reasoning could be applied to devices
sensitized with H2P derivatives 1–3 but, in this case, the lack of metal ion in the dye becomes crucial.
In absence of such mediator, the injection step is slowed down, and early recombination processes are
then favored. Interestingly, and opposite to what happens with ZnP 4–6 sensitized devices, structural
features of free-base dyes seem to gain weight vs electronic characteristics (more than one binding
group vs push-pull effect). cis-H2P-(CO2H)2 2-c and H2P-(CO2H)3 3 sensitized devices show better Jsc

values than those of H2P-(CO2H) 1 (Table 3). This fact indicates that the chromophore is closer to the
semiconductor surface, balancing out the absence of metal ion. Furthermore, the number of sterically
demanding trimethoxyphenyl groups of the dye, is also reflected in Voc values, higher in the case of
cis-H2P-(CO2H)2 2-c sensitized devices. The presence of two bulky trimethoxyphenyl groups at the
meso positions, and only one in the case of H2P-(CO2H)3 3, partially avoids π-π stacking phenomena
between adjacent adsorbed molecules.
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Figure 5. Current density-Voltage curves measured for dye sensitized solar cell (DSSC) devices
sensitized with (a) metal-free porphyrins 1–3 and (b) zinc complexes 4–6.

Table 3. Photovoltaic parameters of DSSC devices sensitized with dyes 1–6.

Dye Jsc (mA/cm2) Voc (V) FF Efficiency (%)

H2P-CO2H 1 0.36 0.32 0.32 0.04
cis-H2P-(CO2H)2 2-c 0.82 0.46 0.52 0.20

H2P-(CO2H)3 3 0.87 0.44 0.38 0.15
ZnP-CO2H 4 4.34 0.57 0.65 1.62

cis-ZnP-(CO2H)2 5-c 3.27 0.52 0.59 0.99
ZnP-(CO2H)3 6 3.79 0.54 0.67 1.36
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Finally, IPCE measurements were made for all devices, showing maxima of photogenerated
current in wavelengths which match the absorption profile of employed sensitizers (Figure 7).
As expected, higher performances were obtained for ZnP derivatives 4–6, with maxima at 420, 560 and
600 nm and percentages of 50%, 14%, and 9% respectively in the case of ZnP-CO2H 4. These results
confirm the convenience of introducing just one anchoring place in carboxy ZnP-based sensitizers
for DSSCs.
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4. Conclusions

A series of unsymmetric porphyrin compounds, free-base [H2P-(CO2H)n 1–3] and Zn metallated
[ZnP-(CO2H)n 4–6], with one, two or three carboxyphenyl anchoring groups, were synthesized,
characterized and used as sensitizers in TiO2-based DSSC devices. The comparison of their
performances shows the utility of these compounds for this use, reflecting that ZnP-(CO2H)n 4–6
sensitized solar cells offer better efficiencies, compared to those sensitized with H2P-(CO2H)n 1–3.
This is due to the presence of a zinc ion in the porphyrin inner cavity, acting as electronic mediator
in the injection step. The observed order of efficiency for the zinc complexes, i.e. ZnP-CO2H 4 >
ZnP-(CO2H)3 6 > cis-ZnP-(CO2H)2, 5-c is in agreement with a rapid injection of the photoexcited
electrons to the TiO2 conduction band, where electronic characteristics of the dye prevail over its
structural features. On the other hand, the observed order of efficiency for free-base dyes, i.e.,
cis-H2P-(CO2H)2 2-c > (H2P-(CO2H)3 3 > H2P-CO2H 1, agrees with the absence of a metallic mediator,
slowing down the injection step and making structural features of the dye to gain prominence over its
electronic characteristics.
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