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Abstract: Human periapical cyst mesenchymal stem cells (hPCy-MSCs) are a newly discovered cell
population innovatively collected from inflammatory periapical cysts. The use of this biological
waste guarantees a source of stem cells without any impact on the surrounding healthy tissues,
presenting a valuable potential in tissue engineering and regenerative medicine applications.
In the present study, hPCy-MSCs were collected, isolated, and seeded on three experimental
mineral-doped porous scaffolds produced by the thermally-induced phase-separation (TIPS)
technique. Mineral-doped scaffolds, composed of polylactic acid (PLA), dicalcium phosphate
dihydrate (DCPD), and/or hydraulic calcium silicate (CaSi), were produced by TIPS (PLA-10CaSi,
PLA-5CaSi-5DCPD, PLA-10CaSi-10DCPD). Micro-CT analysis evaluated scaffolds micromorphology.
Collected hPCy-MSCs, characterized by cytofluorimetry, were seeded on the scaffolds and tested for
cell proliferation, cells viability, and gene expression for osteogenic and odontogenic differentiation
(DMP-1, OSC, RUNX-2, HPRT). Micro-CT revealed an interconnected highly porous structure for
all the scaffolds, similar total porosity with 99% open pores. Pore wall thickness increased with
the percentage of CaSi and DCPD. Cells seeded on mineral-doped scaffolds showed a superior
proliferation compared to pure PLA scaffolds (control), particularly on PLA-10CaSi-10DCPD at
day 12. A higher number of non-viable (red stained) cells was observable on PLA scaffolds
at days 14 and 21. DMP-1 expression increased in hPCy-MSCs cultured on all mineral-doped
scaffolds, in particular on PLA-5CaSi-5DCPD and PLA-10CaSi-10DCPD. In conclusion, the innovative
combination of experimental scaffolds colonized with autologous stem cells from periapical cyst
represent a promising strategy for regenerative healing of periapical and alveolar bone.
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1. Introduction

The main stem cell ability to regenerate injured tissues confers them a central role in regenerative
medicine. The first success obtained with hematopoietic stem cells encouraged studies on stem cell
therapy for the treatment of several human diseases [1,2].

Mesenchymal stem cells (MSCs) retain both the proliferation ability and the capability to modulate
inflammatory and immune response. These peculiar features strongly triggered the searching for
novel sources of MSCs. The early MSCs were successfully isolated from bone marrow (hBM): surgical
harvesting of hBM-MSCs is not a simple procedure, in fact, patients must undergo an invasive
surgery to aspirate bone marrow from the iliac crests, and cells obtained from hBM are typically few [3].
The numerous issues related to MSCs collection have attracted the interest of researchers in discovering
alternative sources of MSCs, in order to obtain them without any invasive or painful procedure.

Dental pulp infections and necrosis could lead to the formation of inflammatory tissues, richly
infiltrated by macrophages, neutrophils, and lymphocytes, in the periapical region (periapical
granuloma), with a consequent onset of apical periodontitis. The chronicization of such an
inflammatory condition may evolve towards periapical cyst formation [4]. Endodontic inflammatory
cysts have a high prevalence and they increase in elderly patients: 5% of teeth and 25% of teeth treated
endodontically can have a periapical x-ray discovered lesion [5]. These data are probably highly
under-estimated [6].

Recently, human periapical cyst-derived mesenchymal stem cells (hPCy-MSCs) were isolated
by Italian researchers [7]. hPCy-MSCs population share the same phenotype with other types of
oral derived MSCs, such as dental pulp stem cells. Such cells are characterized by high expression
of stemness-related markers: CD13, CD29, CD44, CD73, CD90, CD105, and some hematopoietic
markers, such as CD45 and CD34. [8,9] The high expression of CD146 on the surface of hPCy-MSCs is
also linked to the multipotency of these cells [10]. hPCy-MSCs showed a great plasticity, showing a
surprising odontogenic/osteogenic [11] and a neurogenic commitment [12] under specific conditions.
The epithelial wall of inflammatory cysts represents an attractive source of mesenchymal stem cells to
be used in regenerative medicine with special regards to orthopedic and dental applications [3].
Oral-derived stem cells associated with specific biomaterials are currently used in many tissue
engineering procedures [13], with special regards to bone regeneration [14,15]. However, the right
scaffold is still a challenging searching, in order to merge the best MSCs with the best scaffold.

When considering tissue engineering, a 3D porous scaffold is necessary for cells attachment,
proliferation, differentiation, new blood vessels ingrowth, and, finally, new tissue formation [16].
An ideal scaffold for bone application should be extremely porous, biocompatible, biointeractive (able
to release biologically relevant ions), with tailored resorption and adequate mechanical properties.
Combining a polymeric matrix with one or more bioactive or biointeractive filler represents an
interesting strategy in bone tissue engineering. Composite materials usually show an excellent balance
between the strengths and weaknesses of their individual components. In this way, the fabrication of
polymeric scaffolds is much easier and less time-consuming compared to ceramic scaffolds, which
are also brittle and less versatile [17]. Calcium phosphate compounds such as hydroxyapatite
and dicalcium and tricalcium phosphates are some of the most extensively fillers used in bone
tissue engineering [18]. These materials alone however, cannot provide the necessary biointeractive,
bioactive, and mechanical properties for dental tissue engineering. Hydroxyapatite doped scaffolds
demonstrated osteoconductive and long-term bone tissue stability, but revealed significant brittleness
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at high loadings [18,19], while b-TCP is highly-interactive but fast-resorbing and unable to provide a
long-term template to support cells migration from the periphery of the grafted area [20,21].

Calcium silicates (CaSi) are hydraulic cements widely used in regenerative endodontics in close
vicinity to pulp or bone tissue [22–24]. Nowadays, CaSi-based materials are used in several endodontic
applications, such as root canal sealing [25,26], root-end filling materials [27], and for direct pulp
capping [22]. CaSi biointeractivity and the property to nucleate calcium phosphates/apatite suggest
their pivotal role in mineral tissue regeneration by activating the osteogenic potential and promoting
the differentiation of mineralizing-cells [24]. The combination of reactive calcium phosphates (such as
dicalcium phosphate dehydrate, DCPD) to CaSi materials demonstrated to enhance their biological
properties and apatite-forming ability [28,29].

Several techniques have been developed to produce polymeric scaffolds for tissue engineering,
including electrospinning technique [30], 3D printing [31], salt leaching [32], and thermally induced
phase separation (TIPS) [33,34]. Hybrid Poly-e-caprolactone-polyglycolic acid solution was used to
produce biodegradable scaffolds by a 3D mold for human tooth-ligament in dental applications [35].
Then, polymeric composites containing biphasic calcium phosphate (80:20 wt %) prepared by hot melt
extrusion (100 ◦C) for 3D printing were able to support the differentiation of human dental pulp stem
cells into osteogenic lineage in calvarial defects [36]. Polymeric composites doped with 10–50 wt % of
β-tricalcium phosphate produced by a foaming agent and heating at 90 ◦C demonstrated to promote
proliferation of human bone marrow mesenchymal stem cells also supporting the differentiation
to reparative hard tissue [37]. All these materials, however, failed to comply with porosity values
over 90%.

TIPS is an experimental procedure to produce highly porous scaffolds without using high
temperatures (which may alter the fillers properties). Our recent study found that a Polylactic Acid
(PLA) polymeric scaffold doped with considerable amounts of bioactive and biointeractive fillers (up
to 20%) and having a bulk porosity higher than 90% may be produced by TIPS [34].

The association of these promising scaffolds with hPCy-MSCs may result as an interesting
regenerative approach in periapical regeneration and healing, where scaffolds with biointeractive
bone-stimulating properties may be placed in the presence of large periapical bone defects.

Therefore, the aim of this study was to test the biological activity of mineral-doped CaSi-DCPD
porous scaffolds by human periapical cyst-mesenchymal stem cells (hPCy-MSCs).

2. Materials and Methods

2.1. Materials

Poly(L-lactic acid MW = 65,000 g/mol) (IngeoTM biopolymer PLA 4060D, Natureworks LLC, Blair,
NE, USA) was used. Methanol (MeOH), ethanol (EtOH, 99.8%), 1,4-dioxan (DIOX), and chloroform
(CHCl3, HPLC grade) all from Sigma Aldrich (Milan, Italy) were used as received without further
purification. PLA was received in pellet form and purified via dissolution in CHCl3 (10% wt/vol)
and reprecipitation in a large excess of cold MeOH, in order to eliminate residual polymerization
catalysts [33]. Dicalcium phosphate dihydrate (DCPD; CaHPO4·2H2O) powders (Sigma-Aldrich,
Steinheim, Germany) [22,29] and/or calcium silicate (CaSi) powders (Aalborg, Denmark) [23]
composed of dicalcium silicate, tricalcium silicate, tricalcium aluminate, and calcium sulfate were
prepared by melt-quenching technique and milling procedures [34].

2.2. TIPS Scaffolds Preparation

Porous mineral-doped scaffolds were prepared starting from PLA solutions in DIOX (3.5% wt/vol)
as solvent and porogen agent; CaSi and DCPD powders were added to the PLA solution in amounts
5% or 10% by weight with respect to PLA. Homogeneous dispersions were obtained by sonicating
the mixtures for 3 h using an ultrasonic processor (UP50H, Hielsher Ultrasonics, Teltow, Germany)
working at 50 watts and 30 kHz, equipped with a sonotrode MS2 (made of titanium, tip diameter
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2 mm). After mixing, solutions were placed inside disposable aluminium dishes of 60 mm in diameter,
and cooled at −18 ◦C. After 18 h, the frozen samples were removed from the dishes and fully immersed
for 48 h in EtOH bath precooled at −18 ◦C, with solvent refresh every 3 h for the DIOX extraction
procedure. Then the porous samples were placed under vacuum and completely dried [33,34].

The prepared scaffolds were: PLA-10CaSi, PLA-5CaSi-5DCPD, PLA-10CaSi-10DCPD, and PLA
as control.

2.3. Scaffold Characterization by Micro-CT

A coring/cylindrical section of each scaffold formulation has been used for micro-CT analysis
(HMX-XT 225 X-tek system, Nikon, Minneapolis, MI, USA) (Figure 1). The scanning parameters used
were 80 KV voltage, 69 µA Current, 35.3 magnification, 354 ms exposure time length, and 30,000
Shading correction white Target. The resolution of the scanned images was 5.66 µm. Two randomly
selected cross-sectional slices of each scanned scaffold sample were shown here. All the images were
adjusted to the same grey value range.
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Figure 1. Highly-porous polylactic acid (PLA) scaffolds added with dicalcium phosphate dihydrate
(DCPD) and/or hydraulic calcium silicate (CaSi) used in this study: Micro-CT scanning slices protocol.

The total porosity, open porosity, and the average wall thickness of each sample were analyzed
based on the reconstructed 3D structure. After scanning, reconstruction of the original scanning
pictures was performed using CT Pro 3D XT 3.1.11 (Nikon Metrology Brighton, MI, USA). VGSTUDIO
MAX 3.1 (Volume Graphics Charlotte, NC, USA) was used to export slices of the reconstructed images
to .dicom format, so that porosity and wall thickness analysis of the scaffolds could be quantified
using CT Analyser 1.14.4.1+ (2012-14 Bruker microCT). For the porosity and wall thickness analysis,
16-bit .dicom slices were transferred to binary images. A proper threshold range was selected to show
the scaffold structure in the binary version. After that, the binary images were transferred into the
Morphometry version. The comparison between 16-bit .dicom version and the transferred Morphometry
version was done for multiple slices of each sample to guarantee the selected threshold was reliable
enough to show the scaffold structure as much as possible. With the images determined for optimal
Morphometry the 3D total porosity, the 3D open porosity, and the average wall thickness were calculated
for the whole 3D structure.
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2.4. Cell Culture

Human third molars affected by massive caries were obtained after written informed consent from
volunteers and collaborators requiring teeth extraction for severe pulp necrosis and local inflammation;
after tooth extraction, inflammatory periapical cystic tissues were removed along with necrotic tooth.
Surgical procedures were performed at Calabrodental Dental clinic in Crotone, Italy (ethical committee
agreement code was: CBD-021/TRI/2016). All clinical investigations have been conducted according
to the principles reported in the Declaration of Helsinki.

The isolation of human periapical cyst-derived mesenchymal stem cells (hPCy-MSCs) was
obtained by the enzymatic digestion of cystic wall, with the aim to collect MSCs to further characterize
in the following steps.

More in details, the cystic tissue was washed 5 times with phosphatase buffer saline (PBS, Corning,
Manassas, VA, USA) added with 1% penicillin-streptomycin antibiotics (Invitrogen, 15140122, Carlsbad,
CA, USA), and 2.5 µg/mL amphotericin B antimycotic (Invitrogen, 15290026, Carlsbad, CA, USA).

Then, the tissue was minced with a sterile scalpel and placed into a PBS solution, containing
3 mg/mL type I collagenase (Invitrogen, 17100-017, Carlsbad, CA, USA) with 4 mg/ml dispase (Sigma,
D4818, Milan, Italy) for 2 h at 37 ◦C for a proper enzymatic digestion. The obtained solution was
filtered, and the cells were collected after centrifugation at 1500RPM for 10 min: cells were plated in
alpha-minimal essential medium (α-MEM) (Invitrogen, Carlsbad, CA, USA) added with 10% foetal
bovine serum (FBS; Invitrogen, Carlsbad, CA, USA), 2mM glutamine, P/S (Invitrogen Carlsbad, CA,
USA), and amphotericin-B (Invitrogen Carlsbad, CA, USA).

These cells were finally incubated at 37 ◦C and 5% CO2, and the medium was replaced bi-weekly.
Different batches of cells were used for this specific study.

2.5. Cytofluorimetric Analysis

Isolated cells were phenotypically investigated for the expression of mesenchymal stem cell-like
markers using the following antibodies: anti-CD13 (PE, 560998, Becton Dickinson, San Jose, CA,
USA), anti-CD90 (PE, 555596, Becton Dickinson, San Jose, CA, USA), anti-CD105 (APC, 562408, Becton
Dickinson, San Jose, CA, USA), anti-CD73 (FITC, 561254, Becton Dickinson, San Jose, CA, USA),
anti-CD146 (PE, sc-18837, Santa Cruz Biotechnology, Inc), anti-CD44 (FITC, 560977, Becton Dickinson,
San Jose, CA, USA), and anti-CD29 (APC, 561794, Becton Dickinson, San Jose, CA, USA).

The absence of hematopoietic markers was assessed using anti-CD34 (FITC, 130-098-142,
Miltenyi Biotec, Bergisch Gladbach, Germania), anti-CD45 (APC-H7, 560178, Becton Dickinson,
EU), and anti-HLA-DR (PE, 130-104-873, Miltenyi Biotec, Bergisch Gladbach, Germania) antibodies.
Cytofluorimetric measurements were performed using a NAVIOS instrument (Navios Flow Cytometer,
Beckman Coulter, Life Sciences, Indianapolis, IN, USA) and the Kaluza 1.3 program (Kaluza Analysis
Software, Beckman Coulter, Life Sciences, Indianapolis, IN, USA) was used for data analysis.

2.6. Proliferation Assay

The scaffolds were sized as 1 cm2 squared pieces, with a sterile scalpel (0.5 cm thickness),
and sterilized by UV-rays exposure for 2 h, and finally pre-incubated for 2 h with complete medium in
24-wells plates.

HPCy-MSCs were seeded in concentration of 7 × 105 on PLA-10CaSi, PLA-5CaSi-5DCPD and
PLA-10CaSi-10DCPD scaffolds and incubated in α-MEM complete medium (see above) at 37 ◦C and
5% CO2 enriched atmosphere; pure PLA scaffolds were used as control.

The same number of cells were plated on tissue culture treated 24-well plate as growth control.
Presto Blue reagent (Invitrogen, A13261, Carlsbad, CA, USA) has been used as metabolic assay for

the evaluation of cell growth. Presto Blue reagent was diluted according to manufacturer’s instructions
and added to the wells containing the scaffolds seeded with hPCy-MSCs or the empty scaffolds
(negative control).
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After incubation for 2 h at 37 ◦C and 5% CO2, the absorbance of resazurin dye was measured
using a Multiskan GO (Thermo Fisher N10588, Waltham, MA, USA) spectrophotometer at 570–600 nm
wavelength. Metabolic assays were performed at days 3, 7, 10, and 14.

2.7. Live/Dead Assay

The presence of viable and/or non-viable cells seeded on scaffolds was detected by staining
samples with a solution of 2 µM Calcein AM (acetoxymethyl) and 4 µM EthDIII (Ethidium Homodimer
III, Biotium, Hayward, 30002, CA, USA) in PBS. Calcein AM stains viable cells by emitting a green
fluorescent signal (FITC) instead EthD-III stains only dead cells in red (rhodamine).

After 2 washings with PBS, samples were incubated with the staining-solution for 40 min at
room temperature.

Fluorescent signal was revealed through a confocal laser scanning microscope (CLSM) (SP5, Leica,
Wetzlar, Germany) and relative images were acquired by a microscope associated camera.

Live/dead assay has been performed at days 7, 14, and 21.

2.8. qPCR

After 21 days of cell culture, scaffolds seeded with hPCy-MSCs were washed with PBS and then
cells have been harvested by using TRIzol reagent (Thermo Fisher, Carlsbad, CA, USA).

The Purelink™ RNA mini kit (Applied Biosystems, Vilnius, Lithuania) was used for RNA
extraction, quantification of total RNA was performed by using a Multiskan Go spectrophotometer
(Thermo scientific, Waltham, MA, USA). Total RNA samples (250 ng) were subjected to the
reverse-transcription reaction using the High Capacity RNA-to-cDNA Kit (Applied Biosystems, Vilnius,
Lithuania). cDNA samples were amplified by real-time PCR with the power SYBR green PCR Master
Mix (Applied Biosystems, Vilnius, Lithuania) with 2 pmol of primers in a total volume of 10 µL.

Real-time PCR reactions were performed using a Pikoreal 96 (Thermo Fisher, Carlsbad, CA, USA)
apparatus with the following conditions: initial denaturation step at 95 ◦C for 10 min, followed by 40
cycles of 10 s at 95 ◦C and 1 min at 60 ◦C. Relative expression levels were calculated using the ∆∆Ct
method after normalization to the expression of the HRPT housekeeping gene.

Primer sequences for Runt-related transcription factor-2 (RUNX-2), dentin matrix protein-1
(DMP-1) and osteocalcin (OSC) genes are listed below:

RUNX-2
For: ATGTGTGTTTGTTTCAGCAGCA
Rev: TCCCTAAAGTCACTCGGTATGTGTA
DMP-1
For: GTGAGTGAGTCCAGGGGAGATAA
Rev: TTTTGAGTGGGAGAGTGTGTGC
OSC
For: TGAGAGCCCTCACACTCCTC
Rev: ACCTTTGCTGGACTCTGCAC

2.9. Statistical Analysis

Results are expressed as the mean ± standard deviation (SD) of three specific different experiments.

3. Results

3.1. Scaffolds Characterization by Micro-CT

In the PLA scaffold (control), micro-CT scan of 2 random slices revealed a heterogeneous highly
porous structure (Figure 2). Pores appeared not to be uniform in size and shape with macro-pores
ranging from 0.5 to 1.5 mm and large empty spaces in the central part of the structure. PLA-10CaSi
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scaffolds had a highly porous, “honey-comb” like, and more regular structure (Figure 3) than the
control scaffolds. Differently from the pure PLA sample, no empty areas were present in the central
portion of the PLA-10CaSi scaffold. However, large pores (approx. 1 mm in radius) were evident in
some parts of the scaffold. Smaller regular-shaped pores constituted most of the structure of these
scaffolds. The small granules of the minerals conferred a higher radiopacity to these scaffolds compared
to the control scaffolds, which allowed visualization of a more defined structure and indicated the
mineral particles were well-distributed along the whole scaffold volume.
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all the scaffold structure.

PLA-5CaSi-5DCPD (Figure 4) and scaffold PLA-10CaSi-10DCPD (Figure 5) had very similar
structures to the one of the PLA-10CaSi scaffold, including highly porous, regular “honey-comb” like
structure with homogenous small pores and well distributed radiopaque mineral granules. However,
at the edge of the scaffolds a higher concentration of CaSi and DCPD fillers can be identified. All tested
scaffolds had a high, similar percentage of total porosity (86.4–89.4%) and open porosity (>99%),
but the wall thickness of the pores increased with the amount of minerals used to load the scaffold
(Figure 6). The open pore structure is an important feature for promoting colonization and degradation
of the scaffolds. Also, the low standard deviation in the thickness of the pore walls corroborates the
homogeneous distribution of the minerals in the structure of all the scaffolds.
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“honey-comb like structure”, similar to the other mineral-doped scaffolds.

3.2. Biological Assays

The cellular response of the recently described human periapical cyst-mesenchymal stem cells,
seeded on highly-porous PLA-based scaffolds, mineral-doped with dicalcium phosphate dihydrate
and/or hydraulic calcium silicate, has been investigated. Impressively high expression of mesenchymal
stem cell-like markers was detected; in particular: CD90, CD105, CD73, CD44, CD29, and CD13 were
highly expressed by cells isolated from human periapical cysts, so demonstrating their immature
phenotype and the great regenerative potential of this MSC population meritoriously isolated from
wasted biological tissues. The multipotent mesenchymal stromal nature of hPCy-MSCs was further
confirmed by the lack of the expression of hematopoietic surface markers CD34, CD45, and HLA-DR
(Figure 7).
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Figure 6. Quantification of % of total porosity (A), % of open porosity (B), and average wall thickness
of the pores (C) from the micro-CT scanned samples of all different scaffolds.

3.3. Metabolic Assay

The proliferation rate of hPCy-MSCs has been quantified by using a resazurin-based metabolic
assay (Presto Blue Invitrogen, A13261). The metabolic activity of live cells allows the conversion of
resazurin into an optically-detectable component; the rate of resazurin conversion directly correlates
with the number of viable cells present in the culture.

Cell proliferation was monitored at different time-points (3, 7, 10, and 14 days, after the seeding).
Figure 8 shows the same hPCy-MSCs’ growing trend, in all the experimental samples, with a maximum



Materials 2019, 12, 597 10 of 17

peak reached at day 10, followed by a slightly decline at day 14. Interestingly, cells seeded on
mineral-doped scaffolds showed a better proliferation ability, compared to the PLA-control group;
this behavior was confirmed for those cells seeded on PLA-10CaSi-10DCPD scaffolds, particularly at
day 10.
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3.4. Live/Dead Assay

The presence of live and dead cells after seeding on the experimental scaffolds at 7, 14, and 21
days of culture was examined by confocal analysis, by using specific Calcein AM-EthDIII live/dead
fluorescent staining.

This assay provides green/red fluorescent staining of viable and non-viable cells, respectively;
briefly, Calcein AM penetrates into live cells and is cleaved by the cytoplasmic esterases to yield the
green fluorescent dye and is retained thought membrane integrity of viable cells. EthD-III enters only
dead cells with compromised plasma membranes and binds DNA, thus marks the nucleus with bright
red fluorescence.

As evident in Figures 9–11, a good colonization of the scaffolds has been observed in all samples;
but a higher number of non-viable cells (red-stained) is clearly observable in PLA-control scaffold
at day 14 and at day 21. About hPCy-MSCs seeded on mineral doped scaffolds, PLA-10CaSi,
PLA-5CaSi-5DCPD, and PLA-10CaSi-10DCPD, the green stained vital cells predominate at any
time-point (day 7–14–21). Figure 12 describes the different microstructures of the analyzed scaffolds
observed in Bright Field (B/F), by Confocal Laser Scanning Microscope (CLSM) at 10× magnification.Materials 2019, 12, x FOR PEER REVIEW 12 of 18 
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3.5. Osteogenic Differentiation

In order to test the effects of different novel scaffolds made in our labs, we cultured the hPCy-MSCs
on each of them, and we observed the variation of the genes expression closely related to osteogenesis
and odontogenesis, by means of quantitative polymerase-chain-reaction. As reported in Figure 13,
the expression of osteocalcin, a typical osteogenic marker, is homogeneous in cells seeded in the different
experimental scaffolds. The mRNA levels of the early osteogenic marker RUNX-2 are increased in cells
grown on PLA-10CaSi scaffold, and they are decreased in cells seeded on PLA-10CaSi-10DCPD. On the
other hand, the expression of DMP-1, a well-known odontogenic and osteogenic marker, seems to
be increased in hPCy-MSCs cultured on all mineral-doped scaffolds: interestingly, DMP-1 levels are
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particularly increased in PLA-5CaSi-5DCPD and in PLA-10CaSi-10DCPD scaffolds, revealing the
suitability of these two scaffolds in bone regeneration procedures.
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mean values.
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4. Discussion

In the present study, hPCy-MSCs were isolated from periapical inflamed cystic tissues and seeded
on bioactive mineral-doped novel scaffolds. It has been reported that hPCy-MSCs have key abilities,
useful for bone and dental regeneration strategies: the association among these cells and specific
osteogenic/odontogenic scaffolds is likely to trigger MSC differentiation towards specific lineages [3].
Clinical applications of such promising association of novel MSCs and novel scaffolds are particularly
targeted on regenerative dentistry and biological-guided oral surgery.

TIPS allowed to produce highly porous composite structures, made of PLA filled with different
amounts of CaSi and DCPD, up to 20 wt %. This technique did not induce any modification in the
morphological structure of the crystalline fillers upon mixing with the polymer phase, as confirmed by
an XRD analysis previously reported in literature [34].

TIPS allows to produce extremely highly porous structure with extensive pore
interconnectivity [38] and to fabricate scaffolds with a great variation of micro and macropores,
although it was difficult to produce pores over 200 µm [39] (structure with pore size 10–100 µm cells
proliferation and migration, while 100–1000 µm allow bone ingrowth [40]). In the present study,
the high standard deviation (over 30%) (Figure 6) of the wall thickness of the scaffolds, demonstrated
a broad range of pore sizes, as reported in other studies on scaffolds production [34,40]. However,
trabecular bone also shows a variability of trabecular thickness of approx. 30% [41,42].

PLA drawbacks (hydrophobicity, release of acid degradation products, and reduced cell
adhesion and growth) are well-known in literature [18]: the addition of CaSi and DCPD mineral
filler significantly improved the biointeractivity, biocompatibility, and apatite forming ability of
the materials [34]. Indeed, hPCy-MSCs seeded on the mineral doped scaffolds showed a better
colonization, growth, and proliferation on the mineral doped formulations when compared to pure
PLA. This behavior is well evident in Figures 9–11, where a higher number of dead (red cells) may be
observed on PLA scaffolds, in particular at 14 and 21 days.

In our study, a complex micro-CT characterization has been performed: scaffolds pores,
their interconnectivity and size, the structural wall thickness, scaffolds anisotropy, and cross-sectional
areas had been analyzed, showing a scaffold structure characterized by suitable interconnected pores,
where cells were able to migrate, grow, and differentiate. Micro-CT analysis revealed no artefacts
or empty areas in the middle part of the mineral-doped scaffold: the presence of mineral fillers was
able to reinforce the polymer matrix. This behavior is also confirmed by previous mechanical tests,
where pure PLA showed lower values of the elastic modulus, and PLA-10CaSi-10DCPD showed the
highest values [34].

The highly porous structure is a key feature for the proper colonization of the mineral-doped
scaffold by the cells. Importantly, the mineral compounds used to build the scaffolds were
homogeneously distributed: this aspect is important to have a homogeneous bioactivation of the
cells along the whole structure of the scaffold.

The evaluation of gene expression, after a long-term culture of oral-derived MSCs with
the mineral-doped scaffolds, indicated that an increasing mineralization of scaffolds is closely
correlated with the improved expression of the odontogenic/osteogenic marker DMP-1; strategically,
we observed the levels of DMP-1 in each scaffold tested, but we would suggest to consider the
PLA-10CaSi-10DCPD-based scaffolds as the gold standard, pushing the use of such scaffolds, added
with autologous dental-derived MSCs, specifically in bone tissues and dental tissues repairing.

5. Conclusions

The most exciting challenge in regenerative dentistry is to find a scaffold able to ensure
regenerative healing of periapical and alveolar bone, allowing tooth preservation. In this study,
an innovative regenerative clinical approach was conceived through the combination of highly porous,
biologically active (biointeractive) scaffolds with autologous hPCy-MSCs. These cells showed a good
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growth rate and an interesting expression of the typical osteogenic/odontogenic marker DMP-1 on all
the mineral-doped scaffolds compared to pure PLA scaffold.

In conclusion, the combination of a bioactive scaffolds colonized with autologous stem cells
from periapical cysts may represent a promising strategy for regenerative healing of periapical and
alveolar bone.
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